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Abstract. Means of air attack are pervasive in all modern armed conflict or ter-

rorist action. We present the results of a NATO-SPS project that aims to fuse data 

from a network of optical sensors and low-probability-of-intercept mini radars. 

The requirements of the image-based module aim to differentiate between birds 

and drones, then between different kind of drones: copters, fixed wings, and fi-

nally the presence or not of payload. In this paper, we outline the experimental 

results of the deep learning model for differentiating drones from birds. Based on 

the trade-off between speed and accuracy, the YOLO v4 was chosen. A dataset 

refine process for YOLO-based approaches is proposed. The experimental results 

verify that such an approach provide a reliable source for situational awareness 

in a data fusion platform. However, the analysis indicates the necessity of enrich-

ing the dataset with more images with complex backgrounds as well as different 

target sizes.  
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1 Introduction 

The human’s multisensory system has been extensively studied in order to provide 

more accurate and more efficient machine decisions. This process includes integration 

of multi-source data and is called data fusion. In processing perspective, data fusion 

represents an area which includes a combination of batch and stream processing fea-

tures. Namely, in data fusion systems, data is collected over time from continuous data 

streams and follows with continuous processing of a bunch of data. Thus, the system 

requires fast and lengthy performance. In situational awareness perspective, a data fu-

sion system achieves refined position, identifies estimates and complete and timely as-

sessments of situations, threats and their significance [1]. The final goal of using data 

fusion in multisensory environments is to obtain a lower detection error probability and 
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higher reliability by using data from multiple distributed sources [2]. The same goal 

applies also for the deep learning (DL) approaches, which utilize convolutional neural 

networks (CNNs) for object detection and recognition. CNNs tend to look for mean-

ingful features that can help to classify the images or, in the case of object detection, to 

draw the boundary boxes enclosing the target of interest [3].  

Data fusion systems are especially important for the domain of Means of Air Attack 

(MoAA). One of the most developing MoAA category are the Unmanned Aerial Vehi-

cles (UAVs) i.e., “drones”. Killer drones represent a real threat to people’s life and 

health. For example, just recently a drone of unknown origin crashed near Zagreb (Cro-

atia) by flying undetected on a number of states. Fortunately no-one was injured. In 

order to facilitate the neutralization of killer-drones and minimize the risk for people 

and assets, a NATO SPS Anti-Drones project1 has been focalized on the development 

of a new concept of an anti-drone system able to detect, recognize and track killer-

drones. The project scope is to progress the state of the art exploiting mini-radar tech-

nology and signal processing, data processing and fusion subsystem, for improving the 

performance and eliminating the environmental impact (e.g., ECM pollution) in an ur-

ban environment. The system infrastructure includes a network of LPI (Low-probabil-

ity-of-intercept) mini-radar with FMCW or noise-like waveform, and on-demand, fully 

digital, optical camera-integrated imaging capability, capable of working in all weather 

conditions, to be deployed and appropriately placed on the ground in the area of the 

asset to be protected. The optical part is essential to support correct classification and 

therefore identification of the threat and thus to eliminate false alarms. 

To the best of our knowledge, this is the first attempt that proved data fusion by 

integrating image data with radar ones for differentiating drones from birds. This paper 

covers the optical subsystem and automatic recognition, in particular the ability to dis-

tinguish drones from birds and is organized as follows. Section 2 gives an overview of 

the system design. Section 3 describe details for the dataset generation methodology of 

the proposed approach. Section 4 examines the experimental results. In Section 5, rel-

evant related work from the literature is presented. Finally, the paper is concluded in 

Section 6, with directions for future work.   

2 System design 

One of the main challenges of our system is establishing an efficient data fusion algo-

rithm. Data fusion takes action in different levels of our system. In a higher-level per-

spective, as depicted in Fig. 1, the system should fuse together radar and camera data. 

We follow a similar approach to Liu et al. [4]. However, instead of integrating camera 

and acoustic data, our solution will combine Support Vector Machine (SVM) radar data 

(direction of arrival, range, angular coordinates, elevation and radar cross section) with 

You Only Look Once (YOLO) camera-based images. In lower levels, the data fusion 

takes place only within the modules of the corresponding data source. As per the optical 
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part, the images provided by the camera are processed by DL methods to support the 

data fusion algorithm with additional confidence score for radar-detected targets.  

 

 

Fig. 1. Processing flow of drone detection 

During the phase of literature review for object recognition approaches, a number of 

different DL approaches were considered. Namely, state-of-the-art ML frameworks, 

including: YOLO, TensorFlow and PyTorch, were examined. YOLO framework was 

chosen based on the project objectives, high accuracy and ability to detect objects in 

real-time by processing 67 FPS [5]. Moreover, it’s power efficient compared to other 

DL detectors [6], open source, flexible network architecture, low hardware require-

ments i.e., minimum 4GB memory and is able to detect relatively small objects. The 

YOLO architecture model is mainly based on Darknet [7], which typically consists of 

19 convolutional layers and 5 pooling layers. 

3 Dataset Generation Methodology 

Although measurement campaigns to verify the quality of the mini-radar have provided 

some static and dynamic optical images of drones also equipped with synthetic pay-

loads, unfortunately, to date there is a lack of existing drones’ dataset [2], [8].  It’s even 

harder to have sufficient number of images of drones with payload. Furthermore, a very 

sensitive issue represents the quality of the images in terms of drone or bird size and 

positions, as well as the background characteristics. For this purpose, the researchers 

have considered different drone dataset generation techniques, e.g., the randomization 

method described in [9] or combining background-subtracted real images as described 

in [8]. Our focus was rather on building a methodology for more qualitative dataset. 

The number of classes to be recognized by the model should also be considered, 

because it reflects on the performance of the model. Thus, in line with radar-based 

recognition fusion, we plan to consider five classes on the optical side, including: drone, 

bird, fixed-wing, copter and drone with payload. Following the lack of images and the 
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purposes of the challenge, we have decided to firstly enrich the dataset for the first two 

classes (drone and bird), then to follow up with the next two classes (fixed-wing and 

copter) and finally detect and classify drones with payload.  

To ensure better recognition results, the following criteria were considered during 

dataset selection:  

● different types of drones: copters and fixed wing ones, as well as different models 

including: DJI Phantom, Inspire, Mavic, RTK 300, and Matrice, 

● multiple drones shown in different positions and distances,  

● different backgrounds and sizes of drones, and 

● a number of fixed wing drones, which are currently classified as drones. 

As per our dataset a number of open-source datasets were considered, including 

DroneNet [dronenet], Drone vs Bird [3], Skagen and Klim [skagen-klim] and other free 

web images. From DroneNet [dronenet] and Skagen and Klim [skagen-klim] datasets, 

2395 and 1709 images are used, respectively. The annotations on these datasets are 

already in YOLO format. Around 200 of images found on the web were manually an-

notated using LabelImg2, a graphical image annotation tool. The largest dataset that 

was used for our approach is Drone vs Bird [3] one.  

In summary, the dataset contains a total of 14 549 images, consisting of 12 370 im-

ages with drones only (including 3 261 with only fixed-wings), 1 857 only birds and 

322 images with annotated drones and birds. Regarding the size of the targets, they 

mainly fall between the sizes of 162 and 482, and over 962 (see Fig. 2).  

 

  

Fig. 2. Distribution of target sizes based on the annotations in the train and test data 

As previously mentioned, a well-defined process of building the dataset was itera-

tively performed by the team. Namely, in order to match the YOLO format, a number 

of pre-processing steps were iteratively performed on each dataset, as depicted in Fig. 

2. Each step is described in detail in the following subsections. 

 
2 https://github.com/tzutalin/labelImg, last access 19.03.2022  
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Image extraction and selection. If the dataset contained video, then the step of image 

extraction per frame was performed. For this purpose, Free Video to JPG Converter 

application3 was utilized. The tool supports customized extraction of images per frame 

and per second. The images were extracted frame-by-frame. The image filename was 

constructed in the following format “<video_filename> <frame_number>”. 

The image selection was done by human intervention manually i.e., by removing un-

important images, which were selected based on the following criteria: 

● images without drone or bird, or  

● the target being so small that it causes confusion to the prediction model, or  

● the body of the target object being mostly behind another visible object. 

The image selection step was also performed for image-based datasets.   

 

 

Fig. 3. The dataset refine process for using on YOLO-based models 

Annotation adaptation and normalization. As YOLO framework requires, for each 

image, a single annotation file, in the next step the annotation adaptation task took 

place. Specifically, for this task a simple desktop application was developed. The ap-

plication supports the following steps in order:  

1. Load the folder images. Browse for the folder containing images (extracted from 

videos in the previous step). 

2. Set annotated text file. Browse and open the annotation file containing the annotation 

list for every frame of the video. The general format and an example annotation of 

the Drone vs Bird dataset format consists like in Table 1.  

Table 1. Input annotation’s format. 

Format framenum num_objs_in_frame obj1_x obj1_y 

obj1_w obj1_h obj1_class 

Example 34 1 1 241 55 43 drone 

 
3 https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm, last access 

19.03.2022 
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The annotation adaptation task outputs a text file for each image with a filename the 

same as the picture with the format described in Table 2. For multiple objects present 

in a single frame multiple rows were appended to the text file. 

Table 2. YOLO annotation format. 

Format obj1_classnumber obj1_x obj1_y obj1_w obj1_h 

Example 0 1  241  55 43 

 

Since we are dealing with a huge number of files a validation function is needed to 

check for valid pairs of image files with corresponding annotation files. For this pur-

pose, the output folder files generated from the last step, consisting of a list of couples 

(photo and text files), are firstly loaded and then get checked for invalid couples. 

Furthermore, YOLO expects object annotations to be in the normalized format. For 

this purpose, a simple conversion tool was also developed to check and normalize the 

annotations.  

 

Image reduction. Since the images on successive frames are very similar and as such 

add little information to the model, we decided to reduce the dataset by removing every 

third image of each video file. This task was performed manually by using Windows 

Explorer feature to arrange files three per each row followed up by selecting the third 

column and removing files. 

 

Train and test images distribution. Finally, as per our solution the dataset should be 

organized into train and test folder, based on the specified 75-25 percentage ratio. A 

Power Shell (PS) script was utilized to support this feature. 

Fix object class, annotations and images. In different versions of our dataset the class 

of drone and bird was interchangeably set as 1 and 0. To ensure class consistency a PS 

script was executed on the dataset folders. 

Furthermore, a simple tool was developed to also fix some conversion inconsisten-

cies within annotation lines. In fact, double spaces and commas were replaced with 

single space. 

Since our dataset was placed on open repositories, such as Google Drive, a small 

number of images got damaged after the process of distributing them into train and test 

folder. For this reason, before each training process, all the images were scanned for 

defects with the open-source tool Bad Peggy4.  

The final step before a training session was the backup of files. Namely, both train 

and test folder were occasionally backed up. Sometimes, the backup of files was per-

formed before distribution of files into train and test folders. 

As per the experimental set up, the default configurations of YOLOv4 model, based 

on Darknet [7], were utilized. Some Darknet code was modified and compiled to 

 
4  https://github.com/coderslagoon/BadPeggy, last access 19.03.2022 
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support the correct output format of the Challenge. The Google Colab Pro5 platform 

was used for the training and validation of the model. It supports faster GPUs, more 

memory and longer runtimes as specified in the free version. With Colab one can import 

the image dataset, train the image classifier and evaluate the model.  

Following the iterative process of improving the dataset, our model was trained with 

its different versions. During the last training around 6000 iterations were made and the 

whole training process lasted about 8 hours. The training resulted with mAP of 68%. 

 

Fig. 4. mAP of the training performance of the dataset 

4 Experimental Results 

Experimental results are evaluated for drone detections and classification by discarding 

bird detections. In order to describe more correctly the prediction accuracy of our 

model, the Precision metrics are analyzed. Additionally, to better describe the detec-

tions of the proposed approach, the Recall metrics are utilized. 

In order to get a broader perception of the performance of the described approach, a 

number of test sequences were selected to include the following characteristics: many 

static objects, complex backgrounds, different target sizes, moving camera and near/far 

targets. The videos were chosen from the Drone vs. Bird Challenge dataset as they best 

address these constraints, and also provide ground truth annotations of drone objects. 

 
5  https://colab.research.google.com/, last access 20.03.2022 
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Table 3 lists the selected test sequences with corresponding characteristics, the number 

of present ground truth objects (#GT) as compared to the number of submitted detec-

tions (#Det), resulting recall (#Rec) and precision (#Prec). 

Table 3. Description of the test video sequence set with comparison of detection results in 

terms of number of submitted detections and resulting recall. 

Sequence Characteristics #GT #Det #Rec #Prec 

dji_matrice_210_sky 

moving cam; multi-rotor 

drone; clear sky view; short 

length; 

1318 1470 99.77 92.41 

dji_mavick_close_buildings 

moving cam; multi-rotor 

drone; non-sky view; long 

length; 

1501 1034 66.60 100.00 

dji_phantom_landing_cus-

tom_fixed_takeoff 

moving cam; multi-rotor 

drone; cloudy sky; short 

length; 

2613 2606 92.10 99.63 

parrot_disco_zoomin_zoo-

mout 

moving cam; fixed-wing 

drone; clear sky view; short 

length; 

665 252 50.89 81.43 

 

 The first test and third sequence (dji_matrice_210_sky and dji_phantom_land-

ing_custom_fixed_takeoff) are not very challenging for the proposed model, because 

they have a sky view and thus the retrieved results are near ideal. Based on the trained 

model, which contains a high number of images with clear and cloudy sky view, the 

high score of recall and precision has turned out as expected. Namely, a static street 

light has generated a number of false alarms in the first sequence, which has reduced 

the precision to 92.41%. Unlike this, the performance of the third sequence has resulted 

with better FPs and thus 99.63% precision, but with greater FNs i.e., recall of 92.10%.  

The view of the second sequence (dji_mavick_close_buildings) represents a drone 

moving on land background. The duration of the sequence is lengthy and the drone 

appears in every frame, which has resulted with more FNs. Thus, the recall has dropped 

to 66.60%, which means 1/3 of GTs are missed. However, the precision has remained 

perfect, because there were no FPs. 

A fixed-wing drone is demonstrated in the fourth sequence (par-

rot_disco_zoomin_zoomout).  Following the clear sky, the resulting precision is per-

fect. Similar to the second sequence, the recall is again decreased by missing a half of 

the GTs. 

5 Related Work 

For getting a better insight about anti-drone YOLO-based approaches, a number of 

state-of-the-art ones were analyzed. Namely, the following approaches were analyzed:  
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• Aker et al. [8] describe an end-to-end object detection method to predict the location 

of the drone in the video frames. The scarce data problem for training the network 

has been solved by an algorithm for creating an extensive artificial dataset.  

• In [10], authors describe an autonomous UAV detection and tracking platform. 

Namely, a Tiny YOLO detector is integrated into a hunter drone for detecting and 

chasing another drone. 

• Wu et al. [2] propose a video-based detection of drones. To support their approach, 

they have developed a dataset consisting of 49 videos. 

• A combined multi-frame DL detection technique, where the frame coming from the 

zoomed camera on the turret is overlaid on the wide-angle static camera’s frame, is 

described in [11]. 

• Lei and Huang [6] have proposed a solution for detecting fixed-wing intruders with 

YOLOv3.  

Each implementation has its own pros and cons. In general, none of the described 

approaches consider fusing optical data with radar ones. Moreover, even though we 

currently recognize birds and drones, our dataset next versions will further recognize 

drones with payload, which is not the case in the approaches. In particular, the solution 

presented in [8], detects the only drone in the scene and problems occur when the net-

work mixes up a bird with the drone. The rest of the approaches are limited to a single 

drone class, except [11] who include other classes like: airplane, bird and background. 

But it does not provide further details about the dataset. The approaches were analyzed 

on the following different aspects of particular interest. 

Network architecture. The YOLO architecture model is mainly based on Darknet [7], 

which typically consists of 19 convolutional layers and 5 pooling layers. In general, 

each approach has applied specific fine-tuning techniques for achieving better perfor-

mance. For example, the classifier model used in [11] uses 64 x 64 size of the input 

layer, while vector classification is performed by 2 consecutive fully connected layer 

with 512 neurons with 0.5 dropout between them [11]. To raise the performance of our 

approach, we are considering the network modifications in future works. 

Dataset. The dataset quantity and quality differ in the approaches, as well as image 

sizes. In particular, Aker et al. dataset, consisting of 676 534 images with 850 x 480 

resolution, combines real drone and bird images with different background videos. Wy-

der et al. use a synthetically generated dataset6 of 10,000 images from autonomous 

drone flying sequences, manually annotated. The same number of images has been gen-

erated and used by Lei and Huang for their solution. Our dataset consists of lesser num-

ber of images, as we strive to build a high-quality dataset. The proportion of the training 

versus validation dataset typically ranges between 70-80% and 30%-20%, respectively.  

An artificial dataset generation algorithm is described in Aker et al. It describes the 

process of generation and reduction of the images. However, it does not include the 

process of image annotation extraction and conversion, as well as image checking for 

errors. 

 
6 https://osf.io/jqmk2/, last access 18.03.2021 
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Annotations. The annotations typically include information about coordinates of the 

center of the boxes with respect to the grid cell, the width and height in proportion to 

the whole image, and a confidence score of the detected object within the bounding 

box. In general, the approaches utilize the existing dataset annotations, or as in our case 

utilizing several parts from different datasets, and enriching them with new manually 

labeled and annotated images. Wu et al. have used Kernelized Correlation Filters (KCF) 

tracker [12] to auto label detected objects. A study about different types of annotation 

errors examined in a YOLO-based detector is described in [13]. In our approach we 

have used manual annotation as well as converting to YOLO-based format. 

Classes. For better performance results the approaches have mainly considered a single 

class, i.e., drone, as specified in their model. However, Aker et al. use two classes 

drones and birds, while Unlu et al. have used four classes in their solution. As previ-

ously mentioned, for this paper we have used two classes and will use other ones for 

differentiating between drone models and carrying or not a payload.  

Accuracy. The precision and recall of the approaches are satisfactory, with more than 

89% and 85%, respectively. Our approach has resulted with more than 92% and 50% 

precision and recall, respectively. The autonomous Tiny YOLO-based approach [10] 

has performed with 77% accuracy in cluttered environments in eight frames per second. 

6 Conclusion 

Fast and robust detection and recognition is required for the anti-drone domain, because 

drones have ability to fly with high speed and for a short time can cause huge damage 

to human lives. A lot of research efforts has been dedicated by the image processing 

community. In particular, the findings of this paper suggest that a methodological ap-

proach should be well-defined for the dataset improvement lifecycle. The iterative pro-

cess includes continuous check, validation and image variety of the dataset. Instead of 

infusing vast number of images into the dataset, which can cause model confusion, the 

dataset improvement process should ensure high quality images, which on the other 

side can lead to a reduced number of false alarms and missed detections. 

To date, there is not enough evidence of approaches for detecting killer drones in far 

distances by combining different data sources. Namely, as can be observed by the re-

sults of this paper and based on the described related works, we can conclude that the 

image processing algorithms do not perform well enough in cases when the background 

of the view is complex and the distance of the drone is far. For this aim, as per future 

work of our approach, we propose that the drone detection and recognition should in-

clude other technology (i.e., radar RF) and data fusion techniques complemented with 

optical-based recognition. This will support higher system accuracy and reliability by 

eliminating the identified obstacles. 
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