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Abstract

In this work we study the stability properties of the equilibrium points of deterministic epidemic models
with nonconstant population size. Models with nonconstant population have been studied in the past only in
particular cases, two of which we review and combine. Our main result shows that for simple “matrix epidemic
models” introduced in [1], an explicit general formula for the reproduction number R and the corresponding
“weak stability alternative” [2, Thm 1] still holds, under small modifications, for models with nonconstant
population size, and even when the model allows for vaccination and loss of immunity. The importance of
this result is clear once we note that the models of [1] include a large number of viral and bacterial models
of epidemic propagation, including for example the totality of homogeneous COVID-19 models. To better
understand the nature of the result, we emphasize that the models proposed in [1] and considered here are
extensions of the SIR-PH model [3], which is essentially characterized by a phase-type distribution (~α,A)
that models transitions between the “disease/infectious compartments”. In these cases, the reproduction
number R and a certain Lyapunov function for the disease free equilibrium are explicitly expressible in terms
of (~α,A). Not surprisingly, accounting for varying demography, loss of immunity, and vaccinations lead to
several challenges. One of the most important is that a varying population size leads to multiple endemic
equilibrium points: this is in contrast with “classic models,” which in general admit unique disease-free and
endemic equilibria. As a special case of our analysis, we consider a “first approximation” (FA) of our model,
which coincides with the constant-demography model often studied in the literature, and for which more
explicit results are available. Furthermore, we propose a second heuristic approximation named “intermediate
approximation” (IA). We hope that more light on varying population models with loss of immunity and
vaccination, which have been largely avoided until now – see though [4–11] – will emerge in the future.

Keywords: Epidemic models, varying population models, stability, next-generation matrix approach, basic
reproduction number, vaccination, loss of immunity, endemic equilibria.
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1 Introduction

In this paper, we extend – to epidemic models with varying population size, vaccinations, and loss of immunity –
an outstanding formula derived in [1], which expresses the reproduction number of a large class of deterministic
epidemic models as a quadratic form with respect to certain input parameters (4.3). We illustrate why this
formula is remarkable through a brief historical overview.

Deterministic mathematical epidemiology. Deterministic mathematical models [12–14] have been
widely adopted by epidemiologists to model the spread of diseases worldwide, including the Bombay plague
in 1905–06 [15], measles, smallpox, chickenpox, mumps, typhoid fever and diphtheria (see for example [16]),
and recently COVID-19 ( see for example [17–29], to cite just a few representatives of a huge literature). Ana-
lytic work in this area appears to have reached the ”dimensionality barrier,” thus remaining limited to models
with up to three epidemic states [5, 6].

Stochastic and deterministic models. Stochastic models are the most-natural way to approach epidemic
modeling since they inherently capture stochastic mixing within populations [30, 31]. We remark that many
deterministic models can be obtained as limiting cases of stochastic models [32, 33]. Notice, however, that
although multiple stochastic models may be adequate to model a certain epidemic outbreak, these may yield
different deterministic limits – see for example [34], who discusses four stochastic models for a particular study
case. The correspondence between stochastic and deterministic models being a delicate point, it implies that
well-defined concepts for the first class are more challenging to capture or interpret for the second. To further
explain this point and our motivation, next we give an eye-bird’s view of mathematical epidemiology.

The deterministic epidemics literature may be divided roughly into three streams.

1. Models with constant total population size. These models are in general easier to study, often admit a
single endemic equilibrium point, and typically obey the “R0 alternative” – see the next class of models.
However, since death is an essential factor of epidemics, the assumption of constant population size (clearly
an approximation that holds in the short term or for very-large populations) deserves some comment ∗ .

2. Models with constant birth rate. These models include the previous class, and preserve some of its features,
such as uniqueness of the endemic fixed point. In general cases, their stability properties can be studied via
the next generation matrix approach – see [36] for a recent nice review of several stability results for this
class of models. Finally, we notice that these models correspond to limiting cases of stochastic models with
emigration.

3. Finally, we arrive to the object of our paper: models with linear birth-rate (corresponding to constant birth-
rate per capita in the analog stochastic model), varying total population, and proportionate mixing. This
stream of literature precedes the next generation matrix revolution [4, 5], and reveals the possibility of bi-
stability when R0 < 1 (absent from the previous models), even in simple examples ¶ [6]. Despite further
remarkable works on particular cases – see, for example, [7–11, 37] (which proposed a direct stability analyses
as opposed to the next generation matrix approach used here), the literature on models with varying total
population, unlike the two preceding streams, has not yet reached general results.

Despite their importance in describing epidemics evolving over long periods of time or affecting small-size
populations, the previous discussion suggests that epidemics model with varying population size and linear
birth-rate have not not received sufficient attention – even in the simple case of Arino models with linear forces
of infection (or bilinear incidence) [1, 3, 38–40] – thus motivating our study. As we will show in this work, these
are models to which the next generation matrix approach can be applied, and for which the next generation
matrix has rank 1, resulting in an explicit formula for the basic reproduction number R0, provided in [1] for
the case of constant population size ¶ .

We remark that Arino [1] calls the class of models considered in this work “simple models” [41]. These
models were introduced in Arino’s joint work [1] with several of the founders of mathematical epidemiology:
Brauer, van den Driessche, Watmough, and Wu. We took the liberty of renaming this class, since we believe
that “simple models” is too generic, while “Arino-Brauer-van den Driessche-Watmough-Wu” is too long. We
hope to show here and in further work that for this class R0 and other important features continue to have
simple formulas in terms of the intervening matrices, and of the vaccination and loss of immunity parameters § .

Related works. We next summarize some works that are related to the model considered in this work.

∗One rigorous justification for deterministic constant population epidemiological models comes from slow-fast analysis [35]. This is best
understood for models with demography (birth, death), which happen typically on a slower scale than the infectious phenomena. Here

there is a natural partition of the compartments into a vector ~i(t) ∈ R−
+ of disease/infectious compartments (asymptomatic, infectious

hospitalized,etc). These interact (quickly) with the other input classes like the susceptibles and output classes like the recovered and dead.
¶Thus, for an initial number of infectives high, the trajectory may lie in the basin of attraction of a stable endemic point instead of being

eradicated. The discrepancy with what is expected from the corresponding stochastic model suggests that in this range the deterministic
model is inappropriate

¶Unfortunately, this formula is not known enough, and particular cases of it are being reproved in numerous recent papers. In fact,
sometimes several papers reprove the same particular case, due to the confusion caused by the lack of a common notation style; we have a
proposition below to remedy that.

§Note also that quadratic models have been found useful in [42] for determining the direction of transcritical bifurcations.
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1. The simplest class of “matrix-Arino” epidemics are the “SIR-PH models” [3, 40], in which the infected class
is replaced by a vector of disease classes (here denoted by I), there are several output classes (here denoted
by R), and there is only one input class (here denoted by S). Note that this particularly simple model has
the probabilistic interpretation of a SIR model where the exponential infection time has been replaced by a
PH-type (~α,A) distribution [3]. ¶ Note that many of the models recently adopted to model the COVID-19
outbreak belong to this class.

2. Unfortunately, the SIR-PH model precludes important interactions between S and R like loss of immunity
and vaccination. We introduce therefore here a class of models, named SIR/V+S, which allows individuals
to transfer from the S class to the R class (thus accounting for vaccinations) and from the R class to the S
class (thus accounting for loss of immunity).

Contributions. The contribution of this work is twofold. First, we propose a compartmental model for
epidemic transmission that accounts for varying population size, vaccinations, and loss of immunity. This model
includes three well-studied models as subcases: (i) general varying population epidemic models, (ii) the well-
studied “first order” approximations (FA), often adopted in the literature (which is recovered by ignoring certain
quadratic terms from the more-general model proposed here), and (iii) a new model, named “intermediate
approximations” (IA), introduced here for the first time (obtained by neglect the terms which are quadratic
with respect to the disease/infectious compartments).

Second, we characterize the equilibrium points of the proposed model and we study their stability properties.
Our analysis builds upon and extends the next generation matrix approach proposed in [36] for models with
constant population size. Our results show that the formula for the reproduction number proposed in [1]
extends to models with varying population (with small modifications) and that the reproduction number still
characterizes the stability of the equilibrium points.

Organization. This paper is organized as follows. In Section 2 we present some preliminary background
on epidemic models: the basic reproduction number and the next generation matrix method. In Section 3 we
introduce matrix Arino models with demography, vaccination and loss of immunity. Section 4 gives stability
results for the SIR-PH model – see Propositions 1, 2, 3. Section 5 concludes the paper.

2 Preliminaries

2.1 What is a deterministic epidemic model?

To put in perspective our work, we would like to start by a definition of deterministic epidemic models, lifted
from [44].

Definition 1 A deterministic epidemic model is a dynamical system with two types of variables ~x(t) := (~i(t), ~z(t)) ∈ RN+ ,
where

1. ~i(t) model the number (or density) in different compartments of infected individuals (i.e. latent, infectious,
hospitalized, etc) which should ideally disappear eventually if the epidemic ever ends;

2. ~z(t) model numbers (or densities) in compartments of individuals who are not infected (i.e. susceptibles,
immunes, recovered individuals, etc).

The system must admit an equilibrium called disease free equilibrium (DFE), and hence a “quasi-triangular”
linearization the form

~i
′
(t) = ~i(t)Ai,i(~x(t)), ~x(t) ∈ D ⊂ RN+ (2.1)

~z′(t) = ~i(t)Az,i(~x(t)) + (~z(t)− ~zdfe)Az,z(~x(t)),

where D is some forward-invariant subset, where “quasi-triangular” refers to the fact that the functions Ai,i, Az,i, Az,z
depend on all the variables ~x(t), and where N is the dimension of ~x(t). �

As shown in [44], any epidemic model admitting an equilibrium point (~0, ~zdfe) admits the representation

(2.1), under suitable smoothness assumptions. In what follows, we will call the point xdfe = (~0, ~zdfe) a disease
free equilibrium (DFE).

Remark 1 Note that the essential feature of (2.1) is the “factorization of the disease equations”. �

¶One may similarly replace the exponential latency time in class E of SEIR by a PH-type [43], and similarly for all the infectious classes,
but this is finally unnecessary, since all the infectious classes may be grouped together in one group, whose phase-type will be determined by
those of the components (via Kronecker product operations). It suffices therefore to let (~α,A) denote the phase-type of all the interactions
between the disease classes.
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2.2 The basic reproduction number R0

The basic reproduction number or “net reproduction rate” R0 is a pillar concept in demography, population
dynamics, branching processes and mathematical epidemiology – see the introduction of the book [45]. One of
the central objectives of these fields is to study the stability of DFE, i.e. the conditions which ensure eradicating
the sickness (or a part of the population in population dynamics). It was discovered in simple models, that this
amounts to verifying that a famous threshold parameter called basic reproduction number is less than 1.

1. The notation R0 was first introduced by the father of mathematical demography Lotka [46, 47]. In epidemi-
ology, the basic reproduction number models the expected number of secondary cases which one infected case
would produce in a homogeneous, completely susceptible stochastic population, in the next generation. As
well known in the simplest setup of branching process, having this parameter smaller than 1 makes extinc-
tion sure. The relation to epidemiology is that an epidemics is well approximated by a branching process at
its inception, a fact which goes back to Bartlett and Kendall.

2. With more infectious classes, one deals at inception with multi-class branching processes, and stability holds
when the Perron-Frobenius eigenvalue of the “next generation matrix ” (NGM) of means is smaller than
1.

3. For deterministic epidemic models, it seems at first that the basic reproduction number R0 is lost, since the
generations disappear in this setup – but see [45, Ch. 3], who recalls a method to introduce generations which
goes back to Lotka, and which is reminiscent of the iterative Lotka-Volterra approach of solving integro-
differential equations. At the end of the tunnel, a unified method for defining R0 emerged only much later,
via the “next generation matrix” approach [2, 48–51]. The final result is that local stability of the disease free
equilibrium holds iff the spectral radius of a certain matrix called “next generation matrix”, which depends
only on a set of “infectious compartments” ~i (which we aim to reduce to 0), is less than one. This approach
works provided that certain assumptions listed below hold § .

(C1) The foremost assumption is that the disease-free equilibrium (~0, ~zdfe) is unique and locally asymptotically

stable within the disease-free space ~i = 0, meaning that all solutions of

~z′(t) = (~z(t)− ~zdfe)Az,z(~0, ~z(t)), ~z(0) = ~z0

must approach the point zdfe when t→∞.
(C2) Other conditions are related to an “admissible splitting” as a difference of two parts F ,V, called respectively

“new infections”, and “transitions”

Definition 2 A splitting
~i
′
(t) = F(~i(t), ~z(t))− V(~i(t), ~z(t))

will be called admissible if F ,V satisfy the following conditions [2, 52]:
F(~0, ~z(t)) = V(~0, ~z(t)) = 0,

F(~i(t), ~z(t)) ≥ 0, ∀(~i(t), ~z(t)),
Vj(~i(t), ~z(t)) ≤ 0, when ~ij = 0,∑n
j=1 Vj(~i(t), ~z(t)) ≥ 0, ∀(~i(t), ~z(t)),

(2.2)

where the subscript j refers the j’th component. �

Remark 2 The splitting of the infectious equations has its origins in epidemiology. Mathematically, it is related to the
“splitting of Metzler matrices”– see for example [53]. Note however that the splitting conditions may be satisfied for
several or for no subset of compartments (see for example the SEIT model, discussed in [2], [12, Ch 5]). Unfortunately,
for deterministic epidemic models, there is no clear-cut definition of R0 [13, 54, 55]. ‡ �

(C3) We turn now to the last conditions, which concern the linearization of the infectious equations around the
DFE. Putting L = Ai,i(~0, ~zdfe), and letting f denote the perturbation from the linearization, we may write:

~i
′
(t) = ~i(t)L− f(~i(t), ~z(t)) = ~i(t)(F − V )− f(~i(t), ~z(t)), (2.3)

F :=

[
∂F
∂ i

]
xdfe

V =

[
∂V
∂ i

]
xdfe

, L = F − V.

§And so R0 is undefined when these assumptions are not satisfied.
‡A possible explanation is that several stochastic epidemiological models may correspond in the limit to the same deterministic model.
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The “transmission and transition” linearization matrices F, V must satisfy that F ≥ 0 componentwise
and V is a non-singular M-matrix, which ensures that V −1 ≥ 0. ‖

Under conditions (C1)-(C3), the next generation matrix method gives an explicit expression for the basic
reproduction number, given by R0 := λPF (FV −1).

The basic reproduction number is a threshold parameter in the following sense [2, Thm 1]:

1(a) When R0 < 1, the DFE is locally asymptotically stable;
1(b) when R0 > 1, the DFE is unstable;
2 The DFE is globally asymptotically stable when R0 ≤ 1, provided the “perturbation from linearity” f =

i(F − V )−F + V is non-negative [2, Thm 2]. ¶

In what follows, we will call the alternative 1(a)-1(b) the “weak R0 alternative”. In contrast, the result 2
has been called the “strong R0 alternative” in [52, 56].

3 Matrix SIRS epidemics with demography, loss of immunity,
vaccination and one susceptible class (SIRS epidemics with
phase-type “disease time”)

While the elusive R0 can be defined as the spectral radius of a certain matrix, provided that the next generation
matrix assumptions apply, it is often possible and considerably more convenient to employ models where R0

may be explicitly expressed in terms of the matrices that define the model [1, 39, 57, 58].
The idea behind these models is to further divide the noninfected compartments into S(usceptible)/input

classes, defined by producing “new non-linear infections”, and output R classes (like D,De in our example),
which are fully determined by the rest, and may therefore be omitted from the dynamics. Furthermore, it is
convenient to restrict to epidemic models with linear force of infection, since it is known that non-linear forces of
infection may lead to very complex dynamics [59–62], which are not always easy to interpret epidemiologically.
This is in contrast with the Arino models already studied where one may typically establish the absence of
periodic solutions (closed orbits, homoclinic loops and oriented phase polygons) [10, 11].

Below, we study the equilibrium points and the dynamical behavior of such models, restricting to the case of
one susceptible class. Our goal is to understand the effects of demography, vaccination and loss of immunity,
which are missing in the original paper [1].

Definition 3 A matrix “SIRS epidemic” of type (1, n, p), with demography parameters (Λ, µ) (scalars), loss of immunity
column vector γr and vaccination row vector ~γs, is characterized by a set of parameters (A,B,W,ν,νr), where ν,νr
(in boldface) denote column vectors of extra death rates, and A,B,W denote respectively matrices of dimensions n×n,
n× n and n× p, respectively. This model contains one susceptible class S, a p-dimensional vector of removed states ~R
(healthy, dead, vaccinated, etc), and a n-dimensional vector of “disease” states ~I (which may contain latent/exposed,
infective, asymptomatic, etc). The dynamics are:

S′(t) = ΛN − S(t)

N
~I(t)b− (~γs + µ)S(t) + ~R(t)γr, b = B1,

~I ′(t) = ~I(t)

(
S(t)

N
B +A−Diag(ν + µ1)

)
, (3.1)

~R′(t) = ~I(t)W + ~γsS(t)− ~R(t)(Diag(γr+νr + µ1)),

N ′(t) = S′(t) + ~I ′(t)1 + ~R′(t)1 = (Λ− µ)N − ~I(t)ν−~R(t)νr,

D′(t) = µ(S(t) + ~I(t)1 + ~R(t)1),

D′e(t) = ~I(t)ν+~R(t)νr.

In short, we will refer to the above model to as matrix SIR/V+S model. �

Here,

1. ~I(t) ∈ Rn is a row vector whose components model a set of disease states (or classes).

2. ~R(t) ∈ Rp is a row vector whose components model a set of recovered states (or classes), each accounting for
individuals who recovered from the infection. In what follows, we will focus on the case of one recovered class.

‖The assumption (B) implies that L = F − V is a “stability (non-singular) M-matrix”, which is necessary for the non-negativity and
boundedness of the solutions [36, Thm. 1-3].

¶Note that the [56] strong R0 alternative was only established for a general n-stage-progression, which is a particular case of the model
we study below, in which A is an “Erlang” upper diagonal matrix. It is natural to expect that the result continues to hold for other
non-singular Metzler matrices
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3. B is a n× n matrix, where each entry Bi,j represents the force of infection of the disease class i onto class
j. We will denote by b the vector containing the sum of the entries in each row of B, namely, b = B1.

4. A is a n × n Markovian sub-generator matrix (i.e., a Markovian generator matrix for which the sum of at
least one row is strictly negative), where each off-diagonal entry Ai,j , i 6= j, satisfies Ai,j ≥ 0 and describes
the rate of transition from disease class i to disease class j; while each diagonal entry Ai,i satisfies Ai,i ≤ 0
and describes the rate at which individuals in the disease class i leave towards non-infectious compartments.
Alternatively, −A is a non-singular M-matrix [1, 3]. §

5. ν ∈ Rn,νr ∈ Rp are column vectors describing the death rates in the disease and recovered compartments
caused by the epidemic (and possibly vaccinations), respectively.

6. γr is a vector describing the rates at which individuals lose immunity (i.e. transition from recovered states
to the susceptible state).

7. ~γs is a vector describing the rates at which individuals are vaccinated (immunized).
8. W is a n× p matrix whose entries model the rates at which individuals in the disease states transfer to

recovered or dead states. In what follows, we assume that the n×(n+p) matrix Ã =
(
A W

)
satisfies Ã1 = 0

(namely, the sum of the entries in each row is equal to 0), which implies mass conservation.

Remark 3 We have not found any work in the literature on models with linear birth-rate, at this level of generality.
As mentioned in the introduction, the immense majority of the literature is dedicated to models that may be formally
obtained from (3.1) by letting N = 1 (the idea being that N is approximately constant, either since it is huge, or since
it is observed only over a short period of time). We will call this formally obtained model “classic/pedagogical” where
we added the last qualifier to emphasize that it is unrelated to the model we study. This is in contrast with the FA and
IA approximations introduced later, which do approximate the scaled version of (3.1) introduced below. �

Remark 4 1. Note that when p = 1, then W = a := (−A)1 is a vector with a well-known probabilistic inter-
pretation in the theory of phase-type distributions: it is the column vector which completes a matrix with
negative row sums to a matrix with zero row sums.

2. A particular but revealing case is that when p = 1 and matrix B has rank 1, necessarily hence of the
form B = b~α, where ~α ∈ Rn is a probability row vector whose components aj represent the fractions
of susceptibles entering into the disease compartment j, when infection occurs. We will call this SIR-PH,
following Riano [3], who emphasized its probabilistic interpretation – see also [43], and see [64] for an early
appearance of such models. �

Remark 5 Note in the general model the factorization of the equation for the diseased compartments, which turns out
to be an essential feature of the model.

Note also that our model includes important epidemiological parameters, such as ν (describing the death rate
when individuals are in the infectious compartments) and γr (describing the rates at which recovered individuals lose
immunity), which are often omitted in simpler models. In what follows, our purpose is precisely to study the emerging
behaviors due to the presence of these parameters with respect to the simple Arino model. �

It is convenient to reformulate (3.1) in terms of the fractions normalized by the total population

s =
S

N
, ~i =

1

N
~I, ~r =

1

N
~RN = s + ~i.1 + ~r.1. (3.2)

The reader may check that the following equations hold for the scaled variables:
s′(t) = Λ− (Λ + γs) s(t) + ~r(t)γr − s(t) ~i(t) (b− ν) + s(t)~r(t)νr
~i
′
(t) = ~i(t)

(
s(t) B +

(
~i(t)ν + ~r(t)νr

)
In +A−Diag [ν + Λ]

)
~r′(t) = s(t)~γs + ~i(t)W − ~r(t)

(
Diag [γr + νr + Λ]− (~i(t)ν + ~r(t)νr)Ip

)
s(t) + ~i(t)1 + ~r(t)1 = 1

, (3.3)

where we let γs := ~γs1. Moreover, by letting n := s + ~i1 + ~r1, we have

n′(t) = (Λ− ~i(t)ν)(1− n(t)) = 0.

Hence, the above equation guarantees that if s(t0)+ i(t0)+ r(t0) = 1 for some t0 ∈ R≥0, then s(t)+ i(t)+ r(t) =
1 for all t ≥ t0. Accordingly, in what follows we will always assume that n(t0) = 1, which guarantees that
n(t) = 1,∀t.

§An M-matrix is a real matrix V with vij ≤ 0, ∀i 6= j, and having eigenvalues whose real parts are nonnegative [63].
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The following definition puts in a common framework the dynamics for the scaled process and two interesting
approximations.

Definition 4 Let Φs,Φi,Φr ∈ {0, 1} and let

s′(t) = Λ− (Λ + γs) s(t) + ~r(t)γr − s(t)~i(t)b+ Φs s(t)(~i(t)ν + ~r(t)νr),

~i
′
(t) = ~i(t)

(
s(t) B +A−Diag [ν + Λ1]

)
+ Φi~i(t)

(
~i(t)ν + ~r(t)νr

)
,

~r′(t) = s(t)~γs + ~i(t)W − ~r(t)Diag [γr + νr + Λ1] + Φr ~r(t)(~i(t)ν + ~r(t)νr),

s(t) + ~i(t)1 + ~r(t)1 = 1. (3.4)

1. The model (3.4) with Φs = Φi = Φr = 1 will be called scaled model (SM).
2. The model (3.4) with Φs = Φi = Φr = 0 will be called first approximation (FA).
3. The model (3.4) with Φs = Φr = 1 and Φi = 0 will be called intermediate approximation (IA). �

Fig. 1 compares the qualitative behavior and equilibrium points of the ( s, i) coordinates of the three variants
of a SIR-type example of (3.1) model (discussed in detail in [65]).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
s

0.1

0.2

0.3

0.4

i

SP
EEFOA

EESc

EEIn

Scaled epidemic model

Intermediate approximation

First order approximation

Fig. 1: Parametric ( s, i) plots of the scaled epidemic and its FA and intermediate approximations for a SIR-
type model with one infectious class, starting from a starting point SP with i0 = 10−6, with R0 = 3.21, β =
5, γ = 1/2, Λ = µ = 1/10, γr = 1/6, γs = .01, νi = .9, νr = 0. EESc,EEIn,EEF0A are the stable endemic
points of the scaled model, intermediate model, and the FA model, respectively. The green vertical line denotes
the immunity threshold 1/R = sEEF0A = sEEIn. Note that the epidemic will spend at first a long time (since

births and deaths have slow rates as compared to the disease) in the vicinity of the manifold ~i(t) = 0, where
the three processes are indistinguishable, before turning towards the endemic equilibrium point(s).

Example 1 The classic SEIRS model is a particular case of SIR-PH-FA model (see also next remark) obtained when

~α = (1, 0), A =

(
−γe γe

0 −γ

)
,W = a =

(
0
γ

)
, b =

(
0
β

)
, so B =

(
0 0
β 0

)
,ν =

(
0
ν

)
;

this yields: 
s′(t) = Λ− s(t) (β i(t) + γs + Λ) + γr r(t)(
e′(t)

i′(t)

)
=

(
−(γe + Λ) β s(t)

γe − (γ + Λ + ν)

)(
e(t)

i(t)

)
r′(t) = γs s(t) + γ i(t)− r(t)(γr + Λ + νr)

. (3.5)
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β
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μ

γs

γe

μ

γ

μ

γr

μ

Λ S E

I

R

Fig. 2: Chart flow of the SEIRS model. The forces of infection is Fo = β i. The red edge corresponds to the
entrance of susceptibles into the disease classes, the dashed green edges correspond to contacts between diseased
to susceptibles, the brown edge is the rate of the transition matrix V , and the cyan dashed line corresponds to
the rate of loss of immunity. The remaining black lines correspond to the inputs and outputs of the birth and
natural death rates, respectively.

Remark 6 From now on we will write the dynamical systems with the vector state variables pre-multiplying the model
matrices. The reason is that we want ~α in the SIR-PH fundamental case to be a row vector, as in the theory of phase-type
distributions, which turns out to be convenient in applications. �

Remark 7 We point out now that the scaled matrix SIR/V+S model belongs to a class of models introduced, for different
motivations, in [53]. Indeed, after dropping the first equation

s′(t) = Λ− s(t)~i(t)b− (Λ + γs) s(t) + ~r(t)γr +
(
~i(t)ν + ~r(t)νr

)
s(t)

and rewriting the rest as:(
~i
′
(t) ~r′(t)

)
=
(
0 s(t)γr

)
+
(
~i(t) ~r(t)

)[( s(t)B +A− (Λ + ν)In W
0 −Diag(γr) + ΛIp

)
−Diag(νx)

]
+~xDiag(νx)Diag(~x),

where ~x = (~i, ~r),νx = (ν,νr), we recognize a particular case of [53, (2.1)]. Finally, we note that the FA is obtained by
dropping the row of the last matrices. �

Using now ∇~i(t)ν~i(t) = ν~i(t) + ~i(t)νIn, and putting x = ~iν + ~rνr, we find that the transpose of the
Jacobian matrix of the scaled model (3.3) is given by

J =

x− ~ib− (Λ + γs) ~iB ~γs
s (ν − b) sB +A−Diag(ν + Λ1) + ν~i + (~iν + ~rνr)In W + ν ~r

γr+sνr νr~i νr ~r −Diag[γr + νr + Λ] + (~iν + ~rνr)Ip

 .

At the disease-free equilibrium (sdfe,~0, ~rdfe), we have

Jdfe =

−(Λ + γs)+~rdfeνr 0 ~γs
sdfe (ν − b) sdfeB +A−Diag(ν + Λ1) + ~rdfeνrIn W + ν ~rdfe
γr + sdfeνr 0 νr ~rdfe −Diag[γr + νr + Λ] + (~rdfeνr)Ip

 .

Remark 8 a) This is (up to a transpose) a generalization of the Jacobian of the scalar SIR/V+S model, with the middle
element replaced by a n× n matrix.

b) Note the structure of the second column, which is equivalent to the factorization property, and implies Proposition
1, below. �
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4 Stability results for the SIR-PH model

We consider here the particular case with a single recovered class, called SIR-PH model, where W = a = (−A)1.
Notice that, in this case, we have a reduced set of parameters (Λ = µ, ~α,A, b,ν, νr, γs, γr).

4.1 The basic reproduction number for SIR-PH, via the next generation matrix
method [49, 50]

We follow up here on a remark preceding [1, Thm 2.1], and show in the following proposition that their simplified
formula for the basic reproduction number still holds when loss of immunity and vaccination are allowed,
provided that p = 1 and B = b~α has rank one.

Proposition 1 Consider a SIR-PH model (i.e. a single recovered class), with parameters (Λ = µ, ~α,A, b,ν, νr, γs, γr),
and matrix of recovery rates W = a = (−A)1.

1.(a) When νr = 0, the unique DFE is ( Λ+γr
Λ+γr+γs

, 0, γs
Λ+γr+γs

).

(b) When νr > 0, exclude the case Λ = γr = 0. Then, there exists a unique DFE (sdfe, 0, 1− sdfe) ∈ D, where
sdfe satisfies the second order equation s [νr s + Λ + γr + γs − νr]− (Λ + γr) = 0 and is given by

sdfe =

√
4νr (Λ + γr) + (Λ + γr + γs − νr)2 − (Λ + γr + γs − νr)

2νr
. (4.1)

2. The weak R0 alternative holds for the threshold parameter

R0 = λPF (FV −1), (4.2)

where F, V are defined in (4.9), and λPF denotes the (dominant) Perron-Frobenius eigenvalue.
3. For rank one, B := b~α and νr = 0, we further have

(a)
R0 = sdfe R, where R = ~α V −1 b. (4.3)

(b) If R0 ≤ 1, and if the perturbation from linearity defined in (2.3) is nonnegative, then the scalar
combination

Y = ~i V −1 b (4.4)

is a Lyapunov function for the DFE.

Proof: 1. The disease free system ( with i = 0, r = 1− s) reduces to

s′(t) = Λ− (γs + Λ) s(t) + (γr + νr s(t))(1− s(t)). (4.5)

For the fixed points we must, depending on νr, solve either a quadratic, or a linear equation{
Λ + γr − s [νr s + Λ + γr + γs − νr] = 0 νr > 0

s [Λ + γr + γs]− (Λ + γr) = 0 νr = 0
.

One root

sdfe =

{
Λ+γr

Λ+γr+γs
νr = 0√

∆dfe−(Λ+γr+γs−νr)

2νr
, ∆dfe = 4νr (Λ + γr) + (Λ + γr + γs − νr)2

νr > 0
(4.6)

is always in [0, 1] and will be denoted by sdfe.

Remark 9 sdfe is continuous in νr, since for νr small, sdfe ≈
Λ+γr+γs−νr+

2νr(Λ+γr)
Λ+γr+γs−νr−(Λ+γr+γs−νr)

2νr
→ Λ+γr

Λ+γr+γs
(this

approximation may be made rigorous by applying the rule of l’Hospital). �

The other root in the quadratic case νr > 0

νr − (Λ + γr + γs)−
√

4νr (Λ + γr) + (Λ + γr + γs − νr)2

2νr
(4.7)
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is strictly negative, unless {
Λ + γr = 0

νr ≥ γs + Λ + γr
⇔

{
Λ = γr = 0

νr ≥ γs
, (4.8)

in which case it yields a second DFE point with s = 0 = i, which we exclude (in order to be able to apply the
next generation matrix method).

2. It is enough to show here that the conditions of [2, Thm 2] hold, with respect to the infectious set ~i, and
a certain splitting.

The DFE and its local stability for the disease-free system have already been checked in the SIR/V+S
example.

We provide now a splitting for the infectious equations:

~i
′
(t) = ~i(t)

[
s(t)B + ~i(t)νIn + νr r(t)In

]
− ~i(t) [Diag(ν + Λ1)−A] := F(s,~i)− V(~i)

(where r = 1− s− ~i1). The corresponding gradients at the DFE ~i = 0 areF =
[
∂F(X(DFE))

∂~i

]
= sB + νr r In,

V =
[
∂V(X(DFE))

∂~i

]
= Diag(ν + Λ1)−A.

(4.9)

We note that F has non-negative elements, and that V is a M-matrix, and therefore V −1 exists and has
non-negative elements, ∀Λ,ν. We may check that the conditions (2.2) are satisfied.

For example, the last non-negativity condition in (2.2)

~i(t) [Diag(ν + Λ1)−A]1 ≥ 0,∀~i ∈ D, (4.10)

is a consequence of −A being a M-matrix, which implies −A1 ≥ 0, componentwise.
3.a) Now if n = 1, or if B = b~α has rank 1, and νr = 0, the matrix F in (4.9) is the product of a

column vector and a row vector, the dimension of its image is one, and the same holds for BV −1. Equivalently,
rank(BV −1) = 1. The ”rank-nullity theorem” rank(BV −1) + nullity(BV −1) = n [66] implies that (n − 1) of
the eigenvalues of BV −1 are zero, and the Perron-Frobenius eigenvalue is the remaining one. This latter one
must be equal to the trace of BV −1 = b ~α V −1 which may be checked to equal ~α V −1 b. Finally, the linearity
R0 = sdfe R is obvious.

3.b) is a particular case of [52], since the Perron-Frobenius eigenvector in our rank-one case may be taken
as b. �

4.2 The classic/pedagogical SIRS-FA model

In this section, we give more explicit results for the disease free equilibrium and the endemic equilibrium of th
following model, referred to as SIRS-FA,

s′(t) = Λ− (µ+ γs) s(t) + ~r(t)γr − s(t) ~i(t)b

~i
′
(t) = ~i(t)

(
s(t) b~α− V

)
~r′(t) = s(t)~γs + ~i(t)W − ~r(t)

(
Diag [γr + νr + µ1]

)
s(t) + ~i(t)1 + ~r(t)1 = 1

, (4.11)

Proposition 2 1. The pedagogical (Λ, µ,A,~γs,γr) SIRS system (4.11) has a unique disease-free equilibrium
(DFE) fixed point

(sdfe,~0, ~rdfe), sdfe =
Λ

µ+ γs − ~γs (Diag(γr + νr + µ1))
−1
γr
, ~rdfe = sdfe~γsDiag(γr + νr + µ1)−1.

In the SIR-PH case, the DFE simplifies to § :

(sdfe,~0, rdfe) =

(
Λ(µ+ γr + νr)

µγr + (µ+ νr)(µ+ γs)
,~0, sdfeγs

)
. (4.12)

§This formula has appeared already in many particular cases –see for example [67, (19-20)]
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2. If R0 > 1, then the pedagogical system (4.11) has a unique second fixed point within its forward-invariant
set. This endemic fixed point is such that 1/see is an eigenvalue of the matrix BV −1.

In the SIR-PH case it must satisfy

1/see = R = ~α V −1b.

The disease components ~iee satisfy:

~iee(
1

R
B +A−Diag(ν + µ1)) := ~ieeM = 0 (4.13)

( ~iee is a Perron-Frobenius eigenvector of the matrix M related to the next generation matrix).
3. The normalization of iee is given by (4.18) below. When µ = Λ, this becomes:

~i

(
b−Ra γr

γr + νr + Λ

)
= ΛR− Λ + γs

(
γr

Λ + γr + νr
− 1

)
. (4.14)

4. The disease-free equilibrium is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1.
5. When νr = 0, the critical vaccination defined by solving R0 = 1 with respect to γs is given by

γ∗s := (Λ + γr)
(
~αV −1b− 1

)
= (Λ + γr) (R− 1) . (4.15)

We show in Fig. 3 a stream plot of the SIRS-FA model that illustrates the above properties.
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EEFOA
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0.6

0.8

1.0

s

i

DFE

Fig. 3: Stream plots of (s, i) for an example of SIRS-FA model with one infectious class [65], when γs ∈
{1/100, 3} is smaller and bigger, respectively, than the critical vaccination γ∗s = 0.239087 defined in (4.15).

Proof: The proof starts by examining the two cases which arise from factoring the disease equations. More
precisely, we will search separately in the disease free set I := {~i = ~0} and in its complement Ic. Then:

1. either ~i ∈ I and solving{
Λ = (µ+ γs) s− ~rγr
~0 = s~γs − ~rDiag(γr + νr + µ1)

=
(
s ~r
)(µ+ γs ~γs
−γr −Diag(γr + νr + µ1)

)

for s, ~r yields the unique DFE (it may be shown by induction that the determinant is negative). Or,

2. the determinant of the resulting homogeneous linear system for ~i 6= ~0 must be 0, which implies that s = see
satisfies

det [see B +A−Diag(ν + µ1)] = 0. (4.16)

Note now that V = Diag(ν + µ1) − A is an invertible matrix. Using det(UU ′) = det(U)det(U ′), (4.16)
may be written as

det
[
(seeB − V )V −1

]
= 0⇔ det

[
seeBV

−1 − I
]

= 0
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Dividing then by see yields the characteristic polynomial of a matrix

det

[
BV −1 − 1

see
I

]
= 0. (4.17)

In the SIR-PH case, noting that the rank one matrix BV −1 has (n − 1) eigenvalues equal to zero,
we conclude that the inverse of the susceptible fraction 1/see of an endemic state must equal the Perron-
Frobenius eigenvalue R. Note that see < 1 follows from our assumption on R. The other coordinates are
determined starting with ~i, which must be proportional to a Perron-Frobenius nonnegative eigenvector.

Remark 10 Equivalently, it is easy to check that (4.17) may be reformulated as saying that see must satisfy

λPF (see B
(
A−Diag(ν + µ1))

)−1
= 1⇔ λPF (see B +A−Diag(ν + µ1)) = 0,

where λPF denotes the Perron-Frobenius eigenvalue. We note that the matrices in the last formulation intervene also
in the next generation matrix approach. �

3. Recall the system 
0 = Λ− (µ+ γs) s + ~r(t)γr − s y

0 = ~i( s B +A−Diag(ν + µ1))

0 = ~iW + s~γs − ~r(Diag(γr + νr + µ1))

.

Since see = 1
R , and ~iee is known up to the proportionality constant y = ~ib, it only remains to solve the

last equation in (4.18) below:{
~r =

[
~iW + s~γs

]
Diag(γr + νr + µ1)−1

~i
(
sb−WDiag(γr + νr + µ1)−1γr

)
= Λ− (µ+ γs) s + s~γsDiag(γr + νr + µ1)−1γr

(4.18)

This equation may be solved numerically. When p = 1 =⇒W := a = (−A)1, the last formula yields

~i

(
b−Ra γr

γr + νr + µ

)
= ΛR− µ+ γs

(
γr

γr + νr + µ
− 1

)
(4.19)

In the particular case µ = Λ, this yields (4.14).
4. This follows from [52, Theorem 2.1] (it is a consequence of the fact that a linear function proportional to the

associated Perron eigenvector is a Lyapunov function when R0 < 1).
, with

5. The result is immediate by solving R0 = 1 with respect to γs, where R0 is defined in (4.3). �

4.3 A glimpse of the intermediate approximation model for matrix SIRS, with
Λ = µ

The intermediate approximation associated to (3.3) is
s′(t) = Λ− (Λ + γs) s(t) + ~r(t)γr − s(t) ~i(t) (b− ν) + s(t)~r(t)νr
~i
′
(t) = ~i(t)

(
s(t) B +A−Diag [ν]− ΛIn

)
~r′(t) = s(t)~γs + ~i(t)W − ~r(t)

(
Diag

[
γr + νr + (Λ− (~i(t)ν + ~r(t)νr))1

] ) ; (4.20)

when i = 0, we have

sdfe =
Λ + ~rdfeγr

Λ + γs − ~rdfeνr
, (4.21)

and from the last equation in (4.20), ~rdfe satisfies the following third order equation

(Λ + γs − ~rdfeνr) ~rdfe
(
Diag [γr + νr + (Λ− ~rdfeνr)1]

)
− ~rdfeγr~γs = Λ~γs
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Proposition 3 Assume νr = 0. Then: a) The DFE points of the scaled, the intermediate approximation, and the FA
are equal, with

~rdfe = Λ~γs
(

(Λ + γs)Diag [γr + Λ1]− γr~γs
)−1

.

b) In the SIR-PH case with ~r scalar, they reduce all to ( Λ+γr
Λ+γr+γs

, 0, γs
Λ+γr+γs

) (4.6).

c) The endemic point is unique. It satisfies see = 1
R , ~i is an eigenvector of the matrix 1

R B + A −Diag [ν] − ΛIn
for the eigenvalue 0, and

~ree = ( see~γs + ~ieeW )
(
Diag

[
γr + (Λ− ~ieeν)1

] )−1

and it satisfies the normalization

~i(t) (b− ν)−R~iW
(
Diag

[
γr + (Λ− ~iν)1

] )−1
γr = Λ (R− 1)− γs + ~γs

(
Diag

[
γr + (Λ− ~iν)1

] )−1
γr (4.22)

Proof: a) The equations determining the three DFE’s coincide.
b) When ~r is scalar, we find

rdfe = Λγs
1

(Λ + γs) [γr + Λ]− γrγs
=

γs
Λ + γs + γr

.

c) We have 0 = Λ− (Λ + γs) see + ~reeγr − see ~iee (b− ν) ,

~ree = ( see~γs + ~ieeW )
(
Diag

[
γr + (Λ− ~ieeν)1

] )−1

,

by susbtitution we get

Λ(R− 1)− γs + ~γs

(
Diag

[
γr + (Λ− ~ieeν)1

] )−1

γr = ~iee(b− ν)−R~ieeW
(
Diag

[
γr + (Λ− ~ieeν)1

] )−1

γr.

�

Remark 11 When p = 1 and ~iν = 0, (4.22) reduces to (4.14) when νr = 0.

5 Conclusions and further work

We have provided here a few general results for Arino models with varying population, and one susceptible
class only. The following directions seem worthy of further work.

1. The case of two or more susceptible classes.
2. The determination of the largest domain of attraction of the DFE, through which some linear Lyapunov

function decreases, might also be approachable via linear programming.
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