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Abstract

In the pooling and sharing mechanism of multiplicatively grown individual resources, the evolu-

tion of cooperation is uniquely determined by the physical traits of the population. If the entities

in the population exhibit homogeneous traits, cooperation is always favored. However, if there is

heterogeneity within the population, the evolution of cooperation is dependent on both the inter-

action structure and the decision making rules implemented by the entities. Here, we perform a

detailed analysis on the role of the interaction structures in the evolutionary stability of cooperation

in heterogeneous multiplicative environments. We utilize this analysis to examine the applicability

of a simple state-based decision making rule in a variety of settings. We thereby show that the

introduced rule leads to steady state cooperative behavior that is always greater than or equal to

the one predicted by evolutionary stability analysis and discuss relevant implications to natural

and artificial systems.
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I. INTRODUCTION

Cooperation is observed when a group of individual entities sacrifice their own resources as

a means to achieve a collective gain. Despite an abundance of both empirical and theoretical

studies, the appealing explanation for the evolution and stability of this behavior is still

regarded as one of the most challenging issues that need to be resolved in the near future [1].

One intuitive factor that crucially determines the evolution of cooperative behavior is

the dynamics which regulate the growth of resources owned by an individual entity [2].

Traditional game theory has predominantly focused on additive settings, mainly due to

the difficulty in analyzing various dynamical structures. This leads to the world of two-

player iterative social dilemmas where we encounter situations such as the iterated prisoner’s

dilemma, or multi-player (i.e. public goods) games [3]. It is widely acknowledged that

under such circumstance, cooperation cannot evolve by itself as the dominant trait within a

population. Instead, the emergence of cooperation is conditioned on the presence of other

mechanisms such as kin selection, reciprocity and even topological (network) structures [4].

More complex, multiplicative dynamics that are ubiquitous in nature have received much

less attention by the scientific community [5]. Only recently it has been shown that under

such dynamics the evolution of cooperation may not be dependent on any auxiliary mecha-

nisms. In particular, in a simple setting where individual entities with homogeneous physical

characteristics are able to pool and share their multiplicatively grown resources, cooperation

is the sole evolutionary stable strategy [6–8]. When the homogeneity assumption is relaxed,

complex behavior occurs and the stability of cooperation is dependent on both the interac-

tion structure and the decision making rules employed by the entities [8]. Nevertheless, the

role of these two mechanisms in the cooperative dynamics where the resources of individual

entities undergoes a multiplicative process remains largely unexplored.

A. Our contribution

To provide a better understanding of the extent to which interaction structures and

decision making rules promote cooperation under multiplicative resource dynamics, here we

revisit the model of networked Geometric Brownian motion (GBM) and generalize it to

account for possible heterogeneous traits within the population [9]. The networked GBM
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is a simple model in which the dynamics of the log of resources undergoes a Brownian

motion. Cooperation is introduced in this model by discretizing the process and allowing

each individual entity to pool its resources at the end of each growth phase, and afterwards

the pooled resources are shared. The way in which individuals interact in the resulting

pooling and sharing mechanism is determined by a predefined complex network structure.

By analyzing the model from an evolutionary perspective, we derive the criteria required

for cooperation to be stable within any interaction structure. More importantly, by applying

these criteria to simple tractable, as well as complex numerical examples, we are able to

show that the interaction structure may non-linearly affect the behavior in multiplicative

dynamics. This leads to creation of cooperative components. Each component is character-

ized with essentially different evolutionary properties. In particular, entities within different

components may co-evolve even though the resources owned by one of them are negligible

in comparison to those of the others.

The evolutionary stability analysis assumes that each individual entity behaves either

as an unconditional defector (i.e. it never cooperates), or as an unconditional cooperator

(always cooperates). As such it does not allow us to examine the effect of the decision making

rules employed by the individual entities. Due to the non-ergodicity arising as a consequence

of the multiplicative environment, standard rules such as direct or indirect reciprocity cannot

be easily translated to our model [10]. Instead, one should use a suitable modification of the

rule which is studied.

To shed valuable insight on the impact of such rules, here we develop a simple behavioral

update dependent only on the observed growth of the resources owned by an individual

entity and examine its implications. The introduced rule is simple and is directly related to

the concept of generalized reciprocity, which itself is rooted in the principle of “help anyone

if helped by someone” [11]. We thereby show that our rule leads to steady state cooperative

behavior that is always greater than or equal to the one predicted by evolutionary stability

analysis. In fact, for a certain regime of parameter values we are able to analytically solve

the model and show that then the strict inequality holds. Direct parallels can be made to

state-of-the-art reinforcement learning techniques based on novelty search [12].

The rest of the paper is organized as follows. Section II is concerned with putting the

theoretical model in context, and a brief summary on the properties of pooling and sharing in
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networked GBM with heterogeneous drifts and amplitudes is given. In Section III we study

the model from an evolutionary biology point of view and derive the criteria required for a

given complex network to be evolutionary stable. Here, we also solve several analytically

tractable examples that elucidate the role of the network structure and examine numerically

the extent to which different complex network topologies promote cooperative behavior. In

Section IV we discuss the concept of generalized reciprocity, introduce our decision making

rule and study its properties. The last section briefly summarizes our findings.

II. MODEL

A. Interaction structure

We assume a system constructed of a population of N individual entities interacting

through M pools. The interaction structure is described by a connected bipartite random

graph, whose adjacency matrix B with binary edge variables Bim ∈ {0,1} captures the

participation of individual i in pool m (Bim = 1, indicating participation of i in pool m).

The main advantage of modeling through bipartite networks instead of standard monopar-

tite, is that they offer a more coherent depiction for the composition of groups and spread of

information within the population [13]. In addition, this representation allows for a direct

comparison with standard multi-player games with additive dynamics played on networks,

as will be seen in the following.

The dynamics of the system, which runs in discrete time and explains the evolution of

the resource endowment yi(t) of each individual entity i in N , can be described as follows.

First, at every period the resources of each entity grow multiplicatively with a fluctuating

rate that has a drift µi and a noise amplitude σi. Next comes a pooling phase where each

entity i distributes a fraction pi(t)/di of its resources to each of the di pools it belongs to.

Finally, every pool shares a fraction dm of the total pooled resources to each of its members.

Mathematically, the dynamics can be expressed as

yi(t +∆t) = ∑
j

Aijpj(t)yj(t) [1 + µj∆t + σjεj(t)
√
∆t]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
resources due to pooling and sharing

+(1 − pi(t)) yi(t) [1 + µi∆t + σiεi(t)
√
∆t]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
individual resources

,

(1)
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where εj(t) is a standardized Gaussian random variable and A is a transition matrix of the

network with entries Aij = ∑M
m

Bim

dm

Bjm

dj
which determine the total allocated resources from

entity j to entity i. The variable pi(t) ∈ [0,1] models the level of cooperation displayed by

an individual entity in a particular period as it represents the incentive of that entity to pool

and share its resources.

By setting ∆t → 0, we can write Eq. (1) in a differential form as

dyi = [∑
j

Aijpjyj − piyi]dt +∑
j

Aijpjyj (µjdt + σjdWj) + (1 − pi) yi (µidt + σidWi) , (2)

where (dWi)i∈N are independent Wiener increments, i.e. Wi(t) = ∫ t

0
dWi.

The resulting interaction structure is directly related to games of public goods on networks

with the main difference that in this model the noise comes inherently from the individual

traits within the entities instead of an aggregate pool stochasticity [3, 13, 14].

B. Growth rate

When the steady state incentive for cooperation by each entity i is p∗i = 0, we have the un-
conditional defector situation and the model reduces to N independent geometric Brownian

motion (GBM) trajectories. The multiplicative nature of GBM makes the process non-

stationary, and hence non-ergodic. This implies that ensemble and time-average behavior

will differ and therefore we can not simply use yi(t) as a measure for the evolutionary per-

formance of one entity. Instead, a suitable ergodic transformation of this observable should

be utilized.

For this purpose we resort to the time-average growth rate gi(yi(t), t). This observable has
been widely used for quantifying the performance of an entity interacting in a multiplicative

environment. In particular, in evolutionary biology, the time-average growth rate is widely

acknowledged as the geometric mean fitness for the accumulated payoff (i.e. resources) of a

particular phenotype [15]. Formally, it is defined as

gi(yi(t), t) = 1
t
log( yi(t)

yi(0)) , (3)

where yi(0) is the initial amount of resources. For simplicity, we are always going to assume

that yi(0) = 1.
6



In an independent GBM trajectory the steady state time-average growth rate can be

easily found using Itô calculus as

gDi = lim
t→∞

gDi (yi(t), t) = µi − σ2
i

2
, (4)

where the superscript D denotes the case where no individual entity pools its resources.

On the other hand, when every entity cooperates unconditionally, i.e. pi(t) = 1 for all i

and t, the growth rate of each entity converges to the same value,

gC = lim
t→∞

gi(yi(t), t) = ⟨µv⟩N − 1

2N
⟨v2σ2⟩N , (5)

where the superscript N denotes that every entity pools its resources, ⟨⋅⟩N is the population

average and v is an index represented by the right-eigenvector associated with the largest

eigenvalue of A normalized in a way such that ∑i vi = N . For the derivation see [9].

III. EVOLUTIONARY STABILITY

A. Preliminaries

We begin the analysis by considering the circumstance in which every individual entity can

behave either as an unconditional cooperator (pi(t) = p∗i = 1 for all t) or an unconditional

defector (pi(t) = p∗i = 0 for all t) and examine the Evolutionary Stable State (ESS). As

discussed in Nowak [4], an ESS is a situation where a large population of cooperators cannot

be invaded by defectors under deterministic selection dynamics and has been widely used

for determining the level of cooperative behavior in various interaction structures [16].

Notably, in a simple interaction structure consisting of two entities i and j, the possible

outcomes are described with a payoff matrix

j

C D

i
C πCC πCD

D πDC πDD

(6)

where πab denotes the payoff of entity i under strategy a when entity j has chosen strategy b.

Obviously, in our case, the strategies translate to either being a unconditional cooperator C or

7



defector D and the payoffs to the growth rates of the entities. This implies that cooperation

is ESS if πCC > πDC . In interaction structures involving multiple entities cooperation is ESS

if the overall gain for an individual entity of cooperating is greater than the situation when

behaves as a defector, assuming that all other individuals cooperate unconditionally. This

implies, that in the networked pooling and sharing mechanism full cooperation will be ESS

if

gC >max
i

gDi .

B. Growth rate

In a more general setting, cooperation may only be favored by a certain subset Cl of the
population whereas for the other part it is optimal to behave as unconditional defectors.

This intermediate case leads to emergence of connected components where each component

has its own growth rate depending on the network parameters.

To provide a better intuition on this behavior, in Fig. 1 we illustrate three situations

which lead to different growth rate outcomes by considering a simple network composed of

five entities and two pools. In particular, in Fig. 1a we assume that cooperation is evolution-

ary stable for all entities, Therefore, in this case the growth rate of each individual entity

converges to (8). On the other hand, in, Fig. 1b we set the growth rate of entity 3, which

acts as bridge by being the only one to pool its resources in both pools, to be large enough

so as this entity behaves as an unconditional defector. This creates two separate components

C1 = {1,2} and C2 = {4,5}, which pool and share resources only between themselves. Notice

that the entities also pool part of their resources to entity 3 but they are not shared back.

This implies that the resource dynamics, and hence growth rates, between the components

are independent. If the growth rates of each component are different, this leads to great

discrepancies in the observed resources between the cooperators belonging to separate com-

ponents, with the resources of the entities in one component being negligible in comparison

to the resources of the entities in the other component. Finally, in the last example, besides

entity 3 we also set the entities in component C2 to be defectors. Thus, in this case each

cooperator will have the same steady state growth rate.

To analyze the steady state growth rate g∗i of the entities in component Cl we utilize a

8



FIG. 1: Creation of cooperative components. (a-c) Network composed of five

entities. Green nodes are the entities which prefer cooperation, whereas the red nodes

depict entities which favor defection.

mean-field approach together with Itô calculus, as is done in [9]. The mean-field approach

assures that each connected component of cooperators Cl will have a convergent growth rate

given by the growth rate of the average ⟨y⟩Cl constructed by the resource trajectories of the

entities belonging to this component.

To prove this claim, we define the rescaled resources of each cooperating entity i as

ŷi(t) = yi(t)
⟨y⟩Cl

. Due to the normalization, in steady state, this observable also converges to a

constant value ŷ∗i that is greater than zero and less then the number of cooperators. Hence,

the growth rate of each entity i in the set of cooperators can be written as

lim
t→∞

gi(yi(t), t) = lim
t→∞

1

t
log( yi(t)

yi(0))
= lim

t→∞

1

t
log (⟨y(t)⟩Cl ⋅ ŷi(t))

= lim
t→∞

1

t
log (⟨y(t)⟩Cl) + limt→∞

1

t
log (ŷi(t))

= lim
t→∞

1

t
log (⟨y(t)⟩Cl)

≐ lim
t→∞

g(⟨y(t)⟩Cl, t).

Consequently, one can use Itô’s lemma to directly calculate the cooperative time-average

growth rate. Formally, the lemma states that the differential of an arbitrary one-dimensional
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function f(y, t) governed by an Itô drift-diffusion process is given by

df(y, t) = ∂f
∂t

dt +∑
i

∂f

∂yi
dyi +

1

2
∑
i

∑
j

∂2f

∂yi∂yj
dyidyj. (7)

In the case of g(⟨y⟩Cl, t), we have that f(t,y) = log(⟨y⟩Cl). Then, the first and second deriva-

tive of f with respect to yi and yj are easily calculated as ∂f

∂yi
= 1

NCl

1
⟨y⟩Cl

and ∂2f

∂yi∂yj
= − 1

N2

Cl

1

⟨y⟩2Cl
,

where NCl is the number of cooperators in steady state. Moreover, this transformation makes

the differential df(y, t) ergodic, and since we are looking at steady state averages, dyi and

dyidyj can be substituted with their expected values ⟨dyi⟩ and ⟨dyidyj⟩. To estimate these

expectations we utilize the independent Wiener increment property ⟨dW 2
i ⟩ = dt, and define

z
[Cl]
j = ∑k∈Cl Akj. Further, we omit terms of order dt2 as they are negligible. As a result, we

obtain that

⟨dyi⟩ = [∑
k∈Cl

Aik(1 + µk)yk − yi]dt,
and,

⟨dyidyj⟩ = ∑
k∈Cl

AikAjkσ
2
ky

2
kdt.

By inserting the estimates in equation (7) we can approximate the time-average growth rate

as

g(⟨y⟩Cl, t) = 1

NCl
∑

i∈NCl

ŷi(t) [(1 + µi)z[Cl]i − 1] − 1

2

1

N2
Cl

∑
i∈Cl

(z[Cl]i ŷi(t))2σ2
i . (8)

Equation (8) describes the growth of ⟨y⟩Cl as a function of ŷi(t). To derive its steady state

behavior, notice that we can neglect the defectors from the cooperative dynamics and rewrite

Eq. (1) as

yi(t +∆t) = ∑
j∈Cl

Aijyj(t) [1 + µj∆t + σjεj(t)√∆t] . (9)

When equation (9) is divided by the population average resources ⟨y(t+∆t)⟩Cl and is written

in matrix form, the steady state dynamics for the rescaled resources can be approximated as

ŷ∗ = lim
t→∞

ŷ(t) ≈ lim
t→∞

ACly(t)⟨ACly(t)⟩Cl , (10)
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where ACl is a reduced version of the transition matrix A in which includes only the rows

and columns associated to the individuals in the set Cl. By the power method, this leads to

ŷ∗i = v[Cl]i , (11)

where v
[Cl]
i is the i-th element of the right-eigenvector of ACl associated with the largest

eigenvalue λCl normalized in a way such that ∑i v
[Cl]
i = NCl .

By inserting the estimates of equation (11) in equation (8) we get that the steady state

cooperative growth rate is

gCl = (λCl − 1) + ⟨x[Cl]µ⟩Cl − 1

2

1

NCl
⟨(x[Cl])2σ2⟩Cl, (12)

where x
[Cl]
i = v

[Cl]
i z

[Cl]
i , is a network centrality index whose relation with the drifts and

amplitudes ultimately determines the cooperative growth rate.

C. Determining ESS

To determine the ESS in situations when there is a possibility that unconditional defectors

and cooperators may coexist, we consider an alternate-projection method. In particular,

notice that the ESS conditions may be reformulated as

g∗i = gCl , i ∈ Cl,
0 = (gCl − gDi ) (1 − p∗i ) ,

resulting in a nonlinear system of 2N equations with 2N variables (g∗i and p∗i ) in total.

Hence, a simplified, iterative approach based on the alternate projection method can be

used for finding the steady state solution. This method may be summarized as follows:

1. Set p∗i = 0 and g∗i = gDi for all i not satisfying the condition (5). Set p∗i = 1 for the

remaining entities. To estimate their growth rate solve Eq. (12) for each component

of cooperators Cl and set for each i ∈ Cl, gi = gCl.

2. For all i satisfying g∗i < gDi in the obtained solution, set p∗i = 0 and g∗i = gDi . For each

remaining component of cooperators, solve again the corresponding growth rate.

3. Repeat steps 1. and 2. until there are no g∗i < gDi .
11
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FIG. 2: Example 1. Average fraction of unconditional cooperators ⟨p∗⟩N and steady state

growth rate gj of entity j as a function of the noise amplitude ratio σ2
i /σ2

j . The dashed line

is the threshold after which cooperation is evolutionary stable. The inset plot depicts the

interaction structure.

D. Simple examples

To provide an illustrative representation for the evolutionary properties of the model in

what follows we study three simple examples. The purpose of the first example is to show the

evolutionary dynamics in the simplest population structure consisting of only two entities.

The second example extends the population size to an arbitrary size of N entities. The

last example shows how non-linearities in the cooperative growth rate can arise even in an

ordinary interaction structure.

a. Example 1: The first situation that we consider is a replication of the example

studied in Ref. [8]. Concretely, we assume an interaction structure of two entities i and j

who have the option to share their resources through one pool m, as illustrated in the inset

of Fig. 2.

For simplicity, we are going to assume that i has a larger individual steady state growth

rate, (i.e. gDi > gDj and examine the situation from the point of view of entity i, In this case,
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the payoff matrix for i reads

j

C D

i
C ⟨µ⟩N − ⟨σ2⟩N

4
0

D µi −
σ2

i

2
µi −

σ2

i

2

(13)

which, after some reordering, implies that full cooperation is ESS if

µj −
σ2
j

4
> µi −

3σ2
i

4
.

In the special case when µj = µi, the condition reduces to 3σi > σj . This result is displayed in

Fig. 2 where we plot the average steady state incentives for cooperation within the population

and the steady state growth gj of individual j as a function of the square of the amplitude

ratio σi/σj. We observe that at the critical point at σ2
i /σ2

j = 1/3 the growth rate of entity j

is largest and afterwards it is decreasing linearly due to the increase in the noise amplitude

σi of entity i.

b. Example 2: The second example extends the interaction to an arbitrary number of

N entities, as depicted in the inset of Fig. 3. This is the well-mixed situation which has

been extensively utilized for determining the performance of a particular mechanism in the

evolution of cooperation.

To ease the analysis, we assume that a fraction of the population has an individual

growth rate larger than g[N ] and therefore the individuals belonging to this group behave as

defectors. The other fraction, γ, has an equal drift µ and noise amplitude σ.

As a consequence, in this example there is only one component of possible cooperators C
and for each individual i in it we have that vCi = 1 and z

[C]
i = λC = γ. Hence, the cooperative

growth rate of this component is

gC = γ − 1 + γµ − γ σ2

2N
. (14)

Clearly, under evolutionary dynamics unconditional cooperation by the entities in the po-

tential cooperator set will be favored only if

gC > µ − σ2

2
,
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FIG. 3: Example 2. Average fraction of unconditional cooperators ⟨p∗⟩C and minimum

steady state growth rate for the entities in the cooperator set C as a function of the fraction

of population belonging to that set γ. The dashed line is the threshold for cooperation to

be ESS among the entities in C, whereas the inset plot describes the interactions. In this

case N = 1000, µ = 0.4 and σ2 = 0.2.

which, when rearranged in terms of γ, yields

γ > 1 + µ − σ2

2

1 + µ − σ2

2N

. (15)

Fig. 3 visualizes the dependence of the minimum steady state growth rate of the potential

cooperators as a function of the fraction of potential cooperators γ. It is easily noticed that

after condition (15) is satisfied, the growth rate of the entities in the set C increases, which

means that cooperation is an ESS for them.

c. Example 3: In the last example we once more examine a structure consisting of N

entities which now interact through 2 pools, m and n. A fixed number of entities N − 2

interact solely through pool m and one entity, j, interacts only through pool n. In addition,

there is one entity, i, which connects the network by pooling its resources in both m and n.

This interaction structure is described in the inset of Fig. 4.

We assume that j has large enough growth rate to behave as defector, and thus study the

circumstances under which the remaining NC = N − 1 entities behave as cooperators C. In

14
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FIG. 4: Example 3. Average fraction of unconditional cooperators ⟨p∗⟩C and minimum

steady state growth rate for the individuals in the cooperator set C as a function of the

number of individuals in that set. The dashed line is the threshold for cooperation to be

ESS among the individuals in C, whereas the inset plot describes the interactions. In this

example µ = 0.04 and σ2 = 0.02.

this case the interaction matrix reads

AC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
NC

1
NC

. . . 1
NC

1
2NC

⋮ ⋮ ⋮ ⋮

1
NC

1
NC

. . . 1
NC

1
2NC

1
NC

1
NC

. . . 1
NC

1
2NC
+

1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, the largest eigenvalue of AC is

λC =
√
9N2
C − 4NC + 4 + 5NC − 2

8NC
,

with corresponding right-eigenvector entries

v
[C]
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NC

NCλC−
NC+2

4
+1

if k = i,
NC−v

[C]
i

NC−1
, otherwise,

(16)

and z[C] index entries

z
[C]
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3/4 if k = i,
1, otherwise.

(17)
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To simplify the analysis, we set each entity k ≠ j a growth rate µk = µ and noise amplitude

σk = σ√
x
[C]
k

. This leads to a cooperator growth rate

gC = (λC − 1) + λCµ − λC 1

2NC
σ2. (18)

On the other hand, the growth rate of each entity when everyone behaves as a defector is

gDk = µ − σ2

x
[C]
k

. (19)

Obviously, cooperation will be ESS when gC > gDi , which using Eqs. (16-19), can be rewritten

in terms of the largest eigenvalue as

λC > 1 + µ +
σ2

2NC

NC+2
3
−

2σ2

3NC

1 + µ − σ2

2NC
+

2σ2

3

. (20)

We point out that λC is a function dependent only on the number of cooperators NC. There-

fore, to numerically examine our derivations in Fig. 4 we display the growth rate of the

entities in the set C as a function of their cardinality. We observe that once unconditional

cooperation is achieved by the entities in C the addition of new entities affects non-linearly the

observed time-average growth rate. This serves as an intuitive example that the interaction

structure may have a disproportionate effect on the observed cooperative behavior.

E. Random graphs

In a more general, random graph structure, besides the size of the defector set, the

positioning of the entities in the network also determines the ESS for each other individual.

While equation (8) and the alternate projection method give the solution for the level of

cooperation in any arbitrary situation, the extent to which different random graphs are able

to support cooperation when defectors are present can not be easily deduced from them.

To provide an insight on this phenomena, here we consider four different types of random

graph models i) Random d-regular (RR) graph [17], ii) Erdos-Renyi (ER) random graph [18],

iii) Watts-Strogatz (WS) random graph [19], and iv) Barabasi-Albert (BA) random scale-

free network [20] and study their robustness in the presence of arbitrary defectors. In an

RR graph each entity is characterized with the same degree d, whereas in an ER graph two

entities share an edge with probability d/N . Both types of random graphs yield homogeneous

16



degree distributions and low clustering coefficients. The WS random graph, on the other

hand is an extension of the two aforementioned graphs which is able to capture higher levels

of clustering. In fact, this random graph type lies in-between the ER and RR graph as its

creation starts with an initial structure of an RR and then each edge is re-wired with a

fixed probability. Finally, the BA graph is constructed through a preferential attachment

mechanism for generating random graphs. As such it yields a power law degree distribution

coupled with high clustering.

We point out that each of the studied graph is in fact a monopartite graph. As a con-

sequence it may not be appropriate for a numerical validation of our model. Nevertheless,

each monopartite graph can be mapped into a bipartite by considering a replacement graph

procedure. In this representation each node behaves as both an individual entity and a pool

through which resources are shared [13]. This, coupled with the computationally inexpensive

algorithms for the generation of the four random graphs, allows for an easy comparison of

their performance.

To assess the robustness of the types of random graphs we conduct the following experi-

ment. We begin by generating a random graph through the typical algorithms that are used

for this procedure. Afterwards, we choose a random fraction 1−γ of the population. We set

the growth rate of the individuals in it to be large enough so as they behave as defectors and

characterize the individuals in the other set, the potential cooperators, with an equal drift

µ and noise amplitude σ. Under these circumstance, we estimate the steady state growth

rates of each individual i belonging to the cooperative cluster Cl as

gCl = (λCl − 1) + µ⟨x[Cl]⟩Cl − σ2

2NCl
⟨(x[Cl])2⟩Cl

= (µ + 1)λCl − σ2

2NCl
⟨(x[Cl])2⟩Cl − 1, (21)

and gather the average number of cooperators among the individuals in the potential coop-

erator set, ⟨p∗⟩C. To get the typical behavior of a particular random graph we average across

random graph instances and across defector selection samples.

Numerical results are summarized in Fig. 5a where we plot the average p∗i among the

individuals in the cooperator set as a function of γ. We observe that for small γ the BA

graph presents itself as the most supportive for cooperation as it requires the lowest amount

of individuals in the cooperator set for some cooperation to exist. It is followed by the ER
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and WS graphs, while under this criterion the RR graph is the least robust random graph.

Interestingly, when we consider the threshold for full cooperation we get the opposite result,

i.e. the RR graph is the most robust random graph, followed by the ER and WS graphs. In

this case, the BA graph is the least robust to an invasion of defectors.

The reason for this behavior becomes apparent if we look at the evolution of λC and

⟨(x[Cl])2⟩Cl as a function of the fraction of individuals belonging in the potential cooperator

set. For small γ we observe that there are only slight differences between the four networks,

with the ER and BA graph exhibiting larger values for both variables. Since µ > σ2 in this

case λC decisive in the determination for the level of cooperation, and the networks with

a larger eigenvalue will be better promoters of cooperation. As γ increases, the differences

in ⟨(x[Cl])2⟩Cl become apparent, whereas λC converges to the same value for each network.

Because ⟨(x[Cl])2⟩Cl is related to the amplitude of the noise, the networks with lower value

will be better promoters of cooperation. As depicted in Fig. 5c, the RR graph is on average

less affected by this condition, i.e. it is more robust to an invasion of defectors.

IV. GENERALIZED RECIPROCITY

So far, we addressed evolutionary behavior in which pooling and sharing is the sole co-

operative mechanism. We showed that, as a consequence of the non-ergodicity, if certain

conditions are satisfied, cooperation can be evolutionary stable even without the presence

of any additional decision making mechanisms. In fact, the presence of additional auxiliary

mechanisms should yield dynamics that at least complement the evolution of cooperation. To

provide an initial insight on the role of these mechanisms, here we examine the cooperative

behavior in the presence of a state-based generalized reciprocity update rule.

Generalized reciprocity suggests that cooperation can emerge as a consequence of previous

positive experience with not necessarily the same group of opponents, i.e. it is based on the

rule of “help anyone if helped by someone”. This is significantly different from the two main

forms of reciprocity, direct and indirect, which explain the emergence of cooperation either

as a result of repeated encounters between the same group of individuals or as an attempt

to build positive reputation for future interactions [21, 22].

The main presumption which favors generalized reciprocity over other reciprocal mech-
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FIG. 5: The role of complex networks in heterogeneous populations. (a) Average

steady state incentive for cooperation ⟨p∗⟩C as a function of the fraction of potential

cooperators γ for RR, ER BA and WS graphs. (b) Average largest eigenvalue λC of the

matrix AC as a function of γ for the same networks. (c) Average ⟨(x[Cl])2⟩Cl as a function

of γ. (a-c) In the simulation µ = 0.5 and σ2 = 0.8. The results are averaged across 100

defector realizations and 100 graph realizations each graph each having 10 nodes and an

average degree of 4.

anisms is that individuals following this rule can be said to exhibit a simple state-based

behavior. Due to this straightforward decision making rule, generalized reciprocity has been

observed in a wide range of animal and human societies each manifesting different level of

cognitive prowess and interacting in various environments [23–27].

While the extent to which generalized reciprocity is able to evolve as a sole cooperation

mechanism has been a subject to an active debate, recent studies have shown that once this

mechanism is present in a system, it induces dynamics which assist the stability of cooper-

ation [28–32]. Concretely, in [33, 34] it was argued that state-based generalized reciprocity
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effectively prevents individuals from being exploited by defectors, whereas in [3] it was sug-

gested that this prevention is accompanied with maximization of the level of cooperation

displayed by each individual. Nevertheless, the theoretical work done so far has assumed

that individuals interact in an additive environment where ensemble averages are a good

approximation for the stochastic behavior of each individual. In this section we extend the

rule to account for possible multiplicative resource dynamics.

A. Decision making rule

To study the individual behavior under a simple generalized reciprocity rule we consider

an update based on the individual estimate of the growth rate of entity i

pi (t +∆t) = fi,t [gi(yi(t), t)] , (22)

where fi,t ∶ R→ [0,1] is monotonic (nondecreasing). A plausible choice would be the sigmoid

(logistic) function

fi,t(ω) = [1 + exp{(−κi(t)(ω − ωi))}]−1 , (23)

where the midpoint ωi is given by the steady state of gi(yi(t), t) without pooling, i.e., gDi .
We remark that we purposefully allow for the steepness of the sigmoid function to be an

unbounded monotonically increasing function of t, so as to account for the time-dependence

in the variance of gi(yi(t), t). For simplicity, we focus on the special case when κ(t) = tα

where α is a positive parameter that captures the learning rate of the entities. In particular,

α < 1 corresponds to convergence towards equilibrium incentives to cooperate at a rate lower

than the elapsed time t, whereas α > 1 provides the opposite dynamics.

We point out that the introduced rule provides a simple description for the cooperative

behavior in a wide range of interaction structures. The advantage of the behavioral update

lies in its simplicity since (22) implies that an entity only has to know its current amount

of resources in order to determine the next action. This is significantly different from other

decision making rules where entities are required to optimize over domains depending on

both opponent behavior and possible future interactions [35].
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B. Model properties

In the analysis performed in Section III we always ended up with dynamics that have a

steady state. However, the introduction of the state-based generalized reciprocity rule may

in fact disturb this property of the model and we may end up with complex dynamics whose

study is out of the scope of the paper.

To greatly ease the analysis of the generalized reciprocity here we consider two situations.

In the first situation, we examine the individual cooperative behavior under the assumption

that there is a steady state growth rate g∗i for every entity i. In the second situation, we

study the properties of the model numerically and derive an analytical solution for the model

in the circumstance when α < 1 since, as it will be shown, there is always a steady state.

a. Cooperative behavior: Let us assume that there is a steady state cooperative behavior

p∗i and growth rate g∗i for each entity i conforming to the rule (22). In addition, we assume

that the growth rate of each entity is set such that the system is non-degenerate. By non-

degenerate we mean that gDi ≠ gC for all i. Then, we can derive the following properties of

the model

i. Prevention of exploitation: – It can be easily shown that g∗i < gDi is an impossible

situation for any entity following the behavioral update rule. To see this, assume that

entity i follows (22) and has g∗i < gDi . Then, the behavioral update rule indicates that

the steady state incentive for cooperation of this entity is p∗i = 0. Subsequently, this

implies that

yi(t +∆t) ≥ yi(t) [1 + µi∆t + σiεi(t)√∆t] . (24)

Taking the limit as t →∞ we get that g∗i ≥ g
D
i , thus contradicting our initial assump-

tion. This is a favorable property of state-based generalized reciprocity which has been

also observed in additive dynamics [33]. It significantly differs from other forms of gen-

eralized reciprocity since it has been shown that they are prone to exploitation [31].

ii. Sufficient condition for existence of unconditional cooperators: – The behavioral up-

date rule coupled with the monotonicity and unboundedness of κi(t) imply that if

g∗i > gDi then p∗i = 1. Moreover, it follows that a necessary condition for p∗i < 1 is

g∗i = gDi .
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Altogether, in steady state the entities may thus be attributed to two (disjoint) sets,

Dgen = {d ∈ N ∶ p∗d < 1} and Cgen = {c ∈ N ∶ p∗c = 1}, depending on the steady incentive for

cooperation p∗i . The entities in Dgen are further characterized by g∗d = gDd , while the entities yc
in Cgen have an unknown growth rate gc ≥ gDc , which is dependent on the network parameters.

We will refer to the entities in the sets Dgen and Cgen as “generalized defectors”, respectively

“generalized cooperators”, with an intention to emphasize their role in the pooling and

sharing mechanism.

b. Numerical experiment: The behavior of the individual growth rates ultimately de-

pends on the magnitude of α. This parameter indicates the speed at which every entity

reacts to the environment: if an entity has a smaller-than-expected growth, it will defect

faster proportionally with α, and cooperate faster otherwise. Even if the fraction of resources

that is pooled and shared is small, the amount may be non-negligible for some of the entities

which behave as unconditional defectors in evolutionary sense and, in fact, it may signif-

icantly increase their growth rate, thus making them “generalized cooperators”. In other

words, while the rule asserts that the entities which experience lower growth than their

own eventually end up as generalized defectors, the number of generalized defectors may

in general be smaller than the number of defectors inferred through evolutionary stability

analysis.

To illustrate this effect we make use of the network given in Fig. 1. Concretely, we

initialize the drift and amplitudes of the entities so as under evolutionary analysis p∗3 = 0 and

cooperation is unstable for every other entity. Then, we simulate the coupled dynamics of

equations (1) and (22) for 2×104 time steps and record the incentives for cooperation among

the individuals in the potential generalized cooperator set at the last point in time.

Fig. 6a provides a boxplot for the incentives for cooperation for each entity. In general,

we observe two different regimes depending on α. The first appears when α < 1. In this

case, the incentive to cooperate pi for each individual i appears to be at a value less than 1

but larger than 0. As α increases, the incentives to cooperate for each i ≠ 3 also increase,

eventually converging to pi = 1. In contrast, the incentive of entity 3 decreases and converges

to p3 = 0. We assert that for the lower values of α the system is not in steady state and

is eventually converging to the steady state where p∗i = 1 for all i ≠ 3, p∗3 = 0 and g∗i = gD3 .
This is evidenced in Fig. 6b where we plot the numerically observed growth rate for each
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individual as a function of α. Concretely, we notice that the observed growth rate of each

i ≠ 3 is larger than their defector growth rate, thus implying that p∗i = 1. In contrast, the

growth rate of 3 is smaller than its defector growth rate. As a consequence, the incentive

to cooperate of this entity must be converging to 0. This slow convergence is illustrated in

Fig. 6c where we visualize the dynamics over time of each pi(t) for various α.
The second regime occurs when α > 1. In this situation we observe that the incentives

for cooperation for each entity i vary from one simulation to another. One explanation for

this phenomena is the fact that when α ≥ 1 the steepness of the logistic curve diverges with

a rate that is at least as fast as the divergence of the resources of each entity. This reduces

the domain of all pi(t) to {0,1} faster. Since growth rate of each entity is highly stochastic

we may observe non-equilibrium dynamics even though we numerically find that on average

the growth rate of each potential generalized cooperator is larger than expected (Fig. 6b).

c. Analytical solution: The general case of α < 1 in any interaction structure can be

easily analytically solved and thus the observations explained. To see this, let i represent the

strongest entity in the network in the sense that gDi > g
C and gDi > g

D
j for all j ≠ i. We claim

that the limit of the growth of each entity is at least as large as gDi . For every finite time

t we approximate the growth rate gj(t) of each entity j ≠ i and notice that this quantity is

bounded from below by the the growth induced by the shared resources from the strongest

entity. Since the defection is slow enough, these shared resources are enough to bring the

growth of each j ≠ i to gDi .

Formally, we have

gj(t +∆t) ≈ 1

t +∆t
log
⎛
⎝yj(t) (1 − pj(t)) rj(t,∆t) +∑

k≠i

Ajkpk(t)yk(t)rk(t,∆t) +Ajipi(t)yi(t)ri(t,∆t)⎞⎠,

where we define rn(t,∆t) = 1 + µn∆t + σnεn(t)√∆t. Clearly, for fixed t, rj(t,∆t) → 1 as

∆t → 0. Thus each term within the logarithm is positive. This, in turn, implies that

gj(t +∆t) ≥ 1

t + 1
log (Ajipi(t)yi(t)ri(t,∆t))

= 1

t + 1
(log (Aji) + log ( 1

1 + exp(−tα(gi(t) − gDi ))) + log (yi(t)) + log (ri(t,∆t)))
≥

1

t + 1
(log (Aji) + log ( 1

1 + exp(ctα)) + log (yi(t)) + log (ri(t,∆t))) ,
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FIG. 6: State-based generalized reciprocity in multiplicative dynamics. (a)

Observed incentives for cooperation pi(t) for each individual at t = 2 × 104 over 100

realizations. The circles are the results from each realization, whereas the crosses are the

estimated averages across realizations for a given α. (b) Numerically observed growth rate

averaged across realizations. (c) Dynamics over time for the average pi(t) across
realizations. The green lines are the averages for individuals i ∈ {1,2,4,5} whereas the red

lines are the averages for i = 3. (a-c) The parameters are set to µi = 0.03 for all i,

σ =√0.01 for i ≠ 3 and σ = 0.01 for i = 3.

for some constant c > 0 as a consequence of the Gronwall-Bellman lemma [36]. In the limit

as t→∞, the inequality reduces to

lim
t→∞

gj(t +∆t) ≥ lim
t→∞

1

t + 1

⎛⎜⎜⎜⎜⎝
log (Aji) +

∼∞(−ctα)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
log ( 1

1 + exp(ctα))+ log (yi(t)) + log (ri(t,∆t))
⎞⎟⎟⎟⎟⎠

= lim
t→∞

1

t + 1
log (yi(t)) ≥ gDi .

This leads to the situation where each entity exhibits a growth rate equal to the growth rate

of the strongest individual gDi . In turn, from the cooperative behavior properties i. and ii.
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we infer that p∗j = 1 for all i ≠ j and p∗i < 1.

V. CONCLUSION

We investigated the effect of multiplicative resource dynamics on the evolution of cooper-

ation in populations with heterogeneous individual traits. We found out that these dynamics

induce evolutionary behavior which may lead to emergence of cooperative components within

the population structure. The properties of each component are characterized solely by the

interaction topology and the traits possessed by the entities belonging in it. Thus, we may

observe great disparities in the owned resources between entities from different components,

and yet both of them will coexist.

Moreover, by introducing a simple state-based decision making rule we showed that gen-

eralized reciprocity enhances the promotion of cooperation in multiplicative environments.

By construction, the decision making rule produces behavior under which entities with ob-

served growth rates at time t that are greater than in the unconditional defector situation,

will have greater incentives to cooperate. For the regime in which the learning rate is slower

than the temporal dynamics, we analytically derived the exact behavior of each entity. When

the learning rate is faster than the temporal dynamics we numerically observed complex be-

havior. While a detailed study of this behavior is required, we believe that its implications

are non-trivial and may hide valuable information on events such as the co-evolution of life

cycles and multicellularity [37–39].

The implementation of our results goes beyond explaining the evolution of cooperation.

In particular, the introduced rule is directly related to the concept of novelty search where

individual entities decide their actions on the basis of previous experience [12]. As such

it is omnipresent in reinforcement learning and has been utilized in developing machines

that efficiently mimic human behavior. In this aspect, we argue that the results discovered

here behave as a building block in constructing machines which interact in a multiplicative

environment.
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