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Simple Summary: Cancer is one of the leading causes of death worldwide. Colorectal cancer belongs
to the group of the most malignant tumors for which their burden can be only reduced through early
detection and appropriate treatment. Increasing evidence indicates that the intestine microbiota is
related and can impact colorectal carcinogenesis. This study proposes a multidisciplinary approach of
two-phase methodology for modeling and interpreting the key biomarkers that can play a significant
role in understanding the drug-resistant mechanism for patients diagnosed with colorectal cancer.
The proposed methodology was evaluated using a publicly accessible dataset, which may serve
clinicians as a complementary analysis tool in colorectal cancer diagnostics and therapeutics. This
study contributes to the field of predictive modeling in healthcare.

Abstract: Recent studies have highlighted that gut microbiota can alter colorectal cancer susceptibility
and progression due to its impact on colorectal carcinogenesis. This work represents a comprehensive
technical approach in modeling and interpreting the drug-resistance mechanisms from clinical data
for patients diagnosed with colorectal cancer. To accomplish our aim, we developed a methodology
based on evaluating high-performance machine learning models where a Python-based random forest
classifier provides the best performance metrics, with an overall accuracy of 91.7%. Our approach
identified and interpreted the most significant genera in the cases of resistant groups. Thus far, many
studies point out the importance of present genera in the microbiome and intend to treat it separately.
The symbiotic bacterial analysis generated different sets of joint feature combinations, providing
a combined overview of the model’s predictiveness and uncovering additional data correlations
where different genera joint impacts support the therapy-resistant effect. This study points out the
different perspectives of treatment since our aggregate analysis gives precise results for the genera
that are often found together in a resistant group of patients, meaning that resistance is not due to the
presence of one pathogenic genus in the patient microbiome, but rather several bacterial genera that
live in symbiosis.

Keywords: colorectal carcinogenesis; feature subset selection; machine learning; postsurgical risk;
random forest; colorectal cancer; gut microbiota; therapy resistance; microbiome; methodology

1. Introduction

It is estimated that there will be 19.3 million new cancer cases, of which 10% will be
colorectal cancer (CRC), considering the statistics from 2020. Furthermore, out of 10 million
cancer deaths, 9.4% are due to colorectal cancer [1]. Accordingly, this emerging evidence
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suggests that CRC is one of the most common malignant tumors, ranking in the top three
causes of cancer-related death. The high mortality rate of CRC patients may be due to many
genetic and environmental factors. One of the causes for the high mortality rate is the unre-
liable treatment of patients with colorectal cancer due to the gut microbiota [2]. The human
intestine contains approximately 7000 different strains of bacteria in the intestinal region
that represents an approximate weight of nearly two kilos [3]. The most common species
in the normal human microbiome are Absidia, Bacteroides, Lactobacillus, Escherichia coli, and
Enterococcus, collectively representing almost 90% of the total species [4]. These bacteria
have well-known functions in the human organism and tend to live in symbiosis by pro-
duction and fermentation of metabolites. Moreover, these bacteria actively participate
in the immune system response. Disruption in the microbiome in the colon may cause
inflammation and likewise promote the development of colorectal cancer [5].

Nowadays, numerous studies have verified that gut microbiota can alter CRC sus-
ceptibility and progression since the gut microbiota can have an impact on colorectal
carcinogenesis by inducing tumor proliferation [6,7], inducing newly developed adenoma,
promoting inflammation [8], and causing DNA damage [9]. Additionally, it is familiar
that the microbiome can influence the metabolic pathways, modulate anticancer drug
efficacy, and cause drug resistance [10]. Following the recent approaches for the treatment
of colorectal cancer, various strategies are applied that consider the microbiome diversity
in the patient—such as dietary interventions, antibiotic treatments, probiotics, prebiotics,
and postbiotics. Recently, it has been published that specific bacteria have been causing
chemoresistance [11]. The most common chemotherapeutic drug given to patients with
colorectal cancer is 5-fluorouracil, which dissolves with the presence of bacteria such as
Fusobacterium nucleatum, Escherichia coli, or Bacteroides fragilis in the gut microbiome and
thus it is not efficient [12]. Lately, the treatment of colorectal cancer patients has been
prolonged due to the usage of antibiotics such as ampicillin, colistin, and streptomycin to
suppress pathogenic bacteria and promote immunotherapy outcomes [13].

With the progress of molecular techniques such as high-throughput sequencing, sci-
entists can detect and characterize the spectrum of microbiome bacteria in CRC patients.
However, to outline the relationship between gut microbiota and CRC development in
patients, extensive bioinformatics studies need to be conducted on the induced alteration
of CRC treatment.

Recent scientific work has highlighted the potential of applying machine learning (ML)
algorithms in creating data-driven frameworks and experimental setups over the traditional
biostatistical methods for targeting the microbiota with diverse strategies, providing new
opportunities involving tailored therapies for individual patients [14]. Supervised and
unsupervised learning, as well as multi-layer artificial neural networks or deep learning
(DL)—both under the umbrella of artificial intelligence (AI)—are considered as two different
subfields for analyzing gut microbiota insights with regard to cancer development and
potential therapeutic effects [15]. The most frequently used methods applied on the human–
microbiome interactions for disease prediction, understanding disease mechanisms, and
further application in personalized medicine (biomarker-finding) can be generalized into
the following groups: supervised learning methods (logistic regression, linear discriminant
analysis, K-nearest neighbor, naïve Bayes, support vector machines), deep learning (using
the artificial neural networks with deep architectures and convolutional neural networks),
and ensemble methods (random forest, multiple decision trees, gradient boosting) [16].
A random forest classification-based screening modeling, combined with extracting the
underlying decision trees to identify and learn their corresponding splitting threshold
values, are commonly used to study the imbalance of human gut microbiota relation with
colorectal cancer development [17]. Moreover, the random forest classification approach is
adopted in proving the validity of adenoma-specific markers across multiple populations,
which would contribute to the early diagnosis and treatment of CRC [18]. Naïve Bayes
and random forest have also displayed high accuracy in analyzing the alterations of gut
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microbial composition in colorectal adenoma and were reported as accurate methods for
predicting CRC based on the gut microbiota compositions [19].

In this paper, we intend to re-analyze the publicly available microbiome data to assess
the critical influence on particular bacterial species present in the human gut that can
cause chemotherapy resistance. As we are dealing with many data, accurate bioinformatics
analysis and machine learning algorithms could help us to obtain valuable correlations
between the microbiome and the CRC. To date, Scikit-learn random forest classifier [20]
and KNIME tree ensemble [21] high accuracy algorithms were used for modeling and
interpreting the drug resistance mechanism.

2. Materials and Methods
2.1. Dataset

In this study, we used a publicly available raw dataset and clinical metadata informa-
tion published as part of the “Gut microbiota in patients after surgical treatment” [22]. The
gut microbiota study data were extracted after sequencing the V3–V4 region of the 16S
ribosomal RNA gene amplified from the individuals’ fecal samples. The analysis covers a
total number of 116 individual microbiome samples, from which 23 microbiome samples
were from patients diagnosed with tubular adenoma (19.8%), 15 microbiome samples were
from CRC patients before operation (12.9%), 47 were CRC post-operative microbiome
samples (40.5%), and 31 were healthy control microbiome samples (26.7%)—the dataset is
summarized in Figure S1a. It is noted in the corresponding article that the design of their
study is cross-sectional, meaning that the pre-operative and post-operative fecal samples
were not collected from the same CRC patients. Moreover, according to the follow-up
surgical resection in the interval from 6 to 36 months, the CRC post-operative samples were
divided into two distinct groups. The first group consisted of 21 samples from patients
with newly developed adenoma, which we associated as resistant, and the second group
included the rest of 26 samples from patients with a clean intestine, which we associated as
not resistant, presented in Figure S1b.

2.2. Taxonomic Analysis

For the publicly available dataset [22], we have started the analysis from the raw
data. Initially, we removed the adapter and barcode sequences and the amplicon sequence
primer sets (V3–V4). For this purpose, we used the BBMap (v.38.90) tool [23]. We applied
this approach due to the errors that can occur when the primer sequences are accepted as
amplicon ends. The aforementioned approach can produce incorrect consensus sequences
and influence the taxonomic assignment.

Furthermore, we extracted the operational taxonomic units (OTU) tables after dataset
processing. The idea was to improv taxonomical precision since the bacterial references and
even the taxonomies are constantly changing (initial raw data published in December 2018).
Reannotation of the raw reads against updated bacterial references was required to avoid
the data’s taxonomical bias. All the OTUs were created with DADA2 [24] and Phyllodes
packages implemented in the R 4.0 analytical platform with SILVA 138.1–16 s reference
(latest reference database update on 27 August 2020) [25]. For analyzing the resistance
mechanism, we have correspondingly excluded the clinical metadata fields describing the
age, body mass index—BMI, gender, CEA—carcinoembryonic antigen (ng/mL), CA19-
9—carbohydrate antigen (U/mL), follow-up (month), TNM—classification of carcinoma,
and localization in the colon (right/left). This process is visually described through the
flowchart in Figure 1.
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Figure 1. Data preprocessing and transformation.

2.3. Data Preprocessing

Three different data table structures were generated and identified as an initial dataset
point for further analysis and processing. The first table was associated with the clinical
metadata described previously. The metadata was followed by the other two tables repre-
senting the amplicon sequence variant (ASVs) taxonomy and counts distributed across the
different microbiome samples. As a result, we have identified a total number of 3603 ASV
units phylogenetically defined in several levels (Kingdom, Phylum, Class, Order, Family,
Genus, and Species). A simple inner join technique based on the ASV identifier was per-
formed for generating the reference dataset. By applying the technique of table pivoting, the
ASVs units were structured by their count values distributed across the different samples.
Additionally, we have filtered and isolated the data by all phylogenic levels (starting with
the lowest one, the species level).

Without enough species-level information, we decided to further analyze and process
the microbial composition classified and specified at the genus level. The handling of
filtering and missing information (N/A values) reduced the initial data to 2097 ASV units.
Afterward, we applied the data aggregation technique for merging the dataset for unique
ASV units according to the ASVs naming and abundance. This approach reduced the final
working dataset to 259 unique bacteria at the genus level distributed across 116 microbiome
samples, including the clinical metadata.

Analyzing the corresponding clinical metadata, we have additionally divided the
final dataset into a more specific subset for separate analysis and comparison of resistant
related perspectives. This subset of research interest consisted of the CRC post-operative
individuals considering the follow-up medical assessment information, resistant, and not
resistant. Our main scientific interest was to understand post-operative individuals’ drug
resistance mechanisms by using the microbiome data. The process of generating the subset
is visually presented on the flowchart in Figure 2.
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2.4. Methodology

The research methodology workflow of the whole study is generally summarized
in Figure 3. Considering the dataset that we decided to analyze, we applied machine
learning and statistics as a supervised learning approach to examine the biological features
and model the drug-resistance mechanism. In general, classification ML algorithms and
statistics are supervised learning approaches. In supervised learning approaches, the
computer program can ‘learn’ from the reference data and make new observations or



Appl. Sci. 2022, 12, 4094 5 of 21

predictions (binary or multi-class) on previously not seen structured or not structured data.
This study’s features working datasets are represented through the aggregated microbial
composition and extracted at the genus level. There were missing values detected, therefore,
additional data preprocessing was done to remove these instances. Hence, the quantity of
data consists of 259 unique bacteria at the genus level distributed across 116 microbiome
samples. Bacteria values were described according to their count values, respectively. An
additional target categorical column was introduced, which provides the pre-operative and
post-operative medical assessment information considering the metadata (including the
record for the samples’ histology and treatment).
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A set of multiple different ML supervised algorithms were initially performed to ex-
plore and provision the most promising approach determined by the maximized accuracy
metric, a process labeled as ‘algorithm benchmark analysis’. Recognizing the most trustwor-
thy algorithm base uncovered the potential of utilizing more advanced associate supervised
algorithms to enhance accuracy and establish an understandable way for interpreting the
contributions to the model predictiveness.

As a fundamental reference point, we assumed that all features could be potentially
important and play a significant role in understanding the drug resistance mechanism.
Thus, we proceed leveraging the ‘brute-force’ approach, through which we have denoted
the considerable amount of input features along with their different level of relative bacterial
abundance and distribution across the population. Initially, additional feature dimension
reduction and engineering were not performed. However, since feature dimensionality is
most frequently directly correlated with the applied ML algorithms’ performance metrics,
we decided to reduce and semantically interpret the input set by designing the modeling
process into two subsequent stages.

In the first stage, feature selection significance determination analysis was done,
reducing the features set and the bacterial distribution initial understanding across the
specific samples in this process. We assumed the narrowed first stage’s output as possible
input for the second modeling iteration by considering the significance and potential
relevance of the specific bacterial abundance. The approach aimed to establish more in-
depth analysis and look for deep data insights, models’ behaviors, and performance metric
improvements due to the attempt to recognize and confirm the biomarker potential of
a particular bacterial, or group of bacterial, genus types. In terms of this, our technical
expectations established improved performance evaluation addressing the key significant
biomarkers that play an important role in the models’ predictiveness. We decided to
use analytical feature reduction and engineering over, for example, the recursive features
elimination (RFE) procedure, since it offers the opportunity of interpreting the significances,
and at the same time, the ML models’ performance is directly associated and dependent
upon the structure and dimension of the input dataset.

This phase was additionally followed by statistical and non-parametric data testing
and analysis to examine the abundance within the different classes and find more data
insight for further biological evaluations and findings.

The analysis continued in designing the second phase of ML models, generating more
accurate results and providing better model prediction and metrics. Respectively, we
used the scope of the reduced features to analyze the essential features that provided an
admissible understanding of microbiome drug resistance classification’s critical markers.
In general, the second stage was designed following the same modeling approach from
the first one, with the difference of taking into consideration that the input features scope
consists only of the most significant features determined in the previous step.

The extraction of the most informative features was used as an input into pathway
analysis for a profound understanding of their biological role and activity. Additionally, we
went a step further and established a more operational way of defining the predictability
through the sequence of regions that correspond to each decision tree model. Assuming
the random forest classifier’s randomized object state and stochastic algorithm’s nature,
we developed a component for building and evaluating 2500 classifiers with different
random state initializations. Extracting the model classifiers with the previously achieved
accuracy resulted in five newly trained random forest classifiers. Performing the already
described approach, we calculated the significant feature’s relevance and identified the
most important variables for every iteration. Hence, we retrieve the additional data
insight in terms of resistance mechanism interpretation, analyzing the extracted variables’
importance rank.

This process was wrapped up by incorporating joint features contribution analysis to
provide a more profound symbiotic bacteria analysis for feature correlation and interaction
in the final model predictions. To interpret the constitution of the entire trajectory of
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contributions, we could extract a specific combination of features that make significant
individual and joint prediction contributions in correspondence to the resistance class.
Decomposing the features’ contributions along the prediction path of the algorithm resulted
in aggregated contributions which can better explain the impact of a set of correlated
bacteria on the drug-resistance mechanism.

2.5. Data Normalization and Scaling

Different data normalization and scaling techniques were applied before the ML
modeling process considering the various bacterial abundance distributions. Cronbach’s
alpha reliability coefficient was calculated as a measure of internal consistency and featured
correlation, respectively. We have imported a Scikit-learn built-in preprocessing module of
the Standard Scaler (removing the mean and scaling to unit variance) and MinMax Scaler
(transforming by scaling to a given range from 0.0 to 1.0) implementations. For data scaling
and normalization in the KNIME Analytics program, we used MinMax Normalization,
Z-Score Linear Normalization (Gaussian), and Normalization by Decimal Scaling. The
centering and scaling methods were separately used for the training and test datasets,
and were performed independently on each feature by computing the samples’ relevant
statistics in the given dataset. The mean and standard deviation values were used for the
transform functionality.

2.6. ML Modeling Screening Phase

We tried different well-known algorithms and industry standards addressing the data
set, considering the binary classification study design. A preliminary algorithms screening
phase, determined by the maximized accuracy factor, was performed to understand of
the most promising technique for future observation and development. The data were
randomly shuffled and divided into two separate datasets for training (70%) and testing
(30%). Therefore, we applied naïve Bayes, logistic regression, K-nearest neighbor, support
vector machine with principal component analysis (PCA), and decision tree algorithms.

2.7. ML Modeling

Referring to the performance metrics of the decision tree approach, we proceed to
explore the ensemble-based algorithms (Scikit-learn random forest classifier in Python
and tree ensemble learner in KNIME), building multiple decision trees and taking advan-
tage of the tree-related majority voting. In terms of undertaking the machine learning
algorithms selection, we focused on emphasizing the accuracy maximization and overall
sensitivity and specificity metrics. Thus, we simulated and optimized different ML models
in both development environments, applying different dataset splitting strategies and
scaling and normalization techniques. The subset observed consisted of the CRC post-
operative individuals, taking into account the follow-up medical assessment summary
(individuals categorized as resistant and not resistant medical observations to the respective
cancer treatment).

2.8. Highly Contributing Features

We compared both case models to analyze the input data relevance and identify
the features with the most predictive power to the model. In the context of microbiome
analysis, we denoted that the crucial features are the most informative ones defining the
potential of significant bacteria for describing and understanding the CRC drug resistance
mechanism. Scikit-learn random forest classifier in Python provides different techniques
for computing the crucial algorithm variables. In this study, we used the importance of the
random forest algorithm’s built-in features, the permutation method, and the technique of
feature importance computed with SHAP values.

We performed calculations in the built-in feature relevance considering the Gini
importance mean decrease impurity method to measure how each variable decreases
the spit’s impurity in the specific tree. On the other hand, permutation based feature
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importance [26] randomly shuffles each feature and computes the change in the model’s
performance. The features affecting the performance were identified as the most relevant
ones. Ultimately, the SHAP interpretation [27] uses the Shapley values from game theory
to estimate each feature’s influence on the prediction score.

The tree ensemble learner in KNIME provides a statistics table on the different decision
trees’ attributes (output ports). We have developed an algorithm component for calculating
the attribute importance regarding splitting value on the root, first, and second subsequent
levels using statistics nodes. Therefore, we extracted and aggregated the most significant
features for the specific use case.

Due to the potential drawbacks and tendency to prefer and favor individual or sets of
potentially important features, we performed and combined the results to take advantage
of all methods mentioned above. We compared the most relevant variables defined and
extracted from both environments to provide narrowed feature sets. Therefore, this set of
features was further analyzed and referenced as a set of crucial features that potentially
play an important role in understanding the tumor proliferation mechanism impact on the
reference gut microbiome dataset. This machine learning analysis assumed that high model
accuracy directly influences the trustworthiness of the computed variable importance.

The overall model interpretation determines which variables have the most predictive
power. However, using the tree interpreter library (v.0.2.3) [28] and applying the aggregated
contributions convenience method on the most performant second-phase predictive model,
we decomposed the prediction contribution for the individual predictions and aggregated
them for the whole data set.

By analyzing the contribution of the joint features to the final probability of an instance,
we were able to extract valuable conclusions on whether specific aggregated contributions
impact the increase or decrease in the final resistance probabilities.

2.9. Statistical Analysis

The Mann–Whitney Wilcoxon rank-sum test was used for calculating the U value/
p-value along with mean and median ranks between assigned classes in the microbial
population of the dataset. We used the non-parametric test for understanding whether the
distributions of the observations obtained between the two separate classes on a dependent
variable significantly tend to differ from each other. The correspondent p-value proba-
bilities for detecting the features with significantly different abundance levels between
defined groups were calculated (using R and KNIME statistics nodes). Bonferroni and
Benjamini–Hochberg p-value adjustments were additionally applied (R built-in function-
ality). The more conservative Bonferroni method for controlling the false positive rate
(significance cut-off at α/n, where α = 0.05) was identified as statistically strict due to
punishing all of the most important variables. Thus, we continued the analysis using
Benjamini–Hochberg’s p-adjustment with a false discovery rate threshold of 0.15. The fea-
ture’s importance was ranked after calculating the p-values, followed by sorting according
to the threshold of p-values < 0.05 (features were considered significant and extracted as
potential key biomarkers for further biological analysis and interpretation).

3. Results
3.1. ML Modeling Screening Phase Results

The modeling screening phase is of huge importance since no gold standard is available
for presenting trustworthy results. It was initially performed for trying and provisioning
most of the well-known Scikit learn’s supervised learning classifiers. Using naïve Bayes
did not result in significant performance metrics, giving overall accuracies no higher than
0.429. The assumption that all features are independent can be considered a limitation in
this particular case. A similar model evaluation was retrieved using the logistic regression
classifier, resulting in an accuracy of 0.425. The linearity between the dependent variable
and the independent variables can be considered as a limitation. Furthermore, we tried
the K-nearest neighbor algorithm (KNN) which was not able to retrieve a greater accuracy
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than 0.325. This can be potentially explained due to the high dimensionality as well as
the sensitivity of choosing the neighbors based on the distance criteria. Utilizing the
principal component analysis (PCA) with a support vector machine algorithm (SVM)
resulted in achieving an overall accuracy of 0.497, which was also evaluated as a low
performant approach.

We concluded that the most promising insight we retrieved was in using the decision
tree approach, where we achieved a preliminary overall accuracy value of 0.764. Using
the decision tree (‘gini’ attribute selection measure in correlation with the ‘best’ splitter
as splitting strategy approach) provides additional benefit since the advantageous charac-
teristic of decision trees is their comprehensibility. Although it has a simple visualization
representation, this approach is beneficial because it forces the root split by some feature
abundance distributions. The screening modeling phase results are summarized in Table 1.

Table 1. Screening modeling phase algorithms overall accuracies.

ML Algorithms Overall Accuracy *

Naïve Bayes 0.429
Logistic Regression 0.425

K-Nearest Neighbors 0.325
Support Vector Machine 0.497

Decision Tree 0.764
* The overall algorithm accuracy was selected as the main algorithm selection indicator.

Considering the decision tree algorithm’s accuracy, we continued modeling utilizing
the tree-based random forest algorithm assuming that the performance metrics will be
additionally improved by taking advantage of the tree-related majority voting.

3.2. ML Modeling Results

Since bioinformatical working environments are not standardized, in our opinion, it is
essential to test and explore the random forest algorithm in different circumstances. We
applied the practical ML modeling utilizing the random forest classifier implementations
from two different experimental environments, Python-based Scikit-learn and KNIME.
Moreover, we tried different data normalization/scaling techniques, splitting ratio and
classifier parameters to provision and maximize models’ performance metrics. The process
were designed following a two-phase strategy, where the first stage’s most significant
features were used as a narrowed input scope for the second phase. Created models were
additionally analyzed using k-fold cross-validation and hyperparameter tuning techniques.
The main idea of this concept was identifying and observing the most significant features
resulting from the second phase.

Scikit-learn standard scaler and Z-score normalization resulted in considerable re-
search Cronbach’s alpha coefficients of over 0.85 for both resistant and not resistant
sample groups. Two different random forest classifiers were designed with a cross-
validation value of 20% as testing data. The standard scaled classifier performed with
overall accuracies of 0.8. The classifier designed with z-score normalization performed
with an overall 0.833 accuracy. Created ML models were further analyzed by trying k-
fold cross-validation and hyperparameter tuning using the default built-in Randomized-
SearchCV/GridSearchCV libraries (tuning the number of estimators, maximum depth of
the threes, minimum number of samples required to split an internal node, a minimum
number of samples required to be at a leaf node), and different algorithm parameter value
setups. Since no significant improvements from the k-fold cross-validation were observed,
we continued using the algorithm parameter tuning using different combinations for the
number of trees in the forest (n_estimators), maximum depth of the tree (max_depth), and
the number of features to consider when looking for the best split (max_features). Thus, the
parameters’ setup of n_estimators = 55, max_depth = 5 and max_features = 3 resulted in
increased algorithm metrics with an overall accuracy of 0.9. KNIME predictor configured
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the cross-validation value of 25% test data using the stratified sampling by additionally
introduced ‘resistance’ target feature, was designed with z-score data normalization, where
a Cronbach’s alpha of 0.854 was calculated. The Tree Ensemble Learner was configured
with the Gini index split criterion.

Then, we proceed with the second ML iteration using the reduced most important
features set. The standard scaled classifier (configured with the cross-validation value
of 25% test data), where Cronbach’s alpha coefficient of 0.795 performed with an overall
accuracy of 0.917. Experiencing similar behavior to the first iteration, we configured the
same parameters set using the following values for the n_estimators = 25, max_depth = 4,
and max_features = 3. Area under the curve (AUC) was calculated as value of 0.91. On
the other hand, the Tree Ensemble Learner, configured with the Gini index split criterion
and cross-validation value of 20% test data using randomly based sampling, resulted in
Cronbach’s alpha coefficient of 0.795 and overall performance accuracy of 0.9. The general
performance metrics are available in Tables 2 and 3.

Table 2. General ML modeling performance metrics for the resistant and non-resistant CRC post-
operative individuals’ group.

Environment ML Algorithms Normalization/Scaling Accuracy Sensitivity Specificity

Python Scikit-learn RFC (P1) Standard Scaler 0.9 1.000 0.833
Python Scikit-learn RFC (P1) Z-Score Normalizer 0.9 1.0 0.75

KNIME TEL (P1) Z-Score Normalizer 0.833 0.778 1.0
Python Scikit-learn RFC (P2) Standard Scaler 0.917 1.000 0.833

KNIME TEL (P2) Z-Score Normalizer 0.9 1.000 0.8

RFC—Scikit-learn random forest classifier, TEL—Tree ensemble learner, P1—Phase 1 ML modeling, P2—Phase
2 ML modeling.

Table 3. Detailed ML modeling performance metrics for the resistant and non-resistant CRC post-
operative individuals’ group.

Precision Recall F1-Score

Environments and ML
Algorithms Resistant Non-

Resistant Resistant Non-
Resistant Resistant Non-

Resistant

Python Scikit-learn—RFC (P1) 0.83 1.00 1.00 0.80 0.91 0.89
Python Scikit-learn—RFC (P1) 0.75 1.00 1.00 0.86 0.86 0.92

KNIME—TEL (P1) 1 0.778 0.600 1.000 0.750 0.875
Python Scikit-learn—RFC (P2) 0.83 1.00 1.00 0.86 0.91 0.92

KNIME—TEL (P2) 0.800 1.000 1.000 0.833 0.889 0.909

RFC—Scikit-learn random forest classifier, TEL—Tree ensemble learner, P1—Phase 1 ML Modeling, P2—Phase
2 ML modeling.

We concluded that the tree-based algorithms accomplished the highest scores com-
pared with the other techniques we applied according to the performance metrics. We also
tried XGBoost and AdaBoost algorithms, which resulted in no significant improvements
compared with the forest-based approach described above. We identified the second-phase
Python-based random forest classifier as the most performant and selected the resulting
most important features as a reference set for further statistical analysis.

3.3. Statistical Analysis Results

Our taxonomic analysis of the raw data, assuming the improved taxonomical precision
since the bacterial references are constantly changing, resulted in 3603 different bacterial tax-
onomic units detected. Thus, the gut microbiome consisted of 20 unique phyla, 35 classes,
72 orders, 119 families, and 259 unique genera—additional genus-level data were explored.
The taxonomy on the genus level was unavailable for 1506 bacteria (3603/1506; 41.7%).
From the remaining bacteria (2097; 58.2%), the most significant genera among the resistant
samples belong to the statistically calculated Benjamini–Hochberg p-value interval from
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0.009 to 0.024. Thus, in the resistant group, we found the Bacteroides (0.009), followed
by Lachnoclostridium (0.017), Streptococcus (0.021), Eggerthella (0.024), Escherichia-Shigella
(0.026), Flavonifractor (0.04), and [Ruminococcus] torques group (0.044). Accordingly, the
most significant genera among the non-resistant samples belong to Benjamini–Hochberg
p-value interval from 0.001 to 0.047. In the non-resistant group we found the Ruminococ-
cus (0.002), Oscillospiraceae-UCG-002 (0.003), Oscillospiraceae NK4A214 group (0.010), Lach-
nospiraceae FCS020 group (0.019), Desulfovibrio (0.012), Intestinibacter (0.038), Christensenel-
laceae R-7 group (0.047), Clostridium sensu stricto 1 (0.016), Lachnospiraceae NC2004 group
(0.037), Oscillospiraceae-UCG-005 (0.014), Blautia (0.045), and Alistipes (0.033). The statistical
analysis results for genera abundances in resistant and non-resistant groups are presented
in Figure 4.
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3.4. Highly Contributing Features

The comparison for the resistant and non-resistant groups of samples presented a total
of 86 unique genera. Subsequently, 28 were separated by the ML algorithm from these gen-
era as the most important features (32.6%) ranking in an interval of statistically calculated
Benjamini–Hochberg p-value from 0.002 to 0.049 between the groups. The most significant
differentiation between the resistant and non-resistant groups were observed in the follow-
ing genera: Ruminococcus, Oscillospiraceae-UCG-002, Eubacterium eligens group, Barnesiella,
Bacteroides, Oscillospiraceae group, Desulfovibrio, Oscillospiraceae-UCG-005, Clostridium sensu
stricto 1, Lachnoclostridium, and Lachnospiraceae FCS020 group (0.002, 0.003, 0.005, 0.007,
0.009, 0.010, 0.012, 0.014, 0.016, 0.017, and 0.019 respectively).

According to the models’ predictability and statistical analysis, we extracted the
most significant genera acting as potential key biomarkers and factors for modulating
the therapy resistance. Our findings are complementary to the other microbiome related
studies published in the literature.

However, besides the practice of analyzing the particular feature significances, we
went a step further decomposing the algorithm’s prediction path, extracting the aggregated
feature contributions. This novel approach’s main aim was to explore what genera are
mostly seen together and how they are jointly contributing to the resistance class. According
to the stochastic nature of the algorithm, the aggregated contribution analysis can be done
multiple times, considering all generated models following the same performance metrics
as the referent one. For the purpose of our study, we proceed with the analysis using the
selected Python-based best performant classifier from the second phase.

The benefit of the proposed aggregate analysis supports the thesis that resistance is
not due to the presence of only a specific pathogenic genus in the patient microbiome, but
several bacterial genera that live in symbiosis.
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3.5. Joint Features Contribution Analysis Results

The symbiotic bacterial analysis generated different sets of joint feature combinations,
providing a combined overview of the model’s predictability corresponding to the resis-
tance class. As expected, the aggregated contributions are lower than the individual ones
but uncover additional data insights regarding the constitution of the entire trajectory along
the algorithm’s prediction path. These correlations reveal different genera joint impacts
supporting the therapy-resistant effect. The joint feature contributions were calculated
and extracted from the same Python-based random forest classifier, selected as the most
performant second-phase predictive model.

Enterococcus, Blautia, Subdoligranulum, and Escherichia-Shigella were mostly observed
contributing to the resistant group. Enterococcus is identified in correlation to Haemophilus,
Intestinibacter, Ruminococcus, Lachnoclostridium, Weissella, Coprococcus, and Senegalimassilia.
Blautia is commonly significant with Paraprevotella, Subdoligranulum, Oxalobacter, and TM7x
genera. Subdoligranulum is retrieved as correlated to Escherichia-Shigella, Gemella, Neg-
ativibacillus, Blautia, Paraprevotella, and Escherichia-Shigella. Escherichia-Shigella is mostly
observed in aggregated relation to Subdoligranulum, Coprococcus, Gemella, and Negativibacil-
lus. The detailed aggregated features significances supporting the resistance behavior
(contribution to the resistance class prediction) are presented in Table 4.

Table 4. Aggregated bacteria significance contributions to the resistant class.

Aggregated Bacteria ‘Resistance’ Contribution

[‘Escherichia-Shigella’, ‘Subdoligranulum’, ‘Gemella’, ‘Negativibacillus’] 0.00770053
[‘Blautia’, ‘TM7x’] [‘ 0.0061875

[‘Escherichia-Shigella’, ‘Coprococcus’, ‘Lachnospiraceae UCG-010′, ‘Family XIII UCG-001′] 0.00555556
[‘Terrisporobacter’, ‘Weissella’, ‘Slackia’] 0.00538462

[‘Enterococcus’, ‘Haemophilus’, ‘UCG-005′] 0.005
[‘Intestinibacter’, ‘Enterococcus’, ‘Lachnospiraceae NC2004 group’, ‘Lachnoclostridium’] 0.0047138

[‘Coprococcus’, ‘Megasphaera’, ‘Parasutterella’, ‘UCG-002′] 0.0045
[‘Streptococcus’, ‘Phascolarctobacterium’, ‘Paraprevotella’, ‘Dubosiella’] 0.00403846

[‘Subdoligranulum’, ‘Blautia’, ‘Paraprevotella’, ‘Oxalobacter’] 0.00317853
[‘Subdoligranulum’, ‘Butyrivibrio’] 0.00307692

[‘Lachnospiraceae UCG-010′, ‘Barnesiella’] 0.00235897
[‘Blautia’, ‘Oxalobacter’] [‘ 0.00231884

[‘Clostridium sensu stricto 1′, ‘Flavonifractor’, ‘Agathobacter’, ‘Butyricimonas’] 0.00227193
[‘Flavonifractor’, ‘Agathobacter’, ‘Butyricimonas’, ‘Anaerofustis’] 0.00222222

[‘[Eubacterium] ruminantium group’, ‘[Eubacterium] eligens group’, ‘Moryella’] 0.00198413
[‘Haemophilus’, ‘Alistipes’] 0.00188889

[‘Clostridium sensu stricto 1′, ‘Blautia’, ‘TM7x’, ‘Butyricimonas’] 0.00188235
[‘Ruminococcus’, ‘Enterococcus’, ‘Turicibacter’, ‘Leuconostoc’] 0.00181818

[‘[Eubacterium] ruminantium group’, ‘Denitrobacterium’] 0.00179724
[‘Turicibacter’, ‘Leuconostoc’] 0.00171429

[‘Slackia’, ‘Eubacterium’] 0.00162037
[‘Escherichia-Shigella’, ‘Subdoligranulum’] 0.0013468

[‘Enterococcus’, ‘Weissella’, ‘Lachnoclostridium’] 0.00133333
[‘Enterococcus’, ‘Coprococcus’, ‘Anaerococcus’, ‘Senegalimassilia’] 0.00128205

[‘Ruminococcus’, ‘Weissella’, ‘[Eubacterium] ruminantium group’, ‘Denitrobacterium’] 0.00121212

Weissella, Eisenbergiella, Escherichia-Shigella, Slackia, Phascolarctobacterium, and Ru-
minococcus were mostly observed contributing to the not resistant group. Weissella (in-
dividual algorithm importance rank of 0.016418) is perceived in aggregated correlation
with Slackia (0.015248) and Eisenbergiella (0.017094). Phascolarctobacterium (0.014645) is
discovered in relation to Streptococcus (0.023119), Paraprevotella (0.012763), Parasutterella
(0.048950), Eisenbergiella (0.017094), and Barnesiella (0.009232). Escherichia-Shigella (0.033473)
is retrieved as correlated to Negativibacillus (0.019078), Subdoligranulum (0.039651), Megas-
phaera (0.022836), and Veillonella (0.019204). Ruminococcus (0.038257) is mostly observed
with Coprobacillus (0.015379), Turicibacter (0.013747), and Leuconostoc (0.012220). The detailed
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aggregated significances supporting the not resistance behavior (contribution to the not
resistance class prediction) are presented in Table 5.

Table 5. Aggregated bacteria significance contributions to the not resistant class.

Aggregated Bacteria ‘Not Resistance’ Contribution

[‘Weissella’, ‘Eisenbergiella’, ‘[Eubacterium] ruminantium group’, ‘Denitrobacterium’] 0.006
[‘Escherichia-Shigella’, ‘Lachnospiraceae UCG-010′, ‘Family XIII UCG-001′] 0.00568889

[‘Enterococcus’, ‘Lachnospiraceae NC2004 group’, ‘Lachnoclostridium’] 0.00533109
[‘Ruminococcus’, ‘[Eubacterium] eligens group’, ‘Coprobacillus’] 0.00474074

[‘Streptococcus’, ‘Phascolarctobacterium’, ‘Paraprevotella’] 0.0043956
[‘Phascolarctobacterium’, ‘Eisenbergiella’, ‘Olsenella’] 0.00394872

[‘Escherichia-Shigella’, ‘Negativibacillus’] 0.00385632
[‘Weissella’, ‘[Eubacterium] ruminantium group’, ‘Denitrobacterium’] 0.00378355
[‘Phascolarctobacterium’, ‘Eisenbergiella’, ‘Parasutterella’, ‘Olsenella’] 0.00334066

[‘Bacteroides’, ‘Megasphaera’, ‘Coprobacillus’] 0.00314286
[‘Flavonifractor’, ‘Agathobacter’] 0.003

[‘[Eubacterium] ruminantium group’, ‘Slackia’, ‘Eubacterium’] 0.00283414
[‘Clostridium sensu stricto 1′, ‘Weissella’, ‘Slackia’] 0.00266667

[‘Subdoligranulum’, ‘Ruminococcus’, ‘NK4A214 group’, ‘Family XIII UCG-001′] 0.00242424
[‘Clostridium sensu stricto 1′, ‘Blautia’, ‘TM7x’] 0.00238235
[‘Streptococcus’, ‘UCG-002′, ‘Negativibacillus’] 0.00227273
[‘Ruminococcus’, ‘Turicibacter’, ‘Leuconostoc’] 0.00226263

[‘Phascolarctobacterium’, ‘Lachnospiraceae NC2004 group’, ‘Barnesiella’] 0.00222222
[‘Haemophilus’, ‘Terrisporobacter’, ‘Weissella’, ‘Slackia’] 0.00215385

[‘Alistipes’, ‘Lachnospiraceae NC2004 group’] 0.002
[‘[Eubacterium] ruminantium group’, ‘Parasutterella’, ‘Slackia’, ‘Eubacterium’] 0.0019222

[‘[Eubacterium] eligens group’, ‘Moryella’] 0.00189076
[‘Eisenbergiella’, ‘Olsenella’] 0.00181319

[‘Escherichia-Shigella’, ‘Subdoligranulum’, ‘Megasphaera’, ‘Veillonella’] 0.00166667
[‘Weissella’, ‘Slackia’] 0.00153515

The aggregated contribution relations establish a fundamental ground for more pro-
found future scientific research. The individual features importance ranks are available
in Table S1.

3.6. Bacterial Abundance Results

The previously created OTU tables were used to create a potential metabolomics
profiling with the iVikodak workflow [29]. Although this type of inference should be
performed from the metatranscriptomics datasets, they can give us insights into their
potential roles in specific KEGG pathways. According to species abundance level, we
can assume the influence of metabolites produced by the bacteria and their impact on the
cellular mechanisms. The most abundant genus has been found to be the Faecalibacterium
genus which could influence the development and support CRC development. This genus
is less abundant in the non-resistant microbiome samples, and the concentration increases
in resistant samples. Furthermore, the correlation between Faecalibacterium and CRC is
enhanced with the evidence of the highest abundance of this genus in the not-treated CRC
microbiome samples. The bacterial abundance is shown in Figure 5.
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The second significant correlation was observed in correspondence to the Bifidobac-
terium genus. The inflammatory effect of the Bifidobacterium biofilm is supported by our
results, as we observed the highest abundance in resistant samples. These cases are most
prone to high immune response due to inflammations. Moreover, we observed a signif-
icant abundance of two beneficial genera, Ruminococcus and Bacteroides. The first one,
Ruminococcus, has the highest abundance in the non-resistant group and partially decreases
its abundance in the resistant group. The bacterial abundance is shown on Figure 6.
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The abundance frequency pattern is slightly different in correspondence to the Bac-
teroides. Our results assume that the highest abundance of this genus is observed in the
resistant samples because they are newly diagnosed cases that did not receive any drug treat-
ment, while the treated resistant samples already have decreased the presence of Bacteroides.
Due to the microbiome renewal ability, the non-resistant group has a higher abundance of
this genus than the resistant cases. The bacterial abundance is shown in Figure 7.
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The abundance frequency patterns covered in the analysis and segregated according
to the diagnosis and control groups are visually presented in Figure 8.
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The observed abundances show that some bacteria are present only in specific groups
such as Parasutterella and Lachnospira that are found only in the control group. Therefore,
mentioned bacteria are known to participate in the everyday protein catabolism in the
colon of humans [4].

Considering the bacterial abundances, the bacterial abundance tendency in the non-
resistant samples is summarized in Table 6, where p-values were calculated using the
Benjamini–Hochberg statistical method.

Table 6. Bacterial abundance tendency in the non-resistant samples.

Genus Our Study Results p-Values

Barnesiella Increase in non-resistant 0.0069

Alistipes Increase in non-resistant 0.0017

Intestinibacter Increase in non-resistant 0.038

Flavonifractor Decrease in non-resistant 0.04

Akkermansia Increase in non-resistant 0.041

[Ruminococcus] torques group Decrease in non-resistant 0.043

Streptococcus Decrease in non-resistant 0.021

Butyricimonas Increase in non-resistant 0.022

Eggerthella Decrease in non-resistant 0.024

Escherichia-Shigella Decrease in non-resistant 0.026

Anaerovoracaceae Increase in non-resistant 0.027

Negativibacillus Increase in non-resistant 0.031

Leuconostoc Decrease in non-resistant 0.034

Ruminococcus Decrease in non-resistant 0.0017

Oscillospiraceae Increase in non-resistant 0.0034

Bacteroides Decrease in non-resistant 0.0087

Clostridium sensu stricto 1 Increase in non-resistant 0.015

4. Discussion

The human intestinal microbiota has a complex spectrum of bacteria, estimated to be
nearly 1100 species [30]. Likewise, every bacterium influences different biological pathways
and drug metabolism due to their enzymatic effects. Increasing evidence shows that under-
standing the gut microbiome can be a breakthrough discovery for the patient treatment
responses, affecting the survival rates in various neoplasms, adenomas, and cancers.

The most frequent genus among the microbiome samples that we analyzed with
our algorithm, Bacteroides, is already published in several studies that have a significant
association with human CRC development [31]. This genus has been identified as an
important feature from the model we used for comparison of resistant/non-resistant, in
favor of the resistant group (p = 0.003, mean abundance 28). The enterotoxigenic Bacteroides
bacteria has a critical impact on the CRC development and proliferation considering
their biofilm production for colonization that results in a series of inflammatory reactions
that encourages chronic intestinal inflammation and tissue damage [32]. Moreover, the
functional studies done on mice verified that the presence of enterotoxigenic Bacteroides
could directly promote intestinal carcinogenesis [33]. Additionally, the Alistipes bacteria,
which is significantly increased in the non-resistant group, is living in symbiosis with
the Bacteroides species because both are resistant to vancomycin, kanamycin, and colistin.
These two species have similar pathways for amino acid fermentation supporting colon
inflammation and adenoma development [5,34].
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Additionally, the most compelling genus with the highest p-value was Ruminococcus.
This genus is in favor of the non-resistant patients. This study highlights the fundamental
role of gut microbiota in cancer development and progression along with chemotherapy
outcomes. It is understandable that the Barnesiella species shows high correlation with the
non-resistant group since its metabolites indicate infiltration of interferon-γ-producing γδT
cells in cancer tissues. Furthermore, it is shown that this species can interfere with the
impact of the anticancer immunomodulatory agents and prevent cancer treatment [15].

The resistance mechanism bacterial function table we composed from our study is
summarized and discussed in Table 7.

Table 7. Summary of the resistance mechanism bacteria functions.

Genus Information about Biological Role and Abundance of the Genus References

Barnesiella
Improves systemic amount of Th1 and Tc1 and the intertumoral level of
IFN-γ-producing γδ TILs (IFN-δ + γδT cells), leading to an increase in

cyclophosphamide efficacy.
[12,35–37]

Alistipes Restore the ability of tumor-associated myeloid cells to produce TNF in mice
treated with anti-IL-10R/CpG-ODN therapy. [32]

Intestinibacter

Decreased profiles of Intestinibacter shows it to be resistant to oxidative stress
and able to degrade fucose, indicative of an indirect involvement in mucus

degradation. It also appears to possess the genetic potential for sulfite
reduction, including part of an assimilatory sulfate reduction pathway.

[30,33]

Flavonifractor
It is correlated with the degradation of beneficial anticarcinogenic flavonoids,

which was also found to be significantly correlated with the enzymes and
modules involved in flavonoid degradation within Indian CRC samples.

[32,38]

Akkermansia

Have a beneficial role in epithelial tumor patients who showed a good
response to anti-PD-1 therapy, and oral supplementation with a muciniphila
post-FMT with nonresponsive feces restored the efficacy of PD-1 blockade
through increasing the recruitment of CCR9+ CXCR3+ CD4+ T cells into

tumor beds.

[37]

[Ruminococcus] torques group Increase in CD4+ cells and serum CD25. Correlated with better tumor
reduction but increased events of ICI-associated colitis. [39]

Christensenellaceae R-7 group Newly identified groups without relevant information. [40]

Streptococcus Protect tumor cells from the toxic effect; the tannic acids are degraded by Sgg
and the cytotoxic effect could be abolished. [41]

Butyricimonas
Butyricimonas and Clostridium, especially those in cluster XIVa and IV, are
acetic acid and butyric acid-producing bacteria, are anti-inflammatory, and

promote healthy colonocytes.
[31]

Eggerthella

Eggerthella lenta is capable of acquiring vancomycin resistance. It is also
capable of oxidizing bile acids, which potentially prevents the production of
cancer-promoting secondary bile acids such as chenodeoxycholic acid. Their

enterotoxins cause genome instability.

[31]

Escherichia-Shigella Both favoring or suppressing of cancer cases are possible. [42]

Anaerovoracaceae Bacteria decrease interleukin-1β if LB (lactobacillus species supplemented as
probiotics) interleukin-1B increase drug resistance. [6,18]

Negativibacillus

This genera in Crohn’s disease patients before treatment is associated with
disease refractory to infliximab. They are published as resistant to vancomycin,

cefalexin, amoxicillin and clavulanic acid, penicillin G, daptomycin,
metronidazole, trimethoprim sulfamethoxazole, oxacillin, imipenem,

ceftriaxone, rifampicin, doxycycline, erythromycin, tobramycin, fosfomycin,
and amoxicillin.

[43]

Leuconostoc Promotes apoptosis in colon cancer cell line by upregulation of MAPK1, Bax,
and caspase 3, and downregulation of AKT, NF-kB, and Bcl-XL expressions. [10,39]

Ruminococcus
Correlated with better tumor reduction but increased events of ICI-associated
colitis. Promoters of antitumor response by TLR4, TNF production, although

prescription of antibiotics may alter.
[19,44]

Oscillospiraceae Microbiota composition, antibiotics before ipilimumab treatment does not
influence baseline dominant microbiota. [11,44]
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Table 7. Cont.

Genus Information about Biological Role and Abundance of the Genus References

[Eubacterium] eligens group

Association with complete remission after CAR T cell therapy, intestinal
microbiota may influence the outcome of chimeric antigen receptor T cell

(CAR T) therapy. Patients with complete response to CD19 CAR T-therapy
exhibited enrichment of Oscillospiraceae. Oscillospiraceae is with higher

abundance in healthy individuals than the cancer patients.

[45]

Lachnospiraceae NC2004 group

Enterotoxigenic bacteria that have a critical impact for the CRC development
and proliferation considering their production of biofilm for colonization that
results in a series of inflammatory reactions that persuade a chronic intestinal
inflammation and tissue damage. A protective role of Bacteroidetes was also

researched using samples from metastatic melanoma patients treated
with ipilimumab.

[46]

Lachnoclostridium Significantly associated with clinical benefit, 5-fluorouracil treatment increase
after treatment. [11]

Lachnospiraceae FCS020 group High abundance in inflammatory bowel disease patients. [46]

Although we are familiar with the single impact of one genus in the patient microbiome,
we are still far from answering why several genera are frequently found together and if the
resistance is based on the presence of one genus or the presence of several genera together.

5. Conclusions

This study introduced a multidisciplinary systematic approach and a methodology
for observing colorectal cancer carcinogenesis using microbial composition specified at the
genus level. Leveraging the concepts of the bioinformatics studies, different highly perfor-
mant machine learning models were developed to assist clinicians in efficiently analyzing
resistant patients’ microbiome diversity to address and threaten tumor proliferation, newly
developed adenoma, inflammation promotion, and potential DNA damage. The random
forest classifier was identified as the most suitable algorithm for empowering follow-up
technique for features significance interpretation. The most important genera were used
in the pathway analysis to understand their biological roles and activities. The significant
features relevance was further observed using the stochastic algorithm’s nature, where
additional data insights and variables’ importance ranks were retrieved. Finally, symbiotic
bacteria analysis was performed for features correlation and interaction (joint features
contribution in correspondence to the resistance class). Thus far, many studies point out
the importance of present genera in the microbiome and intend to treat it separately. This
study points out the different perspectives of a treatment since our aggregate analysis gives
clear results for the genera that are often found together in a resistant group of patients,
meaning that resistance is not due to the presence of one pathogenic genus in the patient
microbiome, but several bacterial genera that live in symbiosis.

The established methodology can also be used for unseen microbiome data that can
help oncologists decide on treatment and post-treatment strategy for immunotherapy and
drug resistance understandings.
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