Pandemic Symptoms Real-Time Ranking Platform

A. Tvanovski*, M. Gusev*, V. Zdraveski*, J. Aasa’
* Ss. Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Skopje, North Macedonia,
t Vitala Health
E-mail: aleksandar.ivanovski.1 @students.finki.ukim.mk,
{marjan.gushev, vladimir.zdraveski} @finki.ukim.mk, jesper@vitala.health

Abstract—COVID-19 takes an increasing share of everyday life
and imposes the need for an exploratory data analysis executed by
both, professionals and the general public. The primary focus of
this paper is designing and implementing a system for processing
the vast amount of case data available to obtain overall statistics
for symptoms and rank them in real-time. Processing the current
data and providing a mechanism to process new data generated
in real-time from diverse and many sources is one of the current
challenges. Our solution to tackle the challenge is to execute the
processing in a massively parallel way enabled by CUDA along
with principles and constructs for efficient parallel programming,
which are eminent due to the volume and velocity of data, thus,
checking the validity of a research question is it possible to
process Covid-19 big data challenges more efficiently with GPU-
based parallel constructs.

Index Terms—COVID-19, big data, real-time, parallel process-
ing, symptoms ranking, CUDA

I. INTRODUCTION

After more than a year from the start of the global COVID-
19 pandemic and the currently growing amount of new mu-
tations, the need for efficient tracking and exploratory data
analysis has become part of the daily workflow of many
medical personnel. Currently, the amount of COVID-19 related
data is on the rise and may be classified as Big Data. One of
the common tasks for the medical personnel is discovering
clusters among the cases, those clusters can be in terms of
physical distance and contacts, symptoms, clinical conditions,
disease and vaccine-related after-effects, virus mutations, and
even now after a year - long-term effects.

On the other side, all of the COVID-19 cases and data
can be modeled and represented within vector spaces, and
unsupervised learning algorithms can be applied to achieve the
data analysis tasks. In this paper, we focus on providing real-
time symptoms and vaccine side effects ranking and tracking.
To process the huge amount of data by unsupervised learning
algorithms, we are going to leverage the massive parallelism
enabled by the CUDA [1] programming framework. The
benefits from such a system could be leveraged by both
medical personnel and the general public.

The COVID-19 case data are a combination of textual
and numerical features, describing the patients’ clinical case,
including symptoms and a variety of other parameters (such
as WBC, LYM, NEU, AST, ALT, CRP, D-dimmer, etc.).
Currently, there are ~ 160M recorded cases, with a growing
rate of 350,000 cases per day, equivalent to = 243 cases each
minute, suggesting that a massively parallel approach is a
necessity. The research question in this paper is to analyze

if COVID-19 big data can be processed more efficiently with
the usage of GPU.

The organization of this paper is in the following manner.
Related work is presented in Section II. Section III defines
the system and the corresponding architecture, followed by
description of the system implementation. Evaluation methods
for the proposed implementation are elaborated and discussed
in Section IV. The results from the experiments are presented
in Section V. Section VI discusses the possible use-cases, fol-
lowed by Section VII in which the conclusions are elaborated
and future work is emphasized.

II. RELATED WORK

Many researchers are working in the field making it a hot
research topic. A data-driven real-time risk assessment [2]
approach uses regression trees and wavelet transformations,
scalability of such solution and the enabling of massive
parallelism were not discussed. Fast decision-making model
[3] is based on a GP-GPU approach to differentiate between
influenza and COVID-19 cases.

One of the earliest approaches to realize clustering on
CUDA-enabled architecture was presented by Shalom et al.
[4] concluding that text clustering with speed gains starting
at 15 times faster than traditional approaches. However, the
accuracy was questionable. A similar approach was analyzed
in combination with dimensionality reduction in [5], and a
CUDA approach with a primary focus in object segmentation
[6].

Cui et al. achieved notable results in [7], leveraging CUDA
for highly dimensional data clustering. Acceleration provided
with massive GPU parallelism of the T-SNE dimensionality
reduction in combination with a model for vector embeddings
was realized by Chan et al. [8]. The same research group
provided the application of the accelerated model for large
datasets and human-in-the-loop based tasks in [9].

A novel CUDA enabled clustering algorithm with general-
purpose usage was presented by Lacerda et al. [10], which has
the potential for real-time applications, such as clustering news
articles in aggregators. Zhang et al. [11] presented a general-
purpose speedup in text-mining with the main focus on small
to medium-sized data sets.

III. SOLUTION AND IMPLEMENTATION

For a realization of such a system, its main building
blocks along with the actors and their responsibilities must be
defined following parallel programming practices and software

FAnNVIDIA.
CUDA.
(" PoolofGPUs |)
Processed Data
i l Reducer
N
{ Data Mapper ‘
Producer 1 I
Batch Processing el
° Raw Data Unit Processed g
Producer 2 15y Storage Data Storage o 5 Consumer 2
5 20
g % = : % :
o coo ooo == o
2 2 (W eeel U L JeeelU]| B3 3
Real Time 8 o
Processing Unit |
Producer N > Consumer M
{ Real-time queue 1
mappper
(* Pool of GPUs
Real Time Processed | [_____1CUDA application many kernels
11] l | DataReducer | CUDA kernel
[Istorage
Actor

Fig. 1.

engineering approaches. Scalability and robustness should be
the starting point and main differentiator.

Fig. 1 presents a general overview of the system architecture
and main building blocks. The parts of the system can be
divided into commercial off-the-shelf products (COTS), dis-
tributed storage mechanisms that are necessary given the data
volume, and two CUDA applications being the primary focus
of this research.

The main separation in the system is two CUDA ap-
plications, i.e. Batch Processing and Real-Time Processing,
together serving as lambda architecture. The need for a sepa-
rate batch processing application is inevitable because of the
already present data for approximately 160M cases, that has to
be processed before any real-time processing can be executed.

Our approach is incrementally detailing the abstractions to
render concretions, so the commercial off-the-shelf products
will be discussed first.

o Data Stream: It must enable a real-time data stream of
the data provided by the producers and their different
mediums for event publishing. Apache Kafka can be
leveraged for serving this purpose.

« Raw Data Storage: The main purpose is to store the
raw patients’ data obtained from the data stream, and
generated by the producers. Distributed storage is forced
due to the volume of data, and suitable products are any
distributed document-based databases, such as Amazon
DocumentDB, or Google Cloud Datastore.

o Processed Data Storage: Analogy with the raw data
storage can be made, but processed data is stored, using
the same products.

« Data Consumers end-point: It has to provide the data
to the consumers via a common interface, for the general
public a web application can be leveraged both SaaS or
custom-made. For the medical professionals along with
the core processed data, analytics tools must be provided,
such as Kibana for visualization and Amazon Kinesis
Data Analytics for extensive exploratory data analysis.

<AnviDiA,
CUDA.

Commercial off-the self product

Solution Architecture Overview with the core building blocks

The two applications are going to be designed and im-
plemented using core parallel programming principles and
optimization techniques and during the research. Alongside
block and grid sizes as standard parameters, a custom one -
batch size is implied defining the number of cases that are
going to be processed in a single batch.

The Batch processing application consists of host code
which is responsible for launching the kernels, and it starts
with the data mapper kernel, which is responsible for mapping
the raw data into batches of cases the best practices and
principles must be considered because this kernel can become
a bottleneck. Asynchronous and Overlapping Transfers with
Computation along with Zero copy are leveraged to provide
state-of-the-art performance. As the batches are starting to
pile up in the Unified Memory, a kernel for performing the
reduction - in our case building a histogram-like data structure
with symptoms as keys, and the number of occurrences as
values is launched. Reduction principles and optimization
methods are embodied in this kernel and collision-free updates
and simulated atomic updates are leveraged.

A listener is responsible for handling the data stream events,
and when new data are available it launches the real-time
processing application, which consists of host code which is
responsible to calculate the optimal batch size for the current
data, and launch a kernel responsible for mapping the queued
data to batches, and immediately reduction kernels which
are in some way similar to the batch processing ones are
launched, but the difference is using low-cost coherence and
speculative acquisition of atomic data on the GPU, which are
crucial for time-sensitive processing. As the reduction kernel
produces results procedures are launched to persist them into
Processed Data Storage. Techniques should be considered to
tackle variable grid, block, and batch sizes due to the amount
of published data. This application requires a greater amount
of computing power, with a pool of GPUs supporting unified
memory access.

All of the above-mentioned kernels are executed on a pool

of CUDA-enabled GPUs, such pool can be used as a cloud
service or a custom one can be build using virtualization and
cluster management concepts.

The proof of concept was realized by the programming
language Python, overcoming the speed challenges proposed
using C-wrappers to get native performance, and using Numba
library for built-in CUDA support.

All of the required kernels were implemented using prin-
ciples for efficient parallel programming. The amount of data
is opposing usage of asynchronous transfers and leveraging
unified memory. Data storage was implemented in NoSQL
approach using Firestore - service from Google Firebase, and
Firebase Cloud Functions were used to invoke the Real-Time
processing unit which encapsulates the kernels for real-time
data processing. Logging was performed to evaluate this proof
of concept implementation.

We calculate speedup of CPU parallel with Java Multi-
threading implementations versus the serial implementation.

IV. EVALUATION METHODOLOGY

During research real COVID-19 patients’ data were unavail-
able due to privacy regulations. Since our system operates on
document-based data stores, evaluation and conclusions could
be conducted and drawn from generated data.

Data will be processed with a proof-of-concept implemen-
tation of the proposed architecture, processing, storage, and
overall end-to-end times will be measured for various block
and grid sizes on two devices. Serial and multi-threading
implementations have been realized to obtain a relevant com-
parison basis.

Clustering will be performed on processed data to obtain
metrics relevant for complex analysis performed in the Medi-
cal Professionals use case.

Producers were simulated with data generation, such that for
160M patients from 5 to 10 symptoms were generated, and the
proof of concept implementation was executed against these
data.

V. RESULTS

The batch processing was executed on NVIDIA GTX 1650
(Fig.3), and NVIDIA Tesla K80 (Fig.2) provided from Google
Cloud Platform. The atomic operations used while computing
the counts implied using a lower number of threads per block,
i.e. 128 on GTX 1650, and 256 on Tesla K80.

Table. I summarizes the results, and the best are 20.03s
on Tesla K80 and 331.53s on GTX 1650, thus showing that
speedup and performance of the GPU are directly proportional.

On the other hand, the multi-threading approach which
was executed on i17-9750H with 12 concurrent threads took
4081.24s, (more than 1 hour) of processing. The serial ap-
proach was executed on the same hardware, but it ran out
of memory and crashed after 7709.25s. Processing time com-
pared against different approaches is presented in Fig. 4

From the results we can observe that our approach provides
1231.03% performance increase compared to traditional multi-
threaded approach.

NVIDIA Tesla K80
Processing Time (s)
@]
24 24
=
% 23)
- o :
g’ e ¢
2 e @
R
e) e
I\
A0 ,
[5
5, N !
[\ 25 %
% % 0 S
LA NS 7] zo

Fig. 2. Processing times on NVIDIA Tesla K80

NVIDIA GTX 1650

Processing Time (s)

O 400
400
290 390
)
%‘ 3‘3\‘“) o 380
L e
2 a0 ® e 370
2 30) []
2 a0 360
% a0
z 3
\W® ./30 350
g 93';9”
K3 Q 4, 340
g 7,0 ¥
3 % &
P o

Fig. 3. Processing times on NVIDIA GTX 1650

B kNN (GPU) Agglomerative Clustering (GPU)
kNN, Agglomerative, DBSCAN (Serial)

DBSCAN (GPU)
W kNN, Agglomerative, DBSCAN (Multi-Threaded)

1000
100
10
B | |]

15K

Togarithmic Processing Time (s)

30K GOK

Dataset Size

Fig. 4. Processing Time between approaches

VI. DISCUSSION

During the research, we have executed clustering algorithms
of processed data. The results shown in Table 2, justify the
feasibility of our architecture. Parallel implementation of K-
Nearest Neighbours clustering was executed on various subsets
of data with varying sizes and the average time needed to learn
the clusters was 1.46 s. Parallel hierarchical clustering was also
executed and the average time to learn the clusters was 2.17
s. Execution of DBSCAN clustering provided an average time
of 2.86 s.

TABLE I
SUMMARY OF DATA CLUSTERING RESULTS

Device NVIDIA GTX 1650 NVIDIA Tesla K80
Clustering Dataset | Cluster Learning | Average | Cluster Learning Average
Algorithm Size Time (s) Time (s) Time (s) Time textit(s)
15000 1.85 0.13
kNN 30000 2.35 2.36 0.16 0.16
60000 2.89 0.20
Aglomerative 15000 2.15 0.14
Clustering 30000 2.89 2.69 0.19 0.18
60000 3.02 0.20
15000 2.32 0.15
DBSCAN 30000 2.96 2.96 0.19 0.19
60000 3.59 0.24

1) General Public use case: General Public has access to
the system via a web application, which can be integrated into
Worldometer [12]. Symptoms along with the counts of asso-
ciated cases are listed in a simple interface, and discrete data
count visualizations are presented. Processed Data Storage
mechanisms allow presented data to be filtered according to
numerous criteria such as geographic location and time period.
The primary goal of this use case is to provide real-time
information in an illustrative and self-explanatory manner,
such that conclusions about the spread of the disease and
its manifestations can be drawn. Our architecture proposal
enables such real-time data processing and filtering - which
are still not available.

2) Medical Professionals use case: Medical Professionals
could leverage an application allowing them to conduct pow-
erful exploratory data analysis and pattern recognition which
are crucial for efficiently tracking new mutations and rate of
spread. Our system provides mechanisms for the execution
of complex queries on processed data. Medical professionals
could track symptoms and be presented with clusters among
data in geographical regions for specific mutations of virus in
a given time period. Analysis of correlation between different
mutations and post-vaccine symptoms and side effects could
be performed.

3) All-Purpouse use case: Previously discussed use cases
revolve around concrete user groups and dedicated goals. This
use case extends the capabilities and benefits of our system
even further by exposing all processed data publicly. Based on
the open host principle a published language will be provided,
such that processed data could be consumed via REST or
GraphQL and various applications on top of these data could
be realized and further research could be conducted.

VII. CONCLUSION AND FUTURE WORK

The main focus of our research was to discover and explore
whether data-driven and GP-GPU approaches could be used to
provide real-time symptoms, long-term consequences, vaccine
and disease side effects ranking, and tracking. The feasibility
of our research is proven and implementation of the proposed
system architecture is realized. Scalability, processing through-
put, reusability, and representation of processed data are core
features of our system.

In the future, significant resources and effort should be con-
sidered in the aspects of data collection, storage, and overall
data-driven approach while tackling the next pandemic. Patient
and disease data along with processing architecture could
provide knowledge and insights which were never considered
before, leading to better handling and prevention of infectious
diseases.

REFERENCES

NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 11.2,” 2021.
[Online]. Available: https://developer.nvidia.com/cuda-toolkit

T. Chakraborty and I. Ghosh, “Real-time forecasts and risk assessment
of novel coronavirus (covid-19) cases: A data-driven analysis,” Chaos,
Solitons & Fractals, vol. 135, p. 109850, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0960077920302502
M. Lucero, N. Miranda, and F. Piccoli, “Viral diseases propagation
analysis in short time,” in Cloud Computing, Big Data & Emerging
Topics, E. Rucci, M. Naiouf, F. Chichizola, and L. De Giusti, Eds.
Cham: Springer International Publishing, 2020, pp. 41-57.

S. A. Shalom, M. Dash, and M. Tue, “An approach for fast hierar-
chical agglomerative clustering using graphics processors with cuda,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2010, pp. 35-42.

A. Bagga and D. Toshniwal, “Parallelization of hierarchical text clus-
tering on multi-core cuda architecture,” high performance computing on
graphics processing units, 2012.

R. Campana-Olivo and V. Manian, ‘“Parallel implementation of nonlin-
ear dimensionality reduction methods applied in object segmentation
using cuda in gpu,” in Algorithms and technologies for multispectral,
hyperspectral, and ultraspectral imagery XVII, vol. 8048. International
Society for Optics and Photonics, 2011, p. 80480R.

X. Cui, J. S. Charles, and T. Potok, “Gpu enhanced parallel
computing for large scale data clustering,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1736-1741, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X12001707
D. M. Chan, R. Rao, F. Huang, and J. F. Canny, “T-sne-cuda: Gpu-
accelerated t-sne and its applications to modern data,” in 2018 30th
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), 2018, pp. 330-338.

D. M. Chan, R. Rao, F. Huang, and J. F. Canny, “Gpu accelerated
t-distributed stochastic neighbor embedding,” Journal of Parallel and
Distributed Computing, vol. 131, pp. 1-13, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S074373151830875X
G. R. Lacerda Silva, R. R. De Medeiros, B. R. A. Jaimes, C. C.
Takahashi, D. A. G. Vieira, and A. De PaDua Braga, “Cuda-based
parallelization of power iteration clustering for large datasets,” IEEE
Access, vol. 5, pp. 27263-27271, 2017.

Y. Zhang, F. Mueller, X. Cui, and T. Potok, “Gpu-accelerated text
mining,” in Workshop on exploiting parallelism using GPUs and other
hardware-assisted methods, 2009, pp. 1-6.
DadaxLimited, “Worldometer,” 2021.
https://www.worldometers.info/

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12] [Online]. Available:

