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Abstract—In this paper, we present a new framework for
parallel and distributed processing of real-time text streams capa-
ble for executing NLP-Natural Language Processing algorithms.
The focus is set on acceleration based on attention for building
the topology, and not on the individual NLP algorithms. We
elaborate the configuration of our specific use case, and discuss
the reduction of the time required for system configuration in
order to use the benefits of virtualization and containers.

Research hypothesis: We can process more text tuples per
unit time using the new developed framework for an algorithm
that divides the sequential algorithm into smaller jobs and
tasks including tokenisation, part of speech tagging, stopwords,
sentiment analysis, where each of these individual jobs are specific
nodes in the Apache Storm-based topology.

We have conducted an experimental proof-of-concept and
found the optimal configuration confirming the validity of the
hypothesis.

Index Terms—framework, real-time processing, natural lan-
guage processing, parallel processing, distributed processing

I. INTRODUCTION

The huge amount of textual data that is generated and the
great development of natural language processing algorithms
provide a wide range of possibilities. A problem would arise
if we want to apply Natural Language Processing algorithm
over real time text stream, and process a large amount of
text tuples per unit time, in order to satisfy an application
requirement. Time constraint will depend on the application
requirement. To cope with the high speed of incoming texts
real-time processing needs to implement a certain degree of
parallelism.

One approach is to make fine-grained parallelism that could
yield acceptable speedup, but in some cases this requires
understanding of complex linguistic phenomena or how the
algorithm is working in the fine-grained level [1]. But this
requires specific knowledge of the algorithm and knowledge
of NLP field.

All existing systems built to use a parallel and distributed
infrastructure provide a lot of processing speed but have
an additional learning curve as some require a change of
platform or language, and do not allow direct implementation
of the Python programming language as the most widely used
development environment for NLP algorithms. This would
mean either adapting existing algorithms or completely re-
implementing existing algorithms written in Python, which is
our initial motivation for this research.

The developed framework specified in this paper uses the
Apache Storm environment to provide low latency, message

delivery guarantee, and fault tolerance [2]. However, the
main languages in which Apache Storm-based programs are
developed are Java and Scala, which does not directly provide
an environment for developing NLP-based algorithms with
Python.

In this paper we present a new framework with specification
of an initial system configuration in a container, which will
provide an environment to write NLP algorithms in Python
to be executed on the Apache Storm-based infrastructure and
cluster.

We aim at testing the validity of the following research
hypothesis: We can process more text tuples per unit time with
the new developed framework, just by dividing the sequential
algorithm into jobs that include tokenisation, part of speech
tagging, stopwords, sentiment analysis, if these individual jobs
are nodes in the Apache Storm-based topology.

To verify the validity of this hypothesis, we will realize a
prototype implementation, test the performances and compare
it to the conventional methods. We will first measure the
time required for the different loads, different number of
text tuples on the sequential implementation. Then the same
sequential algorithm divided into jobs as tokenization, part of
speech tagging, and placement of each job in a different node
from the Apache Storm topology and we will measure the
execution time for the corresponding loads. The hypothesis
can be confirmed if the number of processed text tuples per
unit time is increased.

The rest of the paper is organized according to the following
structure. Section II presents the related work and findings in
the specific field. System architecture in Section III should
illustrate the significance of the Apache Storm topology and
the way we should built topologies. Because the way Apache
Storm topology is constructed is crucial for the acceleration
obtained with this framework. Experimental methods used
and the environment in which the experiments are executed,
in detail are described in Section IV. Results are presented
and evaluated in Section V. Finally, Section VI addresses the
conclusions and gives directions for future work.

II. RELATED WORK

There are various researches in the field of real-time NLP
applications. Some of them are aimed at speeding up NLP
algorithms but there is also a lot of research potential to
parallelize or distribute the processing at different processing
instance for large amounts of textual data [3]. This acceleration



approach where the processing takes place on several different
processing instances gives much better results [4].

Although parallelization at the level of NLP algorithms can
give quite good results, for real-time systems it is necessary
to perform the same operation over multiple texts that arrive
in parallel. One such architecture was developed with the help
of Apache Storm [2], where each text operations such as
tokenization, part of speech tagging, named-entity recognition,
stemming, lematisation is defined as a node in the Apache
Storm topology, so that multiple documents can be concur-
rently processed in different parts of the topology. Some nodes
have multiple instances [4].

Two architectures have been proposed to handle large
amounts of text, one of which uses the Apache Storm topology
and the other uses batch processing, but batch processing is not
in line with what we need, and that is text data flow analysis in
real time [5]. A system called STREAMIT has been developed
which is used for visualization of streams of textual data in real
time, i.e. for monitoring streams of textual data. This system
uses graphics cards with the help of CUDA implementation.
The algorithm is executed on individual distributed threads on
a grid of CUDA blocks. Each thread accesses shared memory
that can write the results needed to visualize the text streams
[6].

There are Real-Time event detection systems on social data
streams. One such system is the Real-Time Detection of Traffic
From Twitter Stream Analysis which uses the Twitter API
and Weka (Waikato Environment for Knowledge Analysis) [7].
A scalable and distributed event detection system has been
developed using Storm topology and Twitter text streams [8].

Trendminer: An Architecture for Real Time Analysis of
Social Media Text also implements the concept of graph and
nodes as processing units that can run in parallel but use the
Java API and Hadoop. This system manages with a cluster of
6 machines, a total of 84 virtual cores, through 42 physical
cores, to process data from the order of all daily tweets [9].

Another approach to speeding up text processing would be
to speed up the implementation of individual NLP algorithms
or fine-grained parallelisam. In [10] they show acceleration
of text classification using SVM enhanced by multithreading
and CUDA [10]. Implementation and comparison of parallel
algorithms for pre-processing of social networking data based
on GPGPU (NVidia CUDA) and Hadoop Map Reduce Archi-
tectures is given in [11]. This work compare and contrast the
benefits and drawbacks of GPGPU and Hadoop Map-Reduce
parallel algorithms for pre-processing of text data.

III. SYSTEM ARCHITECTURE

The sequential approach is mostly used for applications
that process small amount of textual data or are not real-
time processing systems for textual data. However, this is
not recommended for applications that have a stream of text
data as input. These applications need to perform NLP-based
algorithms on an incoming textual data stream and output the
results to a file, database, or visualize them. For these systems
we need a completely different approach.

Fig. 1. Sequential NLP processing.

Apache Storm meets such requirements as a distributed real-
time computing system. The main component of the Apache
Storm is the topology. One topology is in the form of a direct
acyclic graph (DAG). The nodes in the graph can be spouts,
or bolts. Spouts are nodes from which the data stream comes,
and Bolts are the processing nodes. The storm cluster consists
of a master node (Nimbus), and multiple worker nodes. Each
worker node has a supervisor who is in charge of managing the
processes in the node. Another important part of an Apache
Storm cluster is the Zookeeper cluster, which coordinates work
between the master node (Nimbus) and the worker nodes.
Apache Storm manages most of the things for us but still
needs some configuration and has learning curve.

One of the basic issues is the problem that the whole
Apache Storm-based system is primarily intended for Java
environment. However, most ML-based algorithms, especially
natural language processing, are written in Python. We will use
the Streamparse Python library. Streamparse library lets you
run Python code against real-time streams of data via Apache
Storm. Primarily Apache Storm supports many programming
languages but as proof of concept, Streamparse solves many
of the problems.

Sequential processing is suitable for small textual data or
data that does not have real-time requirements. Fig. 1 shows
the sequential way of processing textual data, which we will
use in the experimental part to compare and obtain the final re-
sults. NLP node further in the text is a certain processing node,
which can be pre-processing such as tokenisation, stopwords,
lemmatiosation, stemming and others, or a certain algorithm of
natural language processing such as named-entity recognition
(NER), part of speech tagging (POS), classification, sentiment
analysis, text to speech.

Apache Storm-based topology for real-time stream NLP
processing is presented in Fig. 2. The topology starts with
a spout which is a stream of textual data. This is followed
by the pre-processing section. tokenisation, stopwords, and
lemmatisation /stemming. These three bolts, processing units
can have multiple instances, so here we have the parallelization
of pre-processing. Each tuple, independently of the others,
flows through that part. This is followed by a bolt for sentiment
analysis. So the tuples with positive sentiment continue to
one branch and the bags with negative sentiment continue
to another branch. And here we have parallel and distributed
processing of text tuples. Finally the results are written in
separate files. We see each of the nodes in the topology as
an NLP job. The parallelism in our framework is at the job
level. The specific implementation of each individual NLP



Fig. 2. Real time NLP topology

job affects the overall processing performance. For example if
we have algorithm 1 and 2 both for tokenization, we declare
tokenisation as NLP job. If algorithm 1 processes sentences
faster than algorithm 2, then we will use algorithm 1 because it
will affect the overall performance of the topology. In this case
the parallelization of tokenization and implementation details
of tokenisation are beyond the main focus of this research.
Purpose of this paper is to explore job level paralelism.

Data independency of particular tasks is analyzed when
building a topology, and for efficient parallelization it is
important that a particular node is independent of previous
processing nodes. Nodes that execute certain work and are
independent of previous nodes can be efficiently parallelised
in various ways. Therefore, prior to approaching the addressed
problem, it is good to be able to define the processing units
(nodes) including units for tokenisation, stopwords, classifica-
tion in order to analyze the data dependency and to determine
whether they are dependent to the other nodes.

The data dependence analysis for this specific system ar-
chitecture showed the the following nodes: tokenisation, stop-
words, Lemmatisation / Stemming are sequentially dependent
on exchanged data. However, we can exploit parallelism for
execution of multiple instances on the same node. We can
arrange this type of processing due to independent tuples that
move through the nodes. Parallelism after the sentiment node
can be exploited for those text tuples in such a way that those
the positive items will go to one branch of the topology and
the negative items to the other branch. Note that the whole
topology is executed over an Apache Storm-based cluster
which can have more than one machine (physical or virtual)
and each machine will execute multiple processes requested
by the operating system.

The whole process of creating an NLP pipeline is explained
with a certain level of abstraction. To create the topology, we
use the streamparse library. The streamparse library provides
tools to configure the number of bolts (parallel processing
units), so that we can parallelize the same job, i.e. write how
many instances of bolt node will be instantiated.

Then we create an Apache Storm cluster by creating a
master node (Nimbus), worker nodes and a zookeeper cluster.
This means that on each machine in the cluster we need
to install and configure the necessary requirements as well
as network connections. These requirements include Apache
Storm requirements as well as NLP requirements.

Finally, the topology is deployed to the cluster. This type
of processing of a large amount of text data implies that the
processing of individual nodes should be as fast as possible.
Each node will work on one NLP job, and if it is about certain
ML-based algorithms, it is best for them to be pre-trained, that
is only to be used for prediction.

The node with sentiment analysis from Fig. 2 will use a
pre-trained model from the NLTK library [12].

The intention of this Framework is to speed up the process-
ing of text tuples, not to develop a new methods in the field
of Natural Language Processing. One of the recommendations
is to use the principles of Transfer Learning [13], so that
in each of the nodes in Strom Topology that do a certain
NLP job for which a model is needed, to load the pre-trained
model for each node separately. Using pre-trained models,
libraries, and NLP toolkits will make the code cleaner and
easier to understand. Because the cluster management process
is more complex and can create problems with different virtual
environments on different worker nodes. The Apache Storm
Framework itself balances the work in the cluster nodes but
still a careful approach is required to use of certain NLP
algorithms in individual nodes.

IV. EXPERIMENTAL METHOD

The system specification to conduct experiments in this
research is specified in Fig. 4. A virtual machine with a
docker is installed on the system. The number of virtual CPUs
assigned to this virtual machine is 4. Docker container contains
the Apache Storm system, and streamparse library that lets you
run Python code against real-time streams of data via Apache
Storm. This type of virtualisation with containers allows an
environment to use Apache Storm and write NLP algorithms.
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Fig. 3. Execution time for the Sequential NLP and Parallel Apache Storm-based experiments.

So we focus on how to build topologies as illustrated in the
example Fig. 2.

The experiment proceeded as follows. Input in both ap-
proaches are text tuples with an average length of 280 charac-
ters, as a standard length used in social networks, so the posts
have the maximum size of 280 characters. Execution time is
measured for the two different approaches:

• Sequential NLP is a Python script in which the text tuples
are processed sequentially and each of the text tuples
moves through the pipeline - tokenization, stopwords,
stemming, sentiment analysis. The sequential NLP ex-
periment uses a Python-based algorithm, pre-processing
and sentiment analysis are performed sequentially.

• Parallel NLP model specified by the Apache Storm-based
topology with spouts, bolts and worker processes.

– First a comparison of the sequential and parallel ap-
proach is made. The initial configuration of Apache
Storm was bolt=1, spout=2, worker process=2.

– Second, a comparison of different configurations for
spout, bolt and worker process was made, and their
respective speedup.

In both experiments, the response time (latency) Ttotal to
finish the whole task is measured for different execution work-
loads W of 5.000, 10.000, 15.000, 20.000, 25.000 ... 150.000

Fig. 4. System specification

text tuples respectively as input. At the end, calculations are
made for the achieved speed v reached for a specific load W
by (1).

v(W ) =
W

Ttotal(W )
(1)

For each of the experiments we measure the response time
TS(W ) and TP (W ) respectively for sequential and parallel
version for a specific load W . We calculate the speedup S(W )
of the Storm topology with respect to the sequential NLP
pipeline by (2) for each workload W .

S(W ) =
TS(W )

TP (W )
(2)

V. EVALUATION OF RESULTS

The results of both approaches are obtained and performed
on the virtual machine illustrated in Fig. 4 with a goal to
analyze the performance real-time natural language processing
of text tuples.

Fig. 3 presents the results of execution time versus various
input for both experiments. Increasing the number of text
tuples results with a linear increase of the execution time for
the Sequential NLP experiment.

It is important to note that the initial results in Fig. 3 are
obtained with 1 spout (which emit tuples), 2 bolts (parallel
processing units) where the sentiment analysis takes place,
and 2 worker processes. With this configuration the speedup
ranges from 2.2 to 2.8, as presented in Fig. 5.

Achieved performance for different configuration of spouts,
bolts and worker processes is presented in Fig. 6. Fig. 7
presents the calculated speedup relative to sequential algorithm
of different configurations.

We observe that the execution time increases linearly for
all configurations as long as the workload W increases. The
highest achieved speedup in the range 2.2 to 2.8 is achieved
for the configuration specified by spout = 1, bolt = 2 and
p = 2 (worker processes).

Note that the speedup slightly decreases after 115K text
tuples, although its value is over 2.2.
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Fig. 6. Different configuration of spouts, bolts and worker processes

The main parameters to pay attention are the number of
spout, bolt, and worker processes. A worker process executes
a subset of a topology. An executor is a thread that is spawned
by a worker process. Worker process belongs to a specific
topology and may run one or more executors for one or more
components (spouts or bolts) of this topology. So the number
of worker processes, spouts and bolts affect the number of
processes and threads that are created. Different number of
spouts, bolts and worker processes will give different results.
According to the Apache Storm documentation, the number of
threads that will be created per worker process is calculated
by dividing the number of spouts and bolts by the number of
worker processes.

(spout+ bolt)

p
= threads (3)

According to (3) we can calculate number of threads per
worker process.

• spout = 1, bolt = 2, p = 2
2 threads per worker process
2 worker processes, 4 threads

• spout = 1, bolt = 8, p = 1
9 threads per worker process
1 worker process, 9 threads

• spout = 1, bolt = 4, p = 4
2 threads per worker process
4 worker processes, 8 threads

The experiment was conducted on a virtual machine that
uses 4 cores, and this is why for this case the optimal
configuration is spout = 1, bolt = 2, p = 2 which produces
a total of 4 threads. Increasing the number of threads reduces
performance and also allows the process to have unpredictable
execution times, and occasional performance drops. Also a
large number of worker processes and threads can result in
out of memory exception, because we have limited working
memory in each of the nodes in the Storm cluster.

A lot of experiments needs to be conducted to find the
optimal number of spouts, bolts, and worker processes such
that for each implementation and system specification. In our
case, we found that the best performance for this implemen-
tation and system specification of a 4-core virtual machine, is
achieved by using 2 worker processes with 2 threads each, a
total of 4 threads.

VI. CONCLUSION

A larger number of text tuples processed per unit time can
be obtained by dividing natural language processing sequential
algorithms, into smaller jobs, which can be tokenization,
stopwords, part of speech tagging, named entity recognition,
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sentiment analysis, each of those jobs can be a node, bolt-
processing node, in the Apache Storm topology.

This can be achieved with the Python programming lan-
guage and the proposed framework, leaving the same imple-
mentation of NLP algorithms. The change that needs to be
made in order for the sequential algorithm written in Python
script to be processed by the framework is to install a docker,
instantiate a container with the initial configuration of Apache
Strom and streamparse.

The customization of the code would be as follows:
• From the Python script where the sequential version of

the code is written, take the part with the stream source
and insert it into the spout node of the Apache Storm.

• For each of the defined NLP jobs make a Bolt-processing
node in Apache Storm.

• Configure the Apache Storm for a specific cluster and
configure the number of bolt-processing nodes instances
for each NLP job.

Therefore the validity of the research hypothesis is con-
firmed and aan experimental proof-of-concept is provided we
can get quite significant accelerations with this framework
and with relatively little knowledge of implementation details
about NLP algorithms, also working in the Python environ-
ment which is known for developing NLP algorithms. Final
benefit is that we can take advantage of the libraries and large
toolkits that already exist.

Future research will reveal answers about scaling the system
and trying out different configurations for the Apache Storm
cluster.
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