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Abstract. Contemporary numerical weather prediction
schemes are based on ensemble forecasting. Ensemble mem-
bers are obtained by taking different (perturbed) models
started with different initial conditions. We introduce one
type of improved model that represents interactive ensemble
of individual models. The improved model’s performance is
tested with the Lorenz 96 toy model. One complex model is
considered as reality, while its imperfect models are taken
to be structurally simpler and with lower resolution. The
improved model is defined as one with tendency that is
weighted average of the tendencies of individual models. The
weights are calculated from past observations by minimizing
the average difference between the improved model’s ten-
dency and that of the reality. It is numerically verified that
the improved model has better ability for short-term predic-
tion than any of the individual models.

1 Introduction

We are witnessing steady increase of accuracy of numeri-
cal weather prediction. It is based on improvements in un-
derstanding the processes that govern the atmosphere and
the ocean and availability of computational power that di-
rectly affects the grid resolution. Although modeling of the
dynamics of the fluids is build upon the same physical laws,
representation of sub-grid processes is considered differently
at different meteorological centers. Thus we are facing now
with dozens of operational atmospheric models that gen-
erally differ in parameterisation of the unresolved physical
processes. From the other side increasing of the compu-
tational resources enabled ensemble forecasting – running
multiple simulations of the same model with different ini-
tial conditions, or even using grand ensembles – multiple

runs with different initializations for each of the multitude of
models obtained with perturbations of the operational model
(Stainforth et al., 2005; Lewis, 2005). Even an ensemble of
different models is under consideration (Bougeault et al.,
2010). Already ideas about dynamically connecting the mod-
els are emerging, at least coupling of ocean and atmospheric
models (Kirtman and Shukla, 2002). Further improvement
of weather forecasting and climate projection is expected
if one applies ensemble of dynamically interacting models
– perturbed variants of single models or different models.
The problem that has to be solved is then how to com-
bine the individual models: coupling the dynamical variables
or exchanging some fields or fluxes as is the case of cou-
pling the atmospheric and oceanic models. In this work we
show how, in a medium-dimensionality dynamical system –
Lorenz 96 model, short-term prediction can be improved by
using weighted combination of different models.

A century ago Bjerknes realized that, in weather fore-
casting, one faces two types of errors: inability to copy the
atmospheric dynamics – model error, and limitation of the
knowing its state – initial condition or analysis error (Bjerk-
nes, 1911). The second issue has gained importance after
Lorenz’s discovery that, for nonlinear dynamical systems,
the separation of trajectories starting with close initial con-
ditions is exponential on average (Smith et al., 1999; Lorenz,
1963). To ameliorate the effect of this type of divergence, sci-
entists have developed different data assimilation techniques.
The problem with the inability to build a perfect model has
received much interest in recent years (Orrell et al., 2001;
Judd and Smith, 2004; Judd et al., 2008). Comparison of
the higher-dimensional truth (atmosphere in this case) and
its model is done in the state space of the model – the state
of the truth is projected onto that space. The evolution of
states of the atmosphere and its model are governed with
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their respective tendencies. So, the atmosphere tendency is
projected onto the model space as well. Then it is almost
certain that the tendency vectors are different and their mis-
match is the so-called tendency error (Orrell et al., 2001).
We propose a particular approach for decreasing tendency
error and thus an improvement of the short-term forecast. It
is based on using a model with tendency that is weighted
average of tendencies of individual models. The weights are
obtained with statistical techniques based on past observa-
tions. Our work was based on encouraging results with the
Lorenz 63 model (van den Berge et al., 2011; Wiegerinck
et al., 2011; Mirchev et al., 2012). We shortly introduce the
Lorenz 96 model in Sect. 2. The interacting ensemble is in-
troduced in Sect. 3, and the results are presented in Sect. 4.
We finish with the Conclusion.

2 The Lorenz 96 model

In 1996 Lorenz introduced a medium-dimensionality model
for modeling the evolution of one scalar atmospheric vari-
able defined over single latitude circle (Lorenz, 1996, 2004).
Although artificial, the model shares some basic properties
that any atmospheric model possesses: damping, advection
and forcing. Since its introduction it has been used widely
as a testbed for different ideas (e.g.,Orrell, 2003; Lorenz,
2004; Ott et al., 2004). One can see the model as discretized
version of partial differential equation describing the evolu-
tion of one-dimensional quantity. There are three versions of
the model with increasing complexity. The basic one – ver-
sion I – simply captures the chaotic nature of the atmosphere
and gives solution profile with irregular traveling waves. We
will not use it and so its definition is skipped. The version II
is generally similar to the simpler one but with its increased
complexity the solution is smoother. The equation of motion
of the scalar fieldX at pointn (there areN points around the
circle) reads

Ẋn = [X,X]K,n − Xn + Fn, (1)

where the linear term−Xn corresponds to the damping,Fn

is spatially dependent forcing and the term in the brackets
models the advection. It is short hand notation of the sum

[X,Y ]K,n =

J∑
j=−J

´

J∑
i=−J

(́−Xn−2K−iYn−K−j

+Xn−K+j−iYn+K+j )/K
2, (2)

where the numberK determines the extension of the influ-
ence, andJ = K/2 if K is even andJ = (K − 1)/2 if K

is odd. The sign prime at the sum means that, in the case
when K is even, the first and last terms are divided by 2
and whenK is odd one has ordinary sum. The most com-
plex version (model III) has small-scale activity added to the
large-scale one which is given by the model II. The dynam-
ical variable of the model III isZn, and it evolves according
to

Żn = [X,X]K,n + b2
[Y,Y ]1,n + c[Y,X]1,n − Xn

−bYn + Fn, (3)

whereb andc are parameters and the large- and small-scale
variables are given by

Xn =

I∑
i=−I

(́α − β|i|)Zn+i

Yn = Zn − Xn. (4)

The integerI and parametersα andβ in the last equation
are chosen so as the large-scale variableXn is smoothed ver-
sion ofZn (the sum acts as a low-pass filter), whileYn rep-
resents the fast processes. The brackets and the sign prime in
the sum have the same meaning as for the model II. Lorenz
suggested following constraint for the parameters

α = (3I2
+ 3)/(2I3

+ 4I ),

β = (2I2
+ 1)/(I4

+ 2I2). (5)

To achieve a model that has desired properties (chaotical
behavior, large and small-scale dynamics, traveling wave so-
lution), Lorenz took the following parameter values:b = 10,
c = 2.5. Within numerical experiments the number of grid-
points is standardly chosen to beN = 960 and alsoK = 32
and I = 12. For integration of the equations of motion, a
Runge-Kutta of fourth order is used with time step 0.001.
In original formulation the external forcing was taken con-
stantF = 15 which induced chaotic behavior of the solution
of the models.

While trying to estimate the performance of a model in ex-
plaining some physical reality, one should bear in mind that
the reality is much more complex than any of its models.
From this observation one can conclude that the reality has
more degrees of freedom than the model, or in mathematical
description the reality has more equations and variables. In
majority of the studies, scientists generally assume that the
models have the same dimensionality as the truth and that
they differ only in the values of the parameters in the equa-
tions. We abandon that simplification and consider that the
reality has to be more complex than the model. In this toy
example as a truth, we take model III from the Lorenz hierar-
chy and use model II for explanation of the reality. To have a
more real setting, we assume spatially dependent forcingFn.
In order to have a smoothly varying forcing, we took per-
turbation of the constantf0 = 15 that has randomly chosen
Fourier components up to the order 10, while the higher were
taken to be zero. More precisely the forcing is given by the
sum

Fn = f0

[
1+

10∑
m=1

f c
m cos

(
2πmn

N

)
+ f s

m sin

(
2πmn

N

)]
, (6)

where the spectral componentsf c
m andf s

m have random val-
ues from the interval[−0.5,0.5]. Also we assume that the

Nonlin. Processes Geophys., 19, 569–575, 2012 www.nonlin-processes-geophys.net/19/569/2012/



L. Basnarkov and L. Kocarev: Forecast improvement in Lorenz 96 system 571

models have different values of the forcing from the truth
and between themselves as well. That can be represented if
to the forcing of the truth is added another sum with random
coefficients for each model. This assumption should mimic
different parameterisations of the unresolved physical pro-
cesses obtained by different scientific groups. So, there are
three different models describing one truth. Another impor-
tant issue is the fact that all atmospheric models have finite
resolution, and this can be modeled conveniently by taking
that the models have less gridpoints than the truth –M in
total.

We run simultaneously the truth and the models and esti-
mate the quality of the models by comparison of the output
of the models with that of the truth which is considered as
obtained by “measurements”. For short-term prediction pur-
poses, one can take the values from the truthZn as initial
conditions for the models, with small noise added to incor-
porate the measurement error. One can verify that in this toy
example the models are good for short-term prediction by vi-
sual comparison of the solutions of the models and the truth
(see Fig.1).

For chaotical dynamical systems, an important property
related to the predictability is the divergence between the
phase points originating from two nearby initial conditions. It
is well established that the trajectories of nonlinear dynam-
ical systems starting from very close initial conditions typ-
ically separate exponentially fast. But that happens if both
trajectories are obtained from the same dynamical system.
However, in reality the truth and the system belong to differ-
ent classes of functions (Smith, 1997) and the divergence be-
tween them must not be exponential in the beginning. Com-
parison of the solutions of a model and the truth (and their
mismatch) is the proper measure of the predictability power
of the model. In Fig.2 are shown root-mean-square differ-
ence between the truth and three different models of it –
model with the same complexity M3, and two models of
class II with different number of gridpoints. As can be seen,
only the difference is exponentially increasing only when the
model is the same class of function as the truth. In the lower
panel of the same figure are shown the same differences but
in linear plot, where it is clear that the growth of the error is
linear (Orrell et al., 2001).

This result can be easily explained by comparison of the
tendencies of the truth and the model. In this toy case, as
well as in the reality, the state of the truth and its tendency
can be represented (projected) in the space of the model.
The tendencies are velocity vectors defined in the space of
the model. It is highly unlikely to expect that the (projected)
vector of the truth will be almost all the time equal to the
vector of any model – there is at least some small angle be-
tween them and small intensity difference – there is always
tendency error. This means that the states starting even from
the same initial condition will evolve along those vectors, and
for short time one can assume that the tendency vectors are
constant. With this reasoning the divergence of the states of
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different parameterisations of the unresolved physical pro-165

cesses obtained by different scientific groups. So, there are
three different models describing one truth. Another impor-
tant issue is the fact that all atmospheric models have finite
resolution, and this can be modeled conveniently by taking
that the models have less gridpoints than the truth -M in170

total.
We run simultaneously the truth and the models and esti-

mate the quality of the models by comparison of the output
of the models with that of the truth which is considered as
obtained by ”measurements”. For short term prediction pur-175

poses one can take the values from the truthZn as initial
conditions for the models, with small noise added to incor-
porate the measurement error. One can verify that in this toy
example the models are good for short time prediction by vi-
sual comparison of the solutions of the models and the truth180

[see Figure 1].
For chaotical dynamical systems an important property re-

lated to the predictability is the divergence between the phase
points originating from two nearby initial conditions. It is
well established that the trajectories of nonlinear dynamical185

systems starting from very close initial conditions typically
separate exponentially fast. But that happens if both trajecto-
ries are obtained from the same dynamical system. However,
in reality the truth and the system belong to different classes
of functions (Smith, 1997) and the divergence between them190

must not be exponential in the beginning. Comparison of the
solutions of a model and the truth (and their mismatch) is
the proper measure of the predictability power of the model.
In figure 2 are shown root mean square difference between
the truth and three different models of it - model with the195

same complexity M3, and two models of class II with dif-
ferent number of gridpoints. As can be seen only the differ-
ence is exponentially increasing only when the model is the
same class of function as the truth. In the lower panel of the
same figure are shown the same differences but in linear plot,200

where is clear that the growth of the error is linear (Orrell et
al., 2001).

This result can be easily explained by comparison of the
tendencies of the truth and the model. In this toy case, as well
as in the reality the state of the truth and its tendency can be205

represented (projected) in the space of the model. The ten-
dencies are velocity vectors defined in the space of the model.
It is highly unlikely to expect that the (projected) vector of
the truth will be almost all the time equal to the vector of any
model - there is at least some small angle between them and210

small intensity difference - there is always tendency error.
This means that the states starting even from the same initial
condition will evolve along those vectors, and for short time
one can assume that the tendency vectors are constant. With
this reasoning the divergence of the states of the truth and215

the model can be represented with separation of two particles
moving along two intersecting lines with constant velocities
and starting from the intersection point. Then one can easily
show that the distance between those points will be linearly
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Fig. 1. Solution profiles of the truth - Lorenz 96 model III (in black)
and its simpler representation - Lorenz 96 model II (in red). The
upper panel shows the solutions at moment0.2 after initiation at
close initial solution, while at the bottom one the moment when the
solutions are taken ist = 1.

growing function of time. Linear growth is obtained as well220

when the vectors are parallel but have different intensities,
which is also more reasonable to assume than the case of
equal intensities.

3 Weighted averaging

The existence of tendency error suggests that possibly a lin-225

ear combination of the tendencies of the models can give a
tendency closer to the one of the truth. This is the idea be-
hind the improvement of models. For every gridpoint of the
models the improved model is a model with a tendency that
is weighted combination of the tendencies of the individual230

models. More formally, if the tendency at gridpointn of the

Fig. 1.Solution profiles of the truth – Lorenz 96 model III (in black)
and its simpler representation – Lorenz 96 model II (in red). The
upper panel shows the solutions at moment 0.2 after initiation at
close initial solution, while at the bottom one the moment when the
solutions are taken ist = 1.

the truth and the model can be represented with separation of
two particles moving along two intersecting lines with con-
stant velocities and starting from the intersection point. Then
one can easily show that the distance between those points
will be linearly growing function of time. Linear growth is
obtained as well when the vectors are parallel but have dif-
ferent intensities, which is also more reasonable to assume
than the case of equal intensities.

3 Weighted averaging

The existence of tendency error suggests that possibly a lin-
ear combination of the tendencies of the models can give a
tendency closer to the one of the truth. This is the idea be-
hind the improvement of models. For every grid point of the
models, the improved model is a model with a tendency that
is weighted combination of the tendencies of the individual
models. More formally, if the tendency at grid pointn of the
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Fig. 2. Growth of the error between the model and the truth. In the
upper figure the ordinate axis has logarithmic scale and verifies the
exponential divergence between the trajectories when the model is
perfect (black curve). From the lower figure, it is clear that the error
grows linearly – the improved model’s curve is the lowest one.

modelµ is

Ẋµ
n = T µ

n = [Xµ,Xµ
]K,n − Xµ

n + Fµ
n , (7)

then the improved model at grid pointn has tendency

Ẋs
n = T s

n =

∑
µ

wµ
n T µ

n . (8)

Then to obtain an improved model (assuming that the
models are made as good as possible), the designer is left
to find optimal values of the weightswµ

n . Because of non-
linear nature of the systems, the tendencies of the truth and
the models are not strongly correlated, and one approach for
determination of optimal weights is the statistical one. As-
suming that the main source of limitation of the prediction is
the error in determination of tendency of the truth, one should
use the tendency error as a measure of quality of a improved
model. The average tendency error is given by

D = 〈

M−1∑
n=0

|T t
n − T s

n |
2
〉 =

M−1∑
n=0

〈

∣∣∣∣∣T t
n −

∑
µ

wµ
n T µ

n

∣∣∣∣∣
2

〉, (9)

where the tendency of the truthT t
n is given by the RHS

of Eq. (3) and angle brackets denote time average. Optimal
weights (according to the training set of data) are obtained by
differentiating the last expression with respect to the weights

∂D

∂w
µ
n

=
∂〈
∣∣T t

n −
∑

ν wν
nT ν

n

∣∣2〉
∂w

µ
n

= 2〈T µ
n

(
T t

n −

∑
ν

wν
nT ν

n

)
〉 = 0. (10)

To simplify the notations, one could introduce the covari-
ances between the tendencies

Cµ,ν
n = 〈T ν

n T µ
n 〉,

Cµ,t
n = 〈T t

nT µ
n 〉. (11)

Then the equations for optimal weights at every grid point
n become linear:∑
ν

Cµ,ν
n wν

n − Cµ,t
n = 0, (12)

where the factor 2 was removed with cancelation. The system
of Eq. (12) can be written more succinctly by using matrix of
covariances between the modelsCn, vector of covariances
with the truthcn and vector of weightswn at every grid point
n:

Cnwn = cn. (13)

The linear regression technique suggests adding regular-
ization term to avoid over-fitting of the parameters – weights
in our case (Bishop, 2006). Then instead of minimizing only
the average tendency error (Eq.9), the function to be mini-
mized has the form

D + λ
∑
n,ν

(wν
n)2, (14)

whereλ is the regularization coefficient. The minimization
is obtained again by taking partial derivatives with respect
to the weights. Then the system of equations for the weights
(Eq.12) will have a slightly modified form:∑
ν

(
Cµ,ν

n − λ
)
wν

n − Cµ,t
n = 0. (15)

Using matrix notation, one concludes that for every grid
pointn the following matrix equation should be solved:

(Cn − λI)wn = cn, (16)

which has the solution

wn = (Cn − λI)−1cn. (17)
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4 Numerical experiments

To perform numerical experiments on a PC, we have consid-
ered as truth the Lorenz model III withN = 960 gridpoints.
As said above the forcing term was randomly perturbed to
account for spatial inhomogeneity of the atmospheric forc-
ing (see Eq.6). Because any model of the atmosphere is
its coarse representation, we have takenM = 60 gridpoints
for the models. Individual models of the truth differ in forc-
ing terms, which were obtained with random perturbation
of those of the truth at the corresponding points. This dif-
ference should represent the differences between the models
designed at different meteorological centers. For comparison
of the models and the truth, it was considered that the mea-
surements are performed only at the gridpoints of the models.
In calculations of the covariances, we have assumed that the
tendency of the truth is known. In reality the tendency of the
atmosphere can be estimated with interpolation and the esti-
mation will be different from the true value. To incorporate
this fact, we have added noise to the tendency of the truth.
For short-term forecasting purposes, the models should be
initiated from the state of the truth, and again with some per-
turbation that models the observation noise.

First verification of the models can be done with visual
comparison of the solution profiles at some moment. In Fig.1
are shown the fields of the truth and one model at the mo-
ment t = 0.2, which corresponds approximately to one day
according to Lorenz (we remind the reader that the truth and
the model were started with close initial conditions). As can
be seen for short times, the model’s profile follows the pat-
tern of the truth. Later, the states of the solutions are much
more different.

The distance between the solutions of the models and the
truth is a measure of the predictability of the state of the re-
ality. Starting with the same initial condition, the mismatch,
or prediction error, between the modelµ and the truth at mo-
mentt is

eµ(t) =

√√√√M−1∑
m=0

|Zm(t) − X
µ
m(t)|2. (18)

In the bottom panel of Fig.2 are shown the prediction
errors, for the individual models, their average1, and of the
improved model. It is clear that the improved model outper-
forms all of them.

Within meteorological scientific community, a measure
for estimation of the predictability range of a model is the
anomaly correlation – AC (Allgaier et al., 2012). AC for two
time series is simply defined as a correlation between the two
variables at the same moment. It measures how much, on av-
erage, the deviation from their respective means at the same

1The average field of the individual models has values that
are simple average of the fields of the individual modelsXav

m =

(
∑

µ X
µ
m)/3.

Fig. 3. Anomaly correlation between the truth and the models. Top
curve (in blue) is for model that has same complexity as the truth –
model III. The middle curve (in green) corresponds to the improved
model, and lower curves (almost indistinguishable) are for the indi-
vidual models and average output of them.

moment is at same direction and with similar magnitude. The
AC between the truth and any modelµ is given by

ACµ
=

∑M−1
m=0 〈(Zm − 〈Zm〉)(X

µ
m − 〈X

µ
m〉)〉√∑M−1

m=0 (Zm − 〈Zm〉)2
√∑M−1

m=0 (X
µ
m − 〈X

µ
m〉)2

. (19)

The angular brackets in the last equation again denote time
averaging – in this case averaging is performed in the exam-
ination period. The predictability range extends to the mo-
ment when AC falls below value 0.6. In Fig.3 we show the
AC for the individual models, their average (calculated in
the same way as for the prediction error) and the improved
model. By using the threshold AC= 0.6 as a criterion for
the predictability, it is obtained that the improved model ex-
tends the predictability window for 17 %. In the same figure
is shown also the AC between the truth and a model that is
the same as truth, started with close initial condition. That
curve has typical behavior because it is decreasing. We think
that the other AC curves first increase and then decrease due
to the structural difference between the truth and the models.

We have also tried to estimate whether the improved model
will give “climatology” closer to that of the truth, as clima-
tology can be considered time averages of the fields at cer-
tain gridpoints〈Zn〉 and〈X

µ
n 〉. After calculating average mis-

match(〈Zn〉−〈X
µ
n 〉)2 for whole space, we found that it is not

smaller for the improved model than the individual models.
In that case, the average output of the modelsXav

n has best
performance. This can be understood because the improved
model “is trained” for short-term forecasts – it is based on
optimization of the tendency, which is a short-term property.
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5 Conclusions

In this work we have shown a proof-of-concept that a com-
bination of different models of one-dimensional scalar atmo-
spheric quantity can be better short-term forecaster than any
of them. The idea was tested on the Lorenz 96 toy model be-
cause it is simple enough, but also nontrivial and shares some
basic properties with the real atmosphere. The atmosphere
has (and always will) higher dimensionality than any model
of it, and so in this example we have taken that the mod-
els have less degrees of freedom than the truth. That causes
the tendencies of the models and the truth to become differ-
ent and possibly the largest factor that contributes to diver-
gence of the prediction and the realization of the truth. Then
a weighted combination of the tendencies of the individual
models with weights learned by using the past observations
can be used to construct an improved model for the short-
term prediction. As observations in the learning were used
the tendencies, which are not available for any reality, and
the atmosphere in particular. It should be estimated with ap-
propriate techniques. To incorporate that limitation in this toy
model, we have added a noise. However, the noise that will
inevitably emerge by using estimation of the tendency of the
atmosphere can be even larger, and thus limit (or even elimi-
nate) the improvement of short-term forecast in this way.

To our opinion there are two main lines of future research
related to this work. The first one is towards the search for
different techniques for combination of the individual mod-
els. One possible option is the coupling of the variables of
state, or subset of them. For more complex atmospheric mod-
els, exchange of fluxes is already in use – coupling of at-
mospheric and ocean models. However, coupling of different
atmospheric models, to our knowledge, is not applied yet.
The interaction structure between the models will influence
the strategies of searching for the best coupling parameters.
Besides different techniques from machine learning, expert
knowledge is welcomed also. The weights should not be con-
stant in time, but time (e.g., seasonally) dependent instead.
Or they can be adjusted and improved all the time because
the measurement data are accumulating.

The second direction for further research is attempt to ap-
ply these results in more real atmospheric models, or even
for those that are used for numerical weather prediction. The
main obstacle can be estimation of the tendency of the at-
mosphere. We think this kind of combination of state-of-
the-art models is worth testing because of importance of the
weather prediction. In the worst case the weights can have
unit values for the best member of the ensemble, and thus
there is at least one combination of weights that is as good
as the best individual model. We expect that mixing the ten-
dencies can lead to improvement of the numerical weather
prediction. Another issue is improvement of the projections
of the future climate. However, as our results have shown,
maybe other techniques for optimization of the connection

parameters should be applied to construct an interactive en-
semble that will outperform the individual members.
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