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We study random walk on complex networks with transition probabilities which depend on the
current and previously visited nodes. By using an absorbing Markov chain we derive an exact ex-
pression for the mean first passage time between pairs of nodes, for a random walk with a memory
of one step. We have analyzed one particular model of random walk, where the transition prob-
abilities depend on the number of paths to the second neighbors. The numerical experiments on
paradigmatic complex networks verify the validity of the theoretical expressions, and also indicate
that the flattening of the stationary occupation probability accompanies a nearly optimal random
search.

I. INTRODUCTION

The pursuit for appropriate models of the nontrivial
interconnections between the units of real systems has
led to the emergence of the complex networks theory as
one of the most fruitful fields in modern science. In-
stead of being regular, or purely random [1], the graph
of connections between the items rather frequently pos-
sesses characteristics like the small world property [2] and
power law degree distribution [3]. These topological fea-
tures have strong implications on the dynamics which
might be present in the system. A list of such dynam-
ical processes on complex networks of interacting units
can include synchronization [4], consensus formation [5],
disease spreading [6] and so on.
The random walk is one of the most pervasive con-

cepts in natural sciences which is applied in studies of
diverse phenomena ranging from simple animal strate-
gies for food location [7, 8] to complex human interac-
tions resulting in stock price variations [9], or evolution
of research interests [10]. A recent paper [11] contains
nice review of the topic and long list of references. Large
portion of dynamical processes on complex networks like
the PageRank algorithm [12], various types of searching
[13, 14], or community detection [15] are based on or re-
lated to the random walk. Random searching process
in a complex network is formulated as follows: starting
from an arbitrary node, or source i, sequentially hop from
a node to one randomly chosen neighbor until reaching
some previously defined target node j. The performance
of a searching procedure is measured in terms of the
number of steps needed to get from i to j and the re-
lated quantity is known as first passage time. Due to the
stochastic nature of picking the nodes in the sequence,
sometimes one can be very lucky and rather quickly find
the target, while in most of the trials the number of steps
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would be larger then the number of nodes in the network,
for a typical source-target pair. Therefore, a more infor-
mative quantity is the average number needed to com-
plete the task – the Mean First Passage Time (MFPT) –
obtained by averaging across all possible realizations of
the random choices.

On the other side, there are efficient deterministic
searching algorithms, which rely on information about
the underlying graph structure. In such approaches,
when one has knowledge of the full structure of the graph,
the shortest paths are used, and then one needs smallest
number of steps to reach the target. However, for very
large systems, like the World Wide Web, or in dynamical
environments like mobile sensor networks, keeping and
updating all necessary topological information might be
serious issue. Then one could turn towards strategies
based on local information only. The classical Uniform
Random Walk (URW) needs the smallest amount of in-
formation – only the number of neighbors (the degree
ki) of each node i. Within this approach, the probabili-
ties for choosing among the neighbors of some node i are
taken to be identical and equal to the inverse of its degree
p = 1/ki. However, this procedure greatly increases the
time to completion of the task, which is another type of
inconvenience. The searching can be improved when the
local information extends the node degrees. For exam-
ple, it was shown that for a certain type of small world
networks, random target can be found rather quickly by
using local information only [16, 17]. Knowledge of the
identities of the direct or maybe more distant neighbors,
also enhances the searching [18].

There are various alternatives for modification of the
URW aimed for speeding up its searching capabilities.
Some of these works provided enhancements while oth-
ers also presented connections with related problems in
other fields. For example, as a counterpart of the path
integrals, the Maximal Entropy Random Walk was in-
troduced as a modification of URW which assigns equal
probabilities to all paths with equal length starting from
a certain node [19]. In another approach, the Lévy ran-
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dom walk which allows for jumps toward more distant
nodes besides the (first) neighbors, was proven to de-
crease the expected time needed to visit all nodes in
a network [20]. Combination of the local diffusion and
knowledge of the topology has recently been applied for
study of routing of neural signals [21]. Biasing of the
random walk has been shown to be useful in sampling
of complex networks as well [22]. Another important
achievement was the demonstration that biasing of the
URW, by preferring the less connected neighbors, can
improve the random searching in complex networks [23].
In the same contribution, it was uncovered that inverse-
degree-based biasing of the random walk also leads to
uniform stationary occupation probability. In a related
work, it was obtained that the improvement is greatest
when the probability to jump to a neighbor is inversely
proportional to its degree [24].
In this work we explore the potential for searching im-

provement by considering memory-based random walk on
complex networks since it relies on information that ex-
tends the immediate neighborhood. First, we develop
theoretical framework for analytical calculation of the
MFPT between any pair of nodes when the random walk
has a memory of one step. Then we apply it for determi-
nation of MFPT for one particular searching algorithm
which aims to provide nearly equal chances of visiting
second neighbors. We numerically show that searching
enhancement is also accompanied with flattening of the
stationary distribution of the visiting frequency as it is
the case of the inverse-degree-based biasing of the ran-
dom walk. The co-occurrence of the improved searching
and nearly uniform stationary distribution is found even
for the memory-based and inverse-degree-based random
walk on directed complex networks as well.
The remainder of the text is organized as follows. In

Section II we present general theoretical framework for
studying random search with random walk with memory.
Then in Section III we introduce an algorithm for random
search with memory of one step. The results from the
numerical experiments and their analysis are provided in
Section IV. The paper finishes with the Conclusions.

II. MEAN FIRST PASSAGE TIME OF

RANDOM WALK WITH MEMORY ON

COMPLEX NETWORKS

Consider a connected complex network with N nodes,
with adjacency matrix A. We will study discrete-time
walk, where the next node in the sequence is chosen ran-
domly, with time-invariant transition, or jump probabil-
ity which depends on the previously visited nodes. Our
theoretical analysis will be focused on the simplest sce-
nario with memory, when this probability depends only
on the present and the node visited immediately before
it. This situation can be identified as one with a memory
of depth (or length) one. To be more specific, assume the
random walker at certain time step has moved from node

r to its neighbor s. For one-step memory, the probability
of proceeding towards some neighbor t from s [25], de-
pends only on the previously visited node r, but not on
the preceding ones. It is thus given with

p(t|s, r, u1, u2, . . . ) = p(t|s, r), (1)

where u1, u2, . . . denotes the sequence of nodes visited be-
fore r. This kind of random walk can be suitably studied
with a related Markov chain with states that represent
the pairs of neighboring nodes in the network. To make
the connection between the random walk and its associ-
ated Markov chain more intuitive, let us denote with rs
the state in the Markov chain when the random walker
has visited node r immediately before s. The transi-
tion probabilities in the chain from state rs to st are
thus prs,st = p(t|s, r). All such transition probabilities
can be compactly organized in the respective transition
probability matrix P. We note that although the gener-
alization of the associating Markov chain for a random
walk with longer memory is straightforward, one should
keep in mind that the size of the corresponding matrix
will rise exponentially. This is due to the fact that the
states of such a Markov chain will consist of all allowable
sequences of successively visited nodes with length that
equals the memory depth plus one.
When the transition probability matrix of the related

Markov chain is determined, such a random walk will
be completely defined once the starting step is speci-
fied. One particular initialization of the walk which starts
from some node i is to choose randomly one of its neigh-
bors and then continue with the memory-based algorithm
specified with the transition matrix P. Finding some tar-
get j in the network corresponds to reaching any of the
states denoted with sj in the Markov chain, where s is
any neighbor of the node j [26]. Then, the MFPT from
node i to j could be related to the Mean Time to Absorp-
tion (MTA) of a random walk in properly chosen absorb-
ing Markov chain that started in any state ir. In that
chain, all states sj, where s is neighbor of the target j,
are absorbing, while the remaining ones rt, where t 6= j,
and r 6= j are transient states. We also note, that in the
Markov chain that models the random walk with memory
there can be states denoted as js. They can be included
in the absorbing chain only if one needs to calculate the
Mean Recurrence Time, or the average time needed for
the walker starting from j to return at j again. When
the starting node differs from the target, such states can
be omitted in order to reduce the size of the matrices
involved. Before deriving the relationship between MTA
and MFPT, we will first present some well known re-
sults about the MTA in absorbing Markov chains, which
can be found for example in [27]. For such purpose, one
should first determine the transition matrix of the ab-
sorbing Markov chain, which depends on the target j,
and thus we will denote it with P(j). Since the random
walk should stop at any absorbing state, the probabil-
ity of leaving any of them is zero. Also, the transition
probabilities between the other, the transient states in
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the absorbing chain, are the same as the respective ones
in the original chain. Thus, the absorbing chain matrix
P(j) differs from the general matrix P only in the rows
with index sj, which in the absorbing matrix have values
psj,rt = δsj,rt. The transition matrix of the absorbing
Markov chains is conveniently represented in the canon-
ical form. For memory-based random walk targeting the
node j the canonical form reads

P(j) =

∣

∣

∣

∣

Q(j) R(j)

0 I

∣

∣

∣

∣

. (2)

In the last equation Q(j) is a matrix consisting of transi-
tion probabilities between the transient states. The sub-
matrixR(j) is determined with the rows corresponding to
the transient states, while the columns are indexed with
all absorbing states sj, which are related to the target j.
We remind that the transition probabilities in these two
matrices have identical values to the respective ones in
the original chain. Lastly, the appropriately sized zero
matrix 0 and the identity matrix I denote that from any
of the absorbing states sj the random walker does not
pursue further and remains in the same state. To sim-
plify the notation, we will use Greek letters α and β to
identify states in the absorbing Markov chain, instead of
using pairs of neighboring network nodes.
The MTA equals the average number of steps while

the walker is in the transient states. The probabilities of
presence in the transient states is encoded in the powers

of the transient submatrix Qn
(j). Its terms q

(n)
(j),α,β are

the probabilities of the walker which started at state α
to be at β after n steps. Let us introduce a binary ran-

dom indicator variable I
(n)
(j),β , which has value 1, if the

walker is present at state β at moment n, and 0 if it is

absent. Its expected value E(I
(n)
(j),β) equals the probabil-

ity q
(n)
(j),α,β . Then, the expected number of steps when

the walker starting at α is present at β in the first n
iterations is

E(I
(0)
(j),β + I

(1)
(j),β + · · ·+ I

(n)
(j),β)

= q
(0)
(j),α,β + q

(1)
(j),α,β + · · ·+ q

(n)
(j),α,β . (3)

The expected number of visits of the state β, for an
infinite walk is obtained by simply letting n → ∞. One
can introduce a fundamental matrix for this absorbing
Markov chain as the infinite sum

Y(j) = I+Q(j) +Q2
(j) + · · · . (4)

It contains the expected number of steps in which per-
petual random walk starting from any state α (the row)
is present at node β (the column). The MTA of random
walk which started at state α equals the mean number
of steps in which the walker is in any transient state β,
or the sum

µ(j),α =
∑

β

y(j),α,β , (5)

where y(j),α,β are the elements of the fundamental matrix
of the absorbing chain Y(j). A more compact expression
can be obtained by using the vector µ(j) consisting of all
MTA µ(j),α from all possible starting states α, by using
the matrix equation

µ(j) = Y(j)c, (6)

where c is a column vector with all elements equal to
one. Because any random walk finishes in some absorbing

state with probability one, the powers of the matrix Q
(n)
(j)

become vanishingly small as n → ∞. Accordingly, the
infinite sum of matrices converges and the fundamental
matrix can be represented more compactly as

Y(j) =
(

I−Q(j)

)−1
. (7)

The last relationship provides efficient procedure for de-
termination of the MTA based on calculation of inverse
matrix. As we will see below, the MTA vector µ(j)

contains sufficient information for calculation of MFPTs
from all starting nodes to particular target j. We note
that in alternative interpretation the MTA is average
number of steps needed for the walk to finish in any ab-
sorbing state, and is thus an average over all possible
absorbing states.
The random walks on complex networks are such that

at a single time step, exactly one hop is made. Then, each
random first passage time equals the number of steps
needed for reaching the target for the first time, that
is the length of the respective random walk. Thus, by
definition MFPT between the starting node i and the
target j is weighted sum of the lengths l of all walks
Wi,j , which visit j only at the last step

mi,j =
∑

Wi,j

l (Wi,j) p (Wi,j) , (8)

where p(Wi,j) is the probability of occurrence of the walk
Wi,j . Let us first consider the case when the target is not
neighbor of the source. The sum in the last expression
can be organized by summing over all walks with memory
that visit the neighbor s of i at the first step, and then
summing in the whole neighborhood Ni of i

mi,j =
∑

s∈Ni

pi,s
∑

Ws,j

[1 + l(Ws,j)] p(Ws,j), (9)

where pi,s denotes the probability to hop from i to s in
the first step. It is known that every random walk in
an absorbing Markov chain is absorbed with probability
one [27]. This implies that the measure of the memory
based random walks in the complex network that miss
the target j indefinitely, is zero. This practically means
that the normalization condition of the probabilities of
the memory-based walks that pass through each neighbor
s of the initial node i and reach the target j, is given as

∑

Ws,j

p(Ws,j) = 1, (10)
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where the summation is made for each neighbor s sep-
arately. One can also note that the MFTP from the
neighbor s of the starting node i to the target j by pur-
suing the memory-based random walk equals the MTA
from the starting state is in the absorbing Markov chain
determined with the same target. This MTA is the re-
spective term of the MTA vector µ(j) and is given with
the following sum

µ(j),is =
∑

Ws,j

l(Ws,j)p(Ws,j). (11)

When the neighbor in the first step is chosen uniformly,
one has pi,s = 1/ki. Then, by using (10) and (11) in
(9) one can express the MFPT from the node i to j
through the MTAs obtained by the Markov model for
the memory-based random walk as

mi,j = 1 +
1

ki

∑

s∈Ni

µ(j),is. (12)

We can now consider the case when the target j is
neighbor of i. This target could be reached in one step
with probability pi,j = 1/ki, by pursuing the direct one-
step route, while for the mean number of hops through all
other walks one can apply the same reasoning as above.
We note that in the sum running in the neighborhood of
the initial node i, the target j should be omitted. Then
by using the normalization condition (10), one can obtain
that

∑

s∈Ni

s6=j

pi,s
∑

Ws,j

[1 + l(Ws,j)] p(Ws,j)

=
ki − 1

ki
+

1

ki

∑

s∈Ni

s6=j

µ(j),is. (13)

Adding the contribution of the direct walk to the last
expression, one will obtain similar result as (12)

mi,j = 1 +
1

ki

∑

s∈Ni

s6=j

µ(j),is. (14)

By using the trivial value µ(j),ij = 0, one can see that
the same expression (12) can be used for any target, re-
gardless whether it is neighbor to the starting node, or
not.
The analysis in this section can be applied for the sim-

pler case as well – the random walk without memory. The
Markov transition matrix in this situation is consisting
of the transition probabilities between the nodes. Then
with each target node is associated only one absorbing
state – the target itself. However, it is more convenient
to have one fundamental matrix for the whole network,
instead of using a different one for each node separately.
Without going into details which can be found for ex-
ample in [27], we will briefly state how it is obtained.

For a connected graph with jumping probabilities sum-
marized in transition matrix P, one first determines the
row eigenvector w = wP that corresponds to the largest
eigenvalue. The term wj of the eigenvector w represents
the probability that the walker will be at node j at infin-
ity. Thus, this vector contains the stationary occupation
probabilities or frequency of visits of nodes by a perpet-
ual random walk. Next, one constructs a square matrix
W with identical rows consisting of the vectorsw stacked
one on top of another. The respective fundamental ma-
trix for a random walk without memory on a complex
network is then given by

Z = (I−P+W)−1, (15)

where I is an identity matrix with the same size as P.
The MFPT between the starting node i and the target
j is then obtained from the elements of the fundamental
matrix, zi,j , from the following relationship

mi,j =
zj,j − zi,j

wj

. (16)

The reader interested in a more detailed and intuitive
derivation of the same expression (16) with the generat-
ing functions formalism, but for lattices only, can refer
to [7], while for complex networks, based on the Laplace
transform, deeper explanation can be found in [23, 28].
We use the last expression for calculation of the MFPT
between the nodes in the memoryless random walk with
which our model is compared.

One should note that the MFPT is a property of the
network parameterized by two nodes – the starting one i
and the final j and is thus sensitive to the choice of this
pair. A related property of one node only is obtained by
averaging all MFPTs starting from all other nodes and
targeting it

gi =
1

N

N
∑

j=1

mj,i. (17)

In the literature it was called Global Mean First Passage
Time – GMFPT [29]. This property can be also seen
as a kind of centrality measure of nodes in a complex
network. By going one step further, one can average
across GMFPTs for all nodes and get a property of the
whole network which was introduced as Graph MFPT
(GrMFPT) [24]

G =
N
∑

i=1

gi. (18)

We use this variable for comparison of the searching by
different random walks in complex networks.
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III. SEARCHING ALGORITHM BASED ON

RANDOM WALK WITH MEMORY OF ONE

STEP

The results for the MFPT obtained in the previous
section are general and hold for every random walk with
jumping probabilities depending on the current and the
previously visited node. They are given in a form that
does not provide much intuition about which navigation
rules provide better search of the target. Even from the
expression for the MFPT of the memoryless walk, one is
not sure how the transition probabilities should be de-
fined in order to obtain faster search. We stress that, an
interesting contribution was the finding that if the prob-
ability to jump to a neighbor is inverse of that neighbor’s
degree, then the search in undirected network is faster as
compared to the URW, and in that scenario the station-
ary occupation probability approaches the uniform one
wj ≈ 1/N [23]. This suggests that searching improve-
ment could be expected from biasing which increases the
probability for visiting poorly connected nodes, as the in-
verse degree algorithm does. As shown in the Appendix
, under certain circumstances inverse-degree biasing can
result in nearly constant distribution of visiting frequen-
cies even for memoryless random walk on directed net-
works as well. This flattening of the invariant density
happens in well connected networks, in which each node
has many neighbors. As we will see below, our numeri-
cal simulations indicated that inverse-degree biasing does
not bring searching improvement for networks with small
average degree. In that case the distribution of visiting
frequency deviates more significantly from the uniform
one as well. Thus, navigation rules which favor jumps to-
wards less connected nodes and result in nearly uniform
distribution of visiting frequency could be a candidate of
a good searching algorithm.

Memory-based algorithms are obviously more com-
plex than memoryless counterparts and their implemen-
tation could be justified if they provide improved search-
ing. Guided by the reasoning above, one can pursue a
strategy which should result in decreased differences be-
tween the probabilities for reaching the second neighbors,
which hopefully would bring uniform stationary occupa-
tion probability and faster searching. One intuitive way
to make such navigation rules is as follows. Assume that
at the previous step the walker was at node r, from where
it has jumped to the node s, and in the next step it would
visit some node t from the set of neighbors of s. Denote
the number of all two-hop walks from node r to t with
brt. The matrix B with elements brt is the square of the
adjacency matrix A, B = A2. Then, the probability to
visit node t after being at nodes r and s in the previous
two steps, corresponds to the transition probability from
state rs to st in the related Markov chain. In analogy
to the inverse-degree biasing, one could favor visiting the
less accessible second neighbors by choosing the following

jumping probability

prs,st =
1
brt

∑

u∈Ns

1
bru

, (19)

where the sum in the denominator is used for normaliza-
tion of the probabilities and it runs in the neighborhood
of the node s, Ns. This formula assigns a larger weight to
nodes t which have less alternative paths to be reached
from node r, i.e. those with smaller brt. In this way, the
probability to visit a node of that kind from r in two steps
will be increased, and become closer to that of nodes
which are accessible from r in two steps through more
alternative ways. We note that for undirected networks
every node is a second neighbor to itself, and there is a
chance to return to the same node r. However, brr = kr
and the probability prs,sr is the lowest within all prs,st,
hence, the immediate returning is disfavored. In this way,
the appearance of short loops is suppressed.
The related Markov model of a random walk with

memory could be successfully applied for analytical cal-
culation of the stationary occupation probability as well,
which could be used to check whether its flattening is
accompanied by a searching improvement. To find the
stationary occupation probability, one should first calcu-
late the invariant distribution of the states of the related
Markov chain v, which is obtained from the stationarity
condition vP = v, of the full transition matrix P of the
Markov chain. Its terms are the stationary probabilities
of states vrs that correspond to all pairs of neighbors rs.
Then, the stationary distribution of frequency of visits of
the node s, by a random walk with memory of one step,
would be either of the sums

∑

r vrs, or
∑

t vst, running
within the neighborhood of the node s.

IV. NUMERICAL RESULTS

In this section we provide the results obtained by us-
ing analytical expressions and numerical simulations with
memory-based random walk and compare them with the
uniform and inverse-degree-biased random walk. The
search effectiveness was studied by calculations of the
GrMFPT of each considered network. The stationary oc-
cupation probability was also calculated to check whether
its flattening accompanies efficient searching. First, we
conduct a thorough analysis using generic network mod-
els, such as random, scale-free and small world networks.
Then, we apply the approaches on two real networks: the
Internet at autonomous systems level (undirected), and
a reduced set of Wikipedia pages (directed).
The calculations of theoretical expressions involve in-

verse matrix operation, and the latter presents the major
constraint in our analysis. For the random walk with
memory, the number of states in the related Markov
chain equals the number of links, which limits the size of
networks that we could study. Therefore, we have opted
to perform the analyses of the MFPT and the invari-
ant density for networks with N = 100 nodes. We have
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varied the average node degree, by changing the native
model parameters, to see how the connectivity affects the
search. For both the analytical and the numerical results,
we averaged over 10 network instances for every param-
eter setting for each network type. Moreover, in the nu-
merical simulations we have performed 100 repetitions of
the search among all node pairs, for each scenario.

We studied purely random graphs, scale-free and
small-world networks as the most typical kinds of net-
works. For generating such graphs we used algorithms
from the NetworkX library in Python which allow con-
struction of the three graph types with given parameter
values [30]. The random graphs are complex networks
created according to the Erdős-Rényi model where every
pair of nodes i and j is connected with some predefined
probability p, which appears as parameter of the graph
together with the number of nodes N [1]. If the proba-
bility p is large enough then the obtained graph would
very likely be connected – there will be a path between
each pair of nodes. The small world networks were built
following the Watts-Strogatz model [2]. It starts with
a regular ring lattice network with N nodes each con-
nected with n neighbors, and then randomly rewires the
links with some probability p. The scale free networks
were generated using the Barabási-Albert model which
sequentially builds the network by adding nodes one by
one [3]. The network builds upon a seed of m0 nodes
without edges, and every newly added node formsm links
with the existing network [31]. Preferential attachment
is employed as the probability to connect to an existing
node is taken to be proportional to its degree.

In Figure 1a we compare the obtained GrMFPTs for
the URW, inverse-degree-biased random walk and the
memory-based one over scale-free networks. The hor-
izontal axis represents the average degree 〈k〉 which is
approximately 2m, where m ∈ [2, 10]. The seed network
is composed of m0 = m nodes without edges. First, one
can observe that the numerical (N) and the theoretical
(T) results are very close, which confirms the correctness
of the analytical expressions. The memory-based random
walk always outperforms the uniform one. The inverse-
degree-biased random walk is also better than the URW,
when the average node degree is not very small. One can
notice that all curves decrease asymptotically towards
the value corresponding to the number of nodes N . As
we will see from the other numerical results, N seems to
be the minimal possible value for the GrMFPT. Thus,
as optimal random search could be considered the one
for which GrMFPT equals the number of nodes, G = N .
Although for networks with very large average degree the
GrMFPT seems to approach to N for different kinds of
random walk, the effectiveness of a biasing procedure be-
comes apparent for less connected networks.

We note that there is deterministic strategy that is
twice faster and which holds for graphs that have a
Hamiltonian cycle. It is a walk passing though all nodes
and visiting each node only once. We emphasize here
that determination whether a graph has a Hamiltonian

cycle is not a trivial task and was proven to be an NP-
complete problem [32]. In that case the MFPT from the
source to the target will equal the number of nodes in
between them along the cycle, and for uniformly cho-
sen starting and target node, one can easily show that
GrMFPT will be N/2.
The two biasing procedures bring search improvement

for the purely random Erdős-Rényi graphs also, as it is
shown in Figure 1b. We generated 10 network instances
with N = 100 nodes for different average node degree 〈k〉
by varying the link existence probability p ∈ [0.04, 0.2].
As it can be seen the inverse-degree biasing gives lower
GrMFPT than the URW, except for 〈k〉 = 4 where they
are about the same, while the one-step memory outper-
forms them both. Again the numerical results are in
accordance with the theoretical ones.
In Figure 1c we show how the biasing affects the ran-

dom walk in Watts-Strogatz networks, where the rewiring
probability is p = 0.2. Unlike for the other network types
under study, the inverse-degree biasing does not improve
the GrMFPT. This is probably due to the smaller de-
gree variability in this kind of networks. On the other
hand, the one-step memory approach still reduces the
GrMFPT, as it was the case for the other network types.
The theoretical expressions are once again confirmed by
the numerical simulations.
We also made numerical experiments to see whether

a mechanism behind the search improvement is nearly
uniform stationary occupation probability. The extent
of flattening of the stationary occupation probability was
studied with the Kullback-Leibler (KL) divergence [33].
KL divergence estimates the deviation of one distribution
from another. In the case when one has two discrete
distributions P (i) and Q(i), it is defined as

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (20)

One can notice from the definition that this is asymmet-
ric quantity, DKL(P ||Q) 6= DKL(Q||P ), and within the
definition provided above, P has the role of the prior, or
the distribution with which we compare. In our case it is
the constant P (i) = 1/N . This divergence vanishes when
the two distributions coincide. In Figure 2a is shown the
KL divergence between the constant density and those for
the uniform, inverse degree and one-step memory random
walks in BA networks. As can be noticed, both biasing
procedures result in invariant density that is closer to the
flat one, than the uniform approach does. Also, the larger
the average degree is, the approximation of the invariant
density with the uniform one is more correct, as the theo-
retical analysis in the Appendix suggests. However, even
though for networks with smaller average degree the bias-
ing makes the distribution closer to the uniform, search-
ing is slower than for the URW. This clearly indicates
that the leveling of the visiting frequencies is not always
sufficient for optimizing the search.
Similarly, Figure 2b shows the KL divergence between

the uniform density and the distribution of the visiting
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(b) ER networks
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(c) WS networks

FIG. 1: GrMFPT in (a) BA, (b) ER, and (c) WS
networks of N = 100 nodes with different average node
degree 〈k〉 for the three cases: uniform (red line/circle),
inverse degree (blue line/square) and one-step memory
(green line/triangle). The lines are theoretical values

(T) and the markers numerical estimates (N).

frequency for the URW and the two other random walks
in ER networks. Once again, the biasing yields a density
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(b) ER networks

4 6 8 10 12 14 16 18 20
⟨k⟩

10−4

10−3

10−2

10−1

100

D
KL

uniform
inverse⟨degree
one-step memory
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FIG. 2: Kullback-Leibler divergence of the stationary
occupation probability of uniform (red), inverse degree
(blue), and one-step memory (green) random walks
from the uniform density in (a) BA, (b) ER, and (c)

WS networks with N = 100 nodes for different average
node degrees.

that is closer to the constant one than the URW, which is
probably the reason for the lower GrMFPT obtained in
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(b) Kullback-Leibler divergence

FIG. 3: Random walks in directed ER networks with
different average degree 〈k〉: (a) Comparison of the
GrMFPT for uniform (red circles), inverse indegree

(blue squares) and one-stop memory (green triangles);
and (b) Kullback-Leibler divergence of the invariant
density from a uniform density for three approaches:
uniform (red circles), inverse-indegree-biased (blue
squares) and one-step memory (green triangles).

Figure 1b. On the other hand, in WS networks (see Fig-
ure 2c) the inverse-degree biasing gives a density which
is closer to a constant than the URW, while the one-step
memory approach does not, even though it proved fastest
in such scenario as is evidenced in Figure 1c.

We also numerically compared the searching perfor-
mance of the three kinds of random walk in directed net-
works. In the Figure 3a are shown the respective GrMF-
PTs. We can see that the one-step memory provides
better results than the URW, but the inverse indegree
approach outperforms them both significantly, which was
not the case in the undirected networks. Biasing based
on inverse outdegree performs slower than the URW (re-
sults are not shown), as it is expected.

The flattening of the invariant density is an ingredient
which helps in search improvement in directed networks

as well. We have numerically verified that, as expected,
for well connected networks when biasing of random walk
is based on inverse of indegrees, the invariant density is
closer to the constant, than that of a URW. In Figure 3b
are shown the KL divergence of the URW on directed ER
networks with the two biasing alternatives: one based on
inverse of indegrees, and another on the one-step mem-
ory. The results are in concordance with the theoretical
analysis.
We have finally tried the searching performance of

the three approaches in two real world networks. The
first network is a snapshot of the Internet topology at
autonomous systems level obtained from BGP logs on
2.1.2000, which is an undirected graph consisting of 6474
nodes and 13233 links [34]. Its average node degree is
〈k〉 ≈ 4. The second network is an extracted set of
Wikipedia pages [35, 36]. The graph is directed and con-
sists of 4592 nodes and 119882 links, from which we take
the largest strongly connected component that has 4051
nodes and 119000 links. The average indegree and out-
degree of the largest component are 〈kin〉 = 〈kout〉 ≈ 29.
These networks are larger and it is much more difficult to
calculate the GrMFTP theoretically, so in Table I we pro-
vide only the results obtained by numerical simulations.
The results for the Internet network are obtained by av-
eraging over 106 randomly selected source-target pairs
out of 6474 × 6473 possible couples. For the extract of
the Wikipedia network the averaging is performed with
1.5 · 105 pairs, out of 4051× 4050 possible, as the simula-
tions take much longer due to the larger number of steps
required to reach the targets. One can note that for the
undirected case the inverse-degree biasing worsens the
search of the URW, because majority of nodes are not
well connected as the theory asks, while it shows great
reduction of the MFPT for the directed network. The
memory-based strategy performs well in both scenarios.
These results confirm our previous findings for paradig-
matic network models that the inverse indegree biasing
is better for directed networks, while the memory-based
approach outperforms the others for undirected ones.
TABLE I: GrMFPT for two real networks with uniform,
inverse degree and one step-memory random walks.

Network Uniform Inverse degree One-step memory
Internet(AS) 1.93 · 104 1.78 · 105 1.80 · 104

Wikipedia(extr.) 3.01 · 107 1.09 · 104 8.15 · 105

V. CONCLUSIONS

In this work we studied random walk on complex net-
works with transition probabilities that depend on the
nodes visited in the recent past. We have shown that
such walks can be analyzed with appropriate Markov
chain, and for the case of memory of one step it was
derived an exact expression for the MFPT between pairs
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of nodes. One particular navigation algorithm was pro-
posed that avoids the hubs by accounting for the two-
hop-paths between the nodes. The searching ability of
this algorithm was compared to that of the URW, and of
another hubs-avoiding biased random walk with jumping
probabilities inversely proportional to the node degrees.
The proposed one-step memory approach has shown bet-
ter searching performance than the URW and the inverse-
degree-biased random walk for undirected networks, par-
ticularly when the majority of nodes have a small degree.
We have furthermore demonstrated that the inverse-
degree biasing based on indegree, leads to improved ran-
dom search in directed networks, which is even better
than the memory-based one. The introduced technique
with absorbing Markov chain could be also applied in
theoretical analysis of other scenarios. One example is
random searching of target when each node knows the
identity of its neighbors. In this case the absorbing states
would be all neighbors of the target.
The numerical experiments on generic network models

besides verifying the correctness of the theoretical ex-
pressions, have shown that when the nodes have suffi-
ciently enough neighbors, the GrMFPT approaches the
number of nodes from above, for the three considered
kinds of random walk. However, the usefulness of the
biasing alternatives is that they allow achieving nearly
optimal performance for less connected networks than
the URW does. Also, both biasing approaches show bet-
ter flattening towards the constant of the stationary oc-
cupation probability than the URW. The inverse-degree
biasing results in stationary occupation probability that
is always closer to the uniform than the two other kinds
of random walk. This is not sufficient for best searching
because it was obtained that the memory-based random
walk performs better on undirected networks. However,
the obtained results suggest that leveling of the station-
ary occupation probability can at least serve as an indi-
cator for possibly good searching algorithm, particularly
when the respective KL divergence has very small value.
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Appendix: Conditions for nearly uniform

distribution of the visiting frequency

The analysis in this section will be performed for ran-
dom walk on directed complex networks, although the
same reasoning applies for undirected networks as well
with minor modifications. Consider random walk on di-
rected network, with the transition probability toward
certain node j to be inversely proportional to its indegree
kinj . Due to the normalization, the jumping probability

from node i to its neighbor j would then be

pij =
1/kinj

∑

l∈N out

i
1/kinl

, (A.1)

where N out
i denotes the set of neighbors of the node i

toward which it points to. Define node-centric, local av-
erage of the reciprocal of indegrees of the neighbors as

〈1/k〉ini =
1

kouti

∑

l∈N out

i

1/kinl , (A.2)

where the subscript i in the average denotes that it is
calculated only over the set N out

i . Then the normaliza-
tion sum in Eq. (A.1) can be expressed through the local
average as

∑

l∈N out

i

1/kinl = kouti 〈1/k〉ini . (A.3)

Now, consider well connected uncorrelated networks.
Such networks are those where the degree of any node
is independent on the degrees of its neighbors and where
for majority of the nodes holds kini ≫ 1 and kouti ≫ 1.
Then the local average can be approximated with the
network average of the reciprocal of indegrees

〈1/k〉ini ≈ 〈1/k〉in =
1

N

N
∑

j=1

1/kinj (A.4)

In such case the normalization sum appearing in the
denominator in (A.1) can be conveniently expressed
through the network average as

∑

l∈N out

i

1/kinl ≈ kouti 〈1/k〉in . (A.5)

The stationary distribution of the visiting frequency sat-
isfies the following set of self-consistent equations

wj =
∑

i∈Nj

pi,jwi, (A.6)

for each node j. This means that the following holds

wj =
∑

i∈N in

j

1/kinj

kouti 〈1/k〉in
wi =

1/kinj

〈1/k〉in

∑

i∈N in

j

wi

kouti

. (A.7)

If one assumes that the invariant density is constant wi =
1/N , then from Eq. (A.7) one would have

1

N
≈

1/kinj

N 〈1/k〉in

∑

i∈N in

j

1

kouti

. (A.8)

Now, for networks where the direction of the links is in-
dependent on the degree of nodes, the averages of recip-
rocals of indegrees and outdegrees would be nearly the
same

〈1/k〉in ≈ 〈1/k〉out . (A.9)
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For networks where most of the nodes have many in-
coming and outgoing links, one can make the following
approximation

∑

i∈N in

j

1

kouti

≈ kinj 〈1/k〉out ≈ kinj 〈1/k〉in . (A.10)

Plugging the last approximation in the stationary density
equation (A.8), one will see that it is identity.
We should mention that although network averages of

the reciprocals of in- and outdegrees are nearly equal,
the biasing inverse to the outdegrees does not result in a
stationary distribution approaching to uniform one. The
reason for that is the fact that the sum of inverse of
degrees (A.10) is always proportional to the indegree of
the node j because it accounts for neighbors pointing
to the node j. By repeating the analysis above by using
biasing with inverse of outdegrees, one can verify that the
stationary density condition like (A.8) is not satisfied.
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supérieure, Vol. 17 (1900) pp. 21–86.

[10] T. Jia, D. Wang, and B. K. Szymanski, Nat. Hum. Be-
hav. 1, 0078 (2017).

[11] N. Masuda, M. A. Porter, and R. Lambiotte, Phys. Rep.
716, 1 (2017).

[12] S. Brin and L. Page, Computer Networks 30, 107 (1998).
[13] S. Carmi, R. Cohen, and D. Dolev, Europhys. Lett. 74,

1102 (2006).
[14] M. Boguna, D. Krioukov, and K. C. Claffy, Nat. Phys.

5, 74 (2009).
[15] M. Rosvall and C. T. Bergstrom, PNAS 105, 1118 (2008).
[16] J. Kleinberg, The small-world phenomenon: An algorith-

mic perspective, Tech. Rep. (Cornell University, 1999).
[17] J. Kleinberg, in Proceedings of the International Congress

of Mathematicians (ICM), Vol. 3 (2006) pp. 1019–1044.
[18] C. Borgs, M. Brautbar, J. Chayes, S. Khanna, and

B. Lucier, in International Workshop on Internet and
Network Economics (Springer, 2012) pp. 406–419.

[19] Z. Burda, J. Duda, J.-M. Luck, and B. Waclaw, Phys.
Rev. Lett. 102, 160602 (2009).

[20] A. Riascos and J. L. Mateos, Phys. Rev. E 86, 056110
(2012).

[21] A. Avena-Koenigsberger, X. Yan, A. Kolchinsky, P. Hag-
mann, O. Sporns, et al., PLoS Comput. Biol. 15,
e1006833 (2019).

[22] S. Shioda, ACM SIGMETRICS Performance Evaluation
Review 42, 21 (2014).

[23] A. Fronczak and P. Fronczak, Phys. Rev. E 80, 016107
(2009).

[24] M. Bonaventura, V. Nicosia, and V. Latora, Phys. Rev.
E 89, 012803 (2014).

[25] One should note that for directed networks, the neighbor
t must be chosen among those towards which s points to.

[26] For directed network, nodes s are only those which point

to j.
[27] C. M. Grinstead and J. L. Snell, Introduction to proba-

bility (American Mathematical Soc., 2012).
[28] J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701

(2004).
[29] V. Tejedor, O. Bénichou, and R. Voituriez, Phys. Rev.

E 80, 065104 (2009).
[30] “Networkx: Software package for complex networks in

python language,” https://networkx.github.io/ .
[31] The parameters m0 and m here are denoted as the au-

thors Barabási and Albert originally did and are different
from the elements of the MFPT matrix mij .

[32] R. M. Karp, in Complexity of computer computations
(Springer, 1972) pp. 85–103.

[33] D. J. MacKay, Information theory, inference and learning
algorithms (Cambridge university press, 2003).

[34] J. Leskovec, J. Kleinberg, and C. Faloutsos, in Proceed-
ings of the eleventh ACM SIGKDD international confer-
ence on Knowledge discovery in data mining (2005) pp.
177–187.

[35] R. West, J. Pineau, and D. Precup, in Twenty-First
International Joint Conference on Artificial Intelligence
(2009).

[36] R. West and J. Leskovec, in Proceedings of the 21st in-
ternational conference on World Wide Web (2012) pp.
619–628.

https://networkx.github.io/

