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Deterministic Diffusion in a Gravitational Billiard

Lasko Basnarkov1 and Viktor Urumov2

1Faculty of Electrical Engineering, P. O. Box 574, Skopje, Macedonia
2Faculty of Natural Sciences and Mathematics, P. O. Box 162, Skopje, Macedonia

Numerical study of the motion of a classical particle in a homogeneous gravitational
field bouncing off elastically from a piecewise linear periodic boundary shows that it is
characterized by diffusion constant, but nonlinear scaling of the mean-square displacement
is also observed. It is shown that periodic by modulus trajectories cannot have a segment
with vertical flight.

§1. Introduction

The phenomenon of random looking behaviour in deterministic systems is sub-
ject of widespread study in many branches of modern physics. This is also the case
in the field of transport properties such as diffusion. Classically diffusion is viewed
as a stochastic process caused by random forces acting on particles and the process
is modelled with Langevin equation. Recently a different point of view has been es-
tablished where strictly deterministic systems have been shown to display diffusion.
Most frequently such systems are represented with one-dimensional maps, usually
taking piecewise linear maps.1),2) Another popular model is the standard map.3) Our
motivation was to construct a physical model which has diffusive properties and can
be solved to a large extent analytically without the need to introduce any kind of
approximation in the calculations.

§2. Definition of the model and its analysis

We consider classical particles moving in a homogeneous gravitational field.
Their motion is restricted from below with a periodic piecewise linear boundary.
The collisions of the particle with the boundary are elastic and the particle contin-
ues its motion with the same energy after the reflection, with reflection angle equal
to the incident angle as is the case in geometric optic. This billiard system was
considered by Lehtihet and Miller4) who restricted the motion to a single infinite
wedge shaped well. Physical realization of such system was achieved recently by two
groups of researchers5) experimenting with ultracold atoms bouncing off beams of
light. Lorenz has written about another more prosaic realization of a similar system
in the form of a pinball machine.6) In a constant gravitational field classical particles
follow parabolic paths. The intersection point of the trajectory with the boundary
is a solution of quadratic equation. Applying the reflection condition one obtains
initial conditions for the next parabolic flight of the particle.

The energy of a point particle of mass m moving under constant vertical gravi-
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tational acceleration g is

E =
p2

x + p2
y

2m
+ mgy ,

where x and y denote horizontal and vertical coordinates, while px and py represent
the corresponding momenta. It is possible to set m = 1 and g = 1 which is equivalent
to the use of some special time unit. We will be interested in motion of particles
with sufficient energy E to overcome the barrier H = l tan θ ≡ kl between the wells.

Fig. 1. Poincaré surface of section py = 0: (a)

E = 3, k = 1.2; (c) lowest part of Fig. 1(b)

under magnification.

As an illustration of the typical sit-
uation, in Fig. 1(a) the Poincaré sur-
face of section with the plane py = 0 is
shown for E = 3 (expressed in units of
E0 = mgH = H) and k = 1.2. The hor-
izontal and vertical direction correspond
to x and y coordinates of the particle,
the coordinate x being taken by mod-
ulus 2l. All the intersecting points are
generated by a single chaotic trajectory.
The empty elliptic areas in Fig. 1(a)
are reserved for quasiperiodic trajecto-
ries which are organized around central
periodic or periodic by modulus trajec-
tories. Such trajectories corresponding
to some of the largest islands in Fig.
1(a) are depicted in Fig. 2. Three of
them are periodic (Figs. 2(a), (b), (c))
and one is periodic by modulus (Fig.
2(d)). Two of the periodic orbits (Figs.
2(a) and (b)) at two stages are reflected
back orthogonally after collision with
billiard boundary, while the remaining
periodic trajectory (Fig. 2(c)) has two
‘ends’ with vertical flights which return
backward after reaching the maxima.

The variety of all possible trajec-
tories can be classified as follows: 1)
periodic and periodic by modulus, 2)
quasiperiodic, and 3) chaotic. The
quasiperiodic trajectories surrounding a
periodic trajectory are confined to a fi-

nite interval along the x-axis, while the quasiperiodic trajectories surrounding the
periodic by modulus trajectories are unbound. Similarly, chaotic trajectories can be
bound or unbound.

The diffusion coefficient is defined by Einstein’s relation

D = lim
t→∞

1
2t
〈[x(t) − x(0)]2〉 ,
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Fig. 2. Periodic trajectories with orthogonal reflection from the boundary (a),(b), periodic trajec-

tory with vertical flightand periodic by modulus trajectory (d) for E = 3, k = 1.2. Some of the

parameters of the system are defined in (a).

where the average 〈· · · 〉 is taken over a statistical ensemble of particles with uniformly
distributed initial conditions. Contribution to the diffusion comes from the unbound
orbits. From the definition it becomes evident that quasiperiodic by modulus trajec-
tories make dominant contribution to the mean-square displacement 〈[x(t)−x(0)]2〉,
which scales as t2 if such trajectories are not excluded and makes meaningless the def-
inition of the diffusion coefficient. It is therefore desirable to separate out quasiperi-
odic by modulus motion and this is possible by making the following observation.

Consider the set of initial conditions with arbitrary x and y coordinates, py = 0
and px such that the energy has a constant value. All possible trajectories within
given energy surface are included in this set because each trajectory at some stage of
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Fig. 3. Diffusion coefficient D as a function of the angle θ for E = 3.

the motion reaches its maximum defined by the condition py = 0. On the other hand
not all trajectories have sections with vertical flight which at such stage satisfy the
condition px = 0. The set of trajectories with initial conditions given by arbitrary
x and y coordinates, px = 0 and py determined from the constant energy condition
includes periodic orbits but does not include trajectories periodic by modulus. This
can be seen by assuming that there is a periodic by modulus trajectory with initial
condition px = 0. From the reversibility of the classical equations of motion, it follows
that the same trajectory should be also periodic. This incompatibility proves that
periodic by modulus trajectories are excluded by restricting the initial conditions
to vertical falls only. Since quasiperiodic by modulus trajectories are located in
the immediate vicinity of those which are periodic by modulus, by considering only
trajectories with initial vertical fall, we could eliminate the contribution to the mean-
square displacement of trajectories which are quasiperiodic by modulus. The validity
of the above argument is applicable to any periodic billiard boundary and not only
to the particular one which is under consideration.

To obtain the diffusion coefficient we have followed the trajectories of 10000 par-
ticles and the results are shown graphically in Fig. 3 as a function of the angle θ.
For θ < 45◦ the calculations were done separately for two different sets of initial con-
ditions, with a restriction px = 0, and py = 0, respectively. The difference between
the results appears insignificant. Smaller angles θ < 18◦ are not included because
the necessary time length to achieve limiting behaviour is beyond our computational
means.

When the angle θ is very small it is observed that for some intermediate time
interval the mean-square displacement scales as tα with α > 2. In particular for
k = 0.005, α = 2.6 was obtained. For very small θ, significant part of any trajectory
is limited to bounces from one of the boundaries within a single well and therefore
represents motion which is accelerated for long time along the horizontal direction.
We expect that in the limit t → ∞, normal diffusion is recovered.

As a further evidence that the system of particles is approaching Gaussian dis-
tribution we have calculated some higher order moments. For a Gaussian ran-
dom variable ξ with vanishing mean value, one has k4 = 〈ξ4〉/〈ξ2〉2 = 3 and
k6 = 〈ξ6〉/〈ξ4〉〈ξ2〉 = 5. Our simulations with 1000 particles typically differ from
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the theoretical results by less than 10%.

§3. Conclusions

We have studied simple but realistic physical system which is fully deterministic
and shows clear diffusive properties. A simple way was found how to exclude the
contribution to the mean-square displacement of trajectories flying in one direction
without interruption. Further studies of the model are possible. For example, pre-
liminary investigations have shown that the presence of noise in the form of quenched
disorder of the angle θ in various wells generally leads to increased diffusion.
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