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Abstract. Protein molecules play essential roles in the living organisms. The 

knowledge about their functions is very important in order to design new drugs 

that could be used to control various processes in the organisms. The determina-

tion of the protein functions could be performed by detecting the binding sites 

where interactions between proteins occur. In this paper we focus on predicting 

the protein binding sites. First, several characteristics of the amino acid residues 

are extracted. Then, prediction methods are induced. In this research paper we 

consider several classification methods for inducing models. In order to en-

hance the predictions, we use ensembles, which combine several classification 

models. The results show that using ensembles, the prediction power is in-

creased. 

Keywords: Protein function, protein interaction, protein binding site, BIND da-

tabase, ensembles. 

1 Introduction 

Protein molecules contain one or several protein chains that are constructed by amino 

acid residues, which fold in particular conformation in 3D space. Further, the amino 

acids residues are constructed by several atoms. The knowledge about the functions of 

the protein molecules is very important because this knowledge could be used for 

designing new drugs in order to control various processes in the living organisms. 

This importance triggers many research groups to investigate various methods for 

protein annotation. There are experimental methods for discovering the protein func-

tions. However, these methods are very expensive and time-consuming. On the other 

side, with the high-throughput technologies numerous protein structures are deter-

mined every day, thus many protein molecules with determined structures are not 

annotated yet. Therefore, there is an obvious need for fast computational methods for 

protein function prediction. 

In the current literature, there are various methods for protein annotation. Different 

methods consider different information regarding the interacting protein structures. 

First group of methods [1] examines the sequence and/or structure homology of the 

protein molecules. Second group of methods [2] identifies the conserved parts of the 

protein sequences and/or structures, and determines the protein functions based on the 
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features of the conserved regions. There is a third group of methods [3] that annotate 

protein structures based on the motifs (signatures) found in their sequences. As a 

fourth group of methods we identify the methods that annotate the protein structures 

based on the characteristics of the protein binding sites. The protein binding sites are 

the regions of the protein structures where interactions with other protein structures 

occur. In [4], the authors provide a wide survey of available tools and web servers for 

protein binding sites prediction. As a fifth group of methods [5] we identify the me-

thods that do not consider the protein sequences and structures, but consider informa-

tion regarding the interacting pairs of protein structures presented by the protein-

protein interaction networks. In this research we focus on the fourth group of me-

thods, and we aim to provide models that successfully detect the protein binding sites. 

Afterward, the predictions about the binding sites obtained by our models could be 

used for protein annotation. 

There are numerous methods for protein binding sites prediction. In order to identi-

fy the amino acid residues that are part of a given binding site, different characteris-

tics of the residues could be considered. The Accessible Surface Area (ASA) [6], 

depth index (DPX) [7], protrusion index (CX) [8] and hydrophobicity [9] are the ami-

no acid residues’ characteristics that are used the most. None of the characteristics 

does not provide sufficient information in order to make perfect prediction of the 

residues that take part of binding sites. Therefore, several characteristics are consi-

dered in the induction of the prediction models. In this research we consider these 

four features, i.e. ASA, DPX, CX and hydrophobicity. 

After extraction of the characteristics of the amino acid residues, then prediction 

models are induced. In the literature various classification methods are used for this 

purpose. In this research paper we consider several classifiers for inducing models for 

protein binding sites prediction. 

In order to increase the prediction power of the models, ensembles could be used. 

An ensemble model combines several models. There are several techniques for induc-

ing ensemble models, including bagging and boosting. In the induction of the models, 

the samples are randomly chosen with replacement. At the beginning each sample has 

equal probability to be chosen. In bagging, in the induction of the later models, the 

probability that a given sample would be randomly chosen in the training dataset for 

the given model remains uniform. On the other side, in boosting we increase the 

probability for choosing the samples that are misclassified by the previous model. In 

this way, the samples that are harder for learning are more frequently presented to the 

classifiers. Namely, this way we force the learning of the samples that are located in 

regions in the N-dimensional space where more misclassification errors occur. In this 

research we induce both bagging and boosting ensemble models using various classi-

fication methods. 

The rest of this research paper is organized in this way. In section 2, first we 

present how the amino acid residues’ characteristics are extracted. Then, we explain 

the model induction using bagging and boosting techniques. Section 3 provides re-

sults of the evaluation of the prediction models. In section 4 we conclude the paper 

and identify directions for additional improvements. 
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2 Protein Binding Sites Prediction Models 

In this section we present our approach for predicting the protein binding sites. We 

classify each amino acid residue in one of the two classes (part of binding site or not). 

First, we extract several characteristics for each amino acid residue of the inspected 

protein chain. Then, the prediction models are induced using various classification 

methods. In this paper we induce single models, and also we induce ensembles using 

bagging and boosting techniques. 

2.1 Extraction of the Amino Acid Residues Characteristics 

The most widely used characteristics of the amino acid residues are Accessible Sur-

face Area (ASA) [6], depth index (DPX) [7], protrusion index (CX) [8] and hydro-

phobicity [9]. Since none of the characteristics does not provide sufficient information 

whether a given residue is a part of a binding site or not, therefore several characteris-

tics are used in the model induction. In this research we consider the four features 

mentioned below. Since an amino acid residue contains several atoms, thus first we 

calculate the ASA, DPX and CX for each atom. Then, the corresponding characteris-

tic for the amino acids residue is calculated using some aggregation of the values of 

the characteristic obtained for each atom. 

The Accessible Surface Area (ASA) [6] is usually expressed in Å
2
 and is calculated 

as a surface area of the atom that could be reached by a rolling sphere. In this research 

we use a rolling sphere with radius of 1.4 Å, which is the most common value. The 

rolling sphere is rolled around the protein structure by making small slices. Small arcs 

are formed as intersections of the rolling sphere and the slices. The value of the ASA 

in the i-th slice is calculated as in [6] 

  (1) 

  (2) 

where R is the radius of the inspected atom, Zi is the distance between the centre of 

the rolling sphere and the i-th section, Li is the length of the corresponding slice and 

ΔZ denotes the distance between adjacent slices. In this way we calculate the ASA in 

each slice. Then, the ASA of the inspected atom is calculated as sum of the ASA val-

ues obtained in all slices. Since an amino acid residue contains several atoms, there-

fore we sum the ASA values of all atoms that constitute the residue. 

In the protein structure, numerous atoms are hidden in the interior of the protein, 

and they could not be reached by the rolling sphere. As a consequence of this, they 

could not be a part of a binding site. Thus, we filter only the amino acid residues that 

are located at the protein surface. In this filtering we consider that a given amino acid 

residue is located at the protein surface if the ratio of its ASA and the total surface 

area of the residue is not lower than 5%, as suggested in [10]. 
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The depth index (DPX) [7] of an atom denotes the distance from the centre of the 

atom to the nearest atom (including the inspected atom) that could be reached by the 

rolling sphere. The depth index of the atoms that could be reached by the rolling 

sphere is zero, and greater than zero for the remaining atoms. In this way the depth 

index gives evidence how far a given atom is from the protein surface. After extrac-

tion of DPXs of all atoms, the DPX of an amino acid residue is calculated as an aver-

age of the DPXs of its atoms. 

The protrusion index (CX) is calculated as in [8]. First, we calculate the number of 

non-hydrogen atoms that are located in the neighboring around the examined atom. In 

this research we inspect the atoms that are within a sphere with radius of 10 Å, as 

suggested in [8]. Then, we calculate the volume occupied by the protein structure by 

multiplying this number of non-hydrogen atoms and the average volume of an atom 

(20.1 Å
3
 [8]). Finally, the protrusion index CX is calculated as a ratio of the remain-

ing volume and the occupied volume, where the remaining volume is a difference 

between the total volume of the inspected sphere and the volume of the inspected 

sphere that is occupied by the protein structure. In this way, CX gives evidence about 

the density around given atom. The atoms located in regions with higher density have 

lower CX, while the atoms located in regions with lower density have higher CX. The 

CX of an amino acid residue is calculated as a mean of the CXs of the atoms that 

constitute the inspected residue. 

The hydrophobicity characteristic [9] is the last characteristic that we use in this re-

search. Hydrophobicity indicates the hydrophobic properties of the amino acid and is 

related with the hydrophobic effect. Namely, hydrophobic amino acids are typically 

found deeply in the protein interior, and hydrophilic amino acids are usually located 

towards the surface of the protein molecule. There are several scales for expressing 

the hydrophobic properties of the amino acids. We use the hydrophobicity scale pro-

posed by Kyte and Doolittle [9]. 

2.2 Induction of Ensemble Models for Protein Binding Sites Prediction 

After extraction of the characteristics of the amino acids residues, next we induce 

prediction models for identifying the amino acid residues that are part of binding 

sites. We use the following classification methods for building prediction models: 

C4.5 Tree [11], Alternating Decision Tree (ADTree) [12], Naïve Bayes [13], Naïve 

Bayes Tree [14] and Bayesian Network [15]. 

In order to increase the prediction power of the models, we also induce ensembles 

that combine several models. In this way we aim to induce ensemble models that are 

capable to overcome the problems of the individual models. We consider two tech-

niques for building ensembles, i.e. bagging [16] and boosting [17]. Both techniques 

use randomization to choose samples that would be used for building models. Let we 

have a training dataset D with |D| samples, and let we want to induce m models using 

some classification method. We generate m training datasets Di, i=1,…m, with size 

|Di|≤|D| by sampling the dataset with replacement and following the same distribution 

of the class attribute as in the entire training dataset. Since we resample the samples 

with replacement, some samples could be considered several times in same training 
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dataset. Using the training datasets Di, i=1, 2,…m, we induce m separate models. 

During testing, the test samples are presented to each of the m models, and the final 

decision regarding the class attribute is made using voting. In this research the models 

have equal weights in the voting. In bagging, the samples have equal probabilities to 

be randomly chosen during the entire process. On the other side, using boosting the 

samples that are harder for learning have higher probability to be randomly chosen. 

At the beginning the samples in the training dataset have equal probabilities to be 

chosen. We randomly chose samples and form the training dataset D1. Then, the mod-

el M1 is induced using the dataset D1, and the samples from D1 are presented to the 

model M1 for prediction. For each sample from D1 that is misclassified by the model 

M1 the probability for choosing is increased. On the other side, for each sample in D1 

that is correctly predicted by M1 the probability for choosing is decreased. Using the 

new probabilities, the dataset D2 is generated. Then, the models M2 is induced, and 

based on the predictions about the samples in D2, the new probabilities of the samples 

are calculated. This procedure is repeated until m models are induced, or while the 

weight threshold reaches a predefined threshold. In this way, if a given sample is 

misclassified by the previous models, it has higher chance to be chosen in the training 

of the next models. In this research paper, we use the implementations of the classifi-

cation methods and the methods for inducing ensembles provided in the Weka soft-

ware [18]. For the boosting we use Adaptive Boosting (AdaBoost) method [17]. For 

each method we use the default settings if it is not otherwise specified. 

3 Experimental Results 

For evaluation of the prediction models, we use the knowledge stored in the Biomole-

cular Interaction Network Database (BIND) [19], which contains information about 

the protein binding sites. The knowledge stored in this database is acquired in expe-

rimental manner, and therefore we consider this knowledge as a standard of truth. 

From the BIND database we filter the protein chains that do not have more than twen-

ty percents similarity in their sequences. For this filtering we use the criterion given in 

[20]. Then, using the same selection criterion [20] we generate the test set by select-

ing the protein chains with less than ten percents similarity in their sequences. All 

protein chains that belong to the first dataset, and do not belong to the second dataset 

are considered in the training dataset. 

Next, we filter the surface amino acid residues. After filtering the surface residues, 

we obtain a training dataset with 115579 samples, from which only 15696 are part of 

binding sites. The obtained test dataset contains 625939 amino acid residues from 

which majority belong to the non-binding sites’ class. In order to avoid inducing 

models that are biased towards the dominant class (the non-binding sites’ class), we 

balance the training dataset until uniform distribution is obtained. However, we do not 

perform balancing on the test dataset, so in the evaluation of the prediction models we 

have to use some evaluation measure that is appropriate for unbalanced datasets. After 

balancing the training dataset, next we normalize the amino acid residues’ characteris-

tics thus obtaining values in the interval [0;1]. 
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There are various measures that could be used for evaluation of models for predict-

ing a discrete class attribute. However, the classification accuracy is not appropriate 

measure for evaluation of a model using unbalanced test dataset. Since the test set in 

our case is not balanced, in this research paper we use the Area Under the ROC Curve 

(AUC-ROC) measure to estimate the prediction power of the models. AUC-ROC is 

calculated as TPR*TNR+TPR*(1-TNR)/2+TNR*(1-TPR)/2= (TPR+TNR)/2, where 

TPR and TNR denotes the true positive and true negative rates respectively. The true 

positive rate is calculated as TP/(TP+FN), while the true negative rate is determined 

by TN/(TN+FP), where TP and TN correspond to the number of true positives and 

true negatives, while FP and FN denote the number of false positives and false nega-

tives correspondingly. In this way, the AUC-ROC measure achieves values in the 

interval [0,1]. Value 1 means perfect prediction of the class attribute, while value 0 

denotes that the model makes inverse predictions. 

First, we evaluate the prediction power of the models obtained using different clas-

sification methods. In this analysis we induced single models. The results for AUC-

ROC obtained from this analysis are provided in Table 1. The results show that the 

C4.5 tree obtains highest AUC-ROC, while the Alternating Decision Tree based mod-

el has lowest prediction power. 

Table 1. The AUC-ROC obtained by the single models using various classification methods. 

Classification method AUC-ROC 

C4.5 tree 0,5866 

Alternating Decision Tree 0,5455 

Naïve Bayes 0,5668 

Naïve Bayes Tree 0,5857 

Bayesian Network 0,5762 

 

Next, we induce ensemble models using bagging. In this analysis we examine the 

number of iterations m, which corresponds to the number of models used in the en-

sembles. Also, we induce several models using datasets Di, i=1,2,…m, with different 

sizes |D|*k/100, k=5, 10, 20, 50 and 100, where |D| denotes the number of samples in 

the entire training dataset. The results of this analysis are presented in Table 2. Simi-

larly, we induce ensemble models using boosting. We use different values for the 

maximal allowed number of iterations (m=10, 20 and 50). The results of the ensemble 

models using boosting are provided in Table 3. 

The results given in Table 2 and Table 3 show that the ensemble model using C4.5 

tree obtained by bagging using m=20 and k=50 has highest AUC-ROC among the 

models that are based on the C4.5 tree classifier. Using bagging, the prediction power 

of the C4.5 tree based models is increased from 0,5866 to 0,5878. In this analysis the 

boosting models do not outperformed the single C4.5 tree model. Regarding Alternat-

ing Decision Tree (ADTree), using single model we obtained AUC-ROC of 0,5455. 

Using ensembles we increased AUC-ROC up to 0,5804 with bagging and up to 

0,5839 with boosting. Similarly, using Naïve Bayes, the AUC-ROC is increased from 

0,5668 up to 0,5740. Also, with the other classification methods using ensembles we 
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improved the prediction power of the models. Generally, boosting showed as better 

technique for building ensembles, except for C4.5 tree classifier. Regarding boosted 

C4.5, it is interesting to mention that for m=10 (using 10 models) higher AUC-ROC is 

obtained than for m=20 and 50. With boosting, in the later iterations the misclassified 

samples are more frequently chosen for training, so therefore the models become 

over-fitted regarding these samples. 

Regarding the values of k, from Table 2 we can see that more accurate models are 

induced when the models are induced using datasets with smaller size than the entire 

training set (for k<100). In this way using lower k, the models are not over-fitted. 

However, using too small sets (for k=5), the prediction power is lower. In order to get 

better picture of the influence of the parameter k, on Figure 1 and Figure 2 we present 

the results from Table 2 graphically. On the x-axis the examined values of k are given. 

From these figures we can see that generally the optimal values for k are 10, 20 and 

50. From the figures it is also evident that using k=100 (using datasets Di with same 

size as the entire training dataset), the prediction is getting worse when C4.5 and 

ADTree are used since the models are over-fitted. However, this is not a case using 

the Bayesian methods (Naïve Bayes, Naïve Bayes Tree and Bayesian Network). 

Table 2. The AUC-ROC obtained by the ensemble models using bagging technique and 

various classification methods. 

m k 
C4.5 

 Tree 

Alternating 

Decision Tree 

Naïve  

Bayes 

Naïve  

Bayes Tree 

Bayesian 

Network 

10 5 0,5860 0,5781 0,5656 0,5714 0,5717 

10 10 0,5855 0,5804 0,5671 0,5717 0,5690 

10 20 0,5865 0,5703 0,5675 0,5726 0,5693 

10 50 0,5842 0,5533 0,5668 0,5718 0,5718 

10 100 0,5708 0,5455 0,5665 0,5777 0,5761 

20 5 0,5865 0,5700 0,5667 0,5730 0,5725 

20 10 0,5873 0,5691 0,5673 0,5714 0,5702 

20 20 0,5876 0,5748 0,5670 0,5730 0,5693 

20 50 0,5878 0,5613 0,5668 0,5708 0,5708 

20 100 0,5731 0,5455 0,5668 0,5781 0,5750 

 

Table 3. The AUC-ROC obtained by the ensemble models using boosting technique and 

various classification methods. 

m 
C4.5  

Tree 

Alternating 

Decision Tree 

Naïve  

Bayes 

Naïve  

Bayes Tree 

Bayesian 

Network 

10 0,5825 0,5837 0,5740 0,5868 0,5859 

20 0,5722 0,5839 0,5740 0,5868 0,5859 

50 0,5722 0,5839 0,5740 0,5868 0,5859 
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Fig. 1. The AUC-ROC obtained by the ensemble models for m=10 using bagging technique 

and various classification methods. On the x-axis the inspected values of k are given. 

 

 

Fig. 2. The AUC-ROC obtained by the ensemble models for m=20 using bagging technique 

and various classification methods. On the x-axis the inspected values of k are given. 
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4 Conclusion and Future Work 

In this paper we introduced an approach for inducing models for predicting the pro-

tein binding sites. The predictions of our models could be used to determine the func-

tions of the protein structures. First, we extracted several characteristics of the amino 

acid residues. Then, we induced models using various classification methods. In order 

to enhance the prediction power of the models, we induced ensemble models that 

combine several single models. For this purpose we used the bagging and boosting 

techniques for building ensembles. 

The results showed that we improved the predictions using ensembles of models. 

Generally boosting showed as better technique for building ensembles (except for 

C4.5 tree) since it forces learning of the samples that are harder for learning. We ex-

amined the influence of the parameter k that defines the size of the training datasets 

that are used for building the individual models in bagging. The results showed that 

for the C4.5 tree and the ADTree, k should not be too high. Regarding the values of 

the parameter m, which denotes the number of induced models that are combined in 

the ensemble, we can conclude that generally as m increases also the prediction power 

increases. However, in the same time also the training and testing times linearly in-

crease. 

Further, we plan to induce ensemble models for protein binding sites prediction us-

ing other classification methods. Also, we will explore whether the set of four amino 

acid residues’ characteristics that is used in this research is the most relevant one, or 

maybe other set of characteristics is more suitable for protein binding sites prediction. 
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