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Abstract—Cuffless blood pressure (BP) measurement is
gaining a lot of attention as a promising new technology that
can be embedded in a patch-like biosensor device. Electrocar-
diogram (ECG) and photoplethysmogram (PPG) waveforms
are non-invasive by their nature - they can be recorded
without sending any electrical impulses to the human body.
These signals present different aspects of the cardiovascular
system, thus using both of the signals for blood pressure
classification seems like a viable strategy. Quick estimation
of the blood pressure during the triage process in cases of
natural disasters with many injured subjects, is an essential
measure for following the hemostability of the injured. The
main goal of this study is to develop a two-class classification
model (Hypotension and Nothypotension) for fast prediction
of the blood pressure category by utilizing ECG and PPG
signals, in order to detect a BP sudden drop. The developed
deep learning models are based on the LSTM architecture
and its variants, CNN-LSTM. We also conducted three class
classification model. The models were trained and tested
using the data from the UCI Machine Learning Repository
Cuff-Less Blood Pressure Estimation dataset with 12000
instances. The best result in the two-class model is AUROC
= 0.74.

Keywords—blood pressure (BP) estimation, triage, electro-
cardiogram (ECG), photoplethysmogram (PPG), long short
term memory (LSTM), CNN-LSTM, artificial neural network,
deep learning

I. INTRODUCTION

A multisensor patch-like device that can be attached to
an injured’s chest in mass casualties events could improve
the START triage process. This device is capable of
collecting and analysing information on vital parameters
such as respiration rate (RR), heartbeat (heart rate – HR),
blood oxygen saturation level (SpO2), blood pressure and
body temperature [1]. Our interest in this research is to
utilize the embedded electrocardiogram (ECG) and photo-
plethysmogram (PPG) sensors in the patch-like biosensor
in order to follow the injured’s hemostability (if there is
an internal bleeding).

Blood pressure is the force that the blood exerts on
the walls of the blood vessels, as the heart pumps blood.
The heart on average beats 60 - 100 times a minute
[2]. During each beat the heart performs a cardiac cycle
that consists of two phases: the systole, when the heart

contracts pumping the blood into the arteries and the
diastole, when the heart relaxes after a contraction. With
every beat of the heart, the blood pressure changes from
the maximum, systolic (SBP), to the minimum, diastolic
(DBP) [3]. This is a metric that is often measured by
health care professionals during a medical checkup. ECG
represents the electrical activity of the heart, while PPG
shows the changes of blood volume in the microvascular
tissue. The codependency among BP, ECG and PPG has
been explored in many different studies [4] [5] [6] [7].

During the overview of the literature we have realized
that the BP hypotension category (SBP<90, DBP<60) is
not in the focus of most researches, while it is important
for the project presented in [1]. Typical symptoms of
hypotension are dizziness and fainting. Severely low blood
pressure can deprive the brain and other vital organs
of oxygen and nutrients, leading to a life-threatening
condition - shock. Since our interest is to monitor the
injured patient’s hemostability in emergency situations, it’s
important to note that a sudden drop in the BP might be
caused by an internal bleeding, leading to a change in the
triage priority of giving a medical treatment (to triage label
’immediate’). As a main interest in this paper, we explore
the BP categorisation as a two-class classification problem
(classes Hypotension and Nothypotension).

As a proposed model for solving the categorization of
the BP is a type of reccurent neural network - Long short
term memory, LSTM. They are capable of processing
sequential information, e.g. time series data (ECG, PPG
signals), and are specifically built to be able to follow long
term dependencies. This study focuses on CNN-LSTM
models. The developed model architecture supports the
idea of fast categorisation - the algorithm is simple and
able to function in real time.

The proposed methodology is consisted of the following
steps:

1) Cleaning the data, by excluding signals that have
missing values or the difference between the SBP
and DBP is less than 20 or greater than 100, or the
value for DBP is greater than 130;
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2) The data segments in the longer signals are trans-
formed into smaller ones with uniform length - a
format of the input vectors passed to the network
models;

3) The ECG and PPG signals are transformed first by
standardization and then by filtration;

4) BP categorization - two BP categories (First experi-
ment) and three BP categories (Second Experiment);

5) Building the classification CNN-LSTM models;
6) Evaluation of the models.

The rest of the paper is organized as follows. Section
2 presents an overview on similar papers or related re-
searches. The methodology is described in Section 3. The
results of the experiments and the discussion are presented
in Section 4, including the introduction of the dataset,
the preprocessing part and the used methods. Section 5
presents the conclusion.

II. RELATED WORK

In this section, several researches on the subject of
interest are explored - solutions for noninvasive contin-
uous blood pressure estimation utilizing ECG and/or PPG
signals. Some of these solutions attempt to manually
extract relevant features from the signals, like pulse arrival
(PAT) time that has been proven to have a correlation to
blood pressure. Other authors rely on deep learning neural
networks to automatically find and extract features.

Pulse transit time (PTT) measures the time taken for
the arterial pulse pressure wave to travel from the aortic
valve to a peripheral site. PAT is defined as the differ-
ence between the R-peak of an ECG and the systolic
peak of a PPG. While the features are similar, they are
not interchangeable [8]. They are both proven markers
of BP with the latter gaining prominence in the recent
publications [6] [9] [7]. Those features are not the only
morphological characteristics extracted from the signals.
Many papers suggest their own features as they believe
contribute to more accurate estimations, i.e. Womersley
number [10] that reflects the flow properties of blood.
Other studies consider the main reason for the inaccuracy
of the estimators in blood pressure is the assumption
that artery diameter is a constant. The pulse intensity
ratio (PIR) is suggested as an indicator for the evaluation
of changes to the artery diameter and its correlation to
blood pressure is experimentally proven [11]. In a seven-
day experiment on 30 patients it has been shown that
patients that suffer from hypertension have both higher
average and higher variance PIR [12]. Another study relies
on the hypothesis that a healthy biomedical system is
highly complex, and that when abnormalities occur, the
complexity of the system decreases. This paper utilizes a
complexity analysis for feature extraction, achieves MAE
of 8.64 mmHg for SBP, 18.20 mmHg for DBP, and 13.52
mmHg for MAP. These results improve further when
models are calibrated: MAE of 7.72 mmHg for SBP, 9.45
mmHg for DBP and 8.13 mmHg for MAP [13]. Heart
rate is another feature often taken into account since its

easy to calculate from the ECG and an elevated heart rate
usually indicates elevated blood pressure. Sometimes they
are combined with other information about the patients
like demographic characteristics. A study working with
features extracted from a PPG signal and demographic
characteristics achieves with RMSE of 6.74 and 3.59, for
SBP and DBP respectively [14].

Other studies develop deep learning models. One pro-
posed solution uses a waveform based hierarchical Arti-
ficial Neural Network–LSTM (ANN-LSTM). The lower
hierarchy level ANN extracts necessary morphological
features from ECG and PPG waveforms and the upper
hierarchy level LSTM layers accounts for the time domain
variation of the features extracted by lower hierarchy level.
The proposed ANN-LSTM network achieves MAE of 1.10
for SBP and 0.58 DBP, and RMSE of 1.56 mmHg for
SBP and 0.85 mmHg for DBP [15]. Another study attempt
something similar by using a CNN-LSTM where the input
into the neural network is the difference of the ECG and
PPG signal [16]. The CNN layers extract morphological
features, while the LSTM extract temporal features. A
hybrid CNN-LSTM model developed to utilize both raw
PPG and ECG data and physical features, achieves a MAE
of 4.43 ± 6.09 mmHg for SBP and being 3.23 ± 4.75
mmHg for DBP [17].

Most of the referenced papers are using some subset
of the MIMIC (Medical Information Mart for Intensive
Care) databases. They have a varying degree of success
and different approaches. It’s important to note that some
models are built with the assumption that the ECG and
PPG signals are synchronized [18]. If this condition is
not met, the features can’t be extracted either manually
or automatically from the combination of ECG and PPG
signals.

III. MATERIALS AND METHODS

In this section we describe the dataset, data preprocess-
ing procedures, the developed CNN-LSTM model and the
used evaluation metrics.

A. Dataset

The dataset used in this study is UCI Machine Learning
Repository Cuff-Less Blood Pressure Estimation Dataset
[19], [20]. It contains 12000 instances. Each instance
contains only ABP, PPG and ECG signals sampled at 125
Hz.

1) PPG: Photoplethysmograph (PPG), is an optically
gained plethysmograph that detects the changes in the
volume of blood in the microvascular tissue. PPG gives
valuable information for the cardiovascular system and
it’s a simple, portable, and a low-cost technology [5]. An
example of a PPG signal, utilizing the Nurokit2 package
is given in Figure 1.

2) ABP: Arterial blood pressure (ABP) is defined as
the force that is exerted by the blood on the arterial wall.
Blood pressure is connected with the cardiovascular cycle
that has two phases: systole, when the heart contracts and
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Fig. 1: Visualization of a PPG waveform using the
Neurokit2 package

pumps the blood, and the diastole, when the heart relaxes
after contraction [3].

3) ECG: Electrocardiogram (ECG) represents a graph
of the electrical activity of the heart through time. The
impulses coordinate the contractions of different parts of
the heart allowing the blood to flow. An example of an
ECG signal, utilizing the Nurokit2 package is given in
Figure 2.

Fig. 2: Visualization of an ECG waveform using the
Neurokit2 package

B. Preprocessing

1) Data Cleaning: The instances with missing data in
any of the three signals are removed. The normal value
of the ABP in a healthy person is between 40 and 60.
An indication of a serious condition, but also a possible
invalid signal if ABP value is less than 20, therefore these
instances are excluded. ABP value above 100 is indication
of many cardiovascular diseases and this big difference
between the SBP and DBP is possible. Nevertheless, the
instances where this abnormal condition occurs are not
taken into consideration.

2) Segmentation: The average length of a signal in this
dataset is 27807.5 data points, within the range [1000,
74000]. In this study, segments with 1000 data points at
125 Hz frequency are considered, or 8 seconds in time

domain. This is done in order to avoid the exclusion of
the instances with signal length of 8 sec. This approach
increases the number of samples, but decreases their in-
formation gain. To further increase the number of training
samples, multiple segments are taken from the longer
signals, with no overlap. Each segment contains unique
data. Different studies utilize signals with different length.
More research needs to be done to find the optimal signal
length.

3) Standardization: Standardization is the process of
transforming different feature values to be on the same
scale. Each signal is transformed to have a mean value 0
and variance value 1.

4) Filtering: Signals can be distorted while recording
or transmitting, because of the presence of a noise. To
eliminate both types of noise (low and high frequencies),
the signals are filtered.

The ABP is not filtered in order to avoid a distortion in
the SBP and DBP values. For filtering the ECG and PPG
signals, both notch and bandwidth are typically used [21].
In this study the bandwidth filter of order 5 for ECG and
the bandwidth filter of order 4 for PPG is used.

5) BP categorization: In order to prepare the labeling
of the data, the values for SBP and DBP are calculated
using the ABP values by finding the local maxima for
SBP and local minima for DBP and averaging them [22].
An illustration of SBP and DBP extraction from ABP
waveform is presented in Figure 3.

Fig. 3: Illustration of SBP and DBP extraction from
ABP waveform

In this study, two different BP classification problems
are explored - data is divided in two BP categories (First
Experiment) and three BP categories (Second Experi-
ment).

First experiment
The main goal of this research, as elaborated in the

Introduction, is to develop a model to follow the hemosta-
bility of an injured patient by detecting the possible inner
bleeding. This condition can be detected by a low BP
- hypotension. Therefore, the data is divided in two BP
categories: Hypotension and Nothypotension, presented in
Table I.
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TABLE I: Blood Pressure Categorization

Category SBP DBP Number of Samples
Hypotension < 90 < 60 9379
Nothypotension � 90 � 60 34849

Second experiment
A Second experiment was developed in order to discern

whether the same model can be used in the standard BP
classification problem, slightly adapted to the dataset at
hand. According to American College of Cardiology, BP
is divided in the following categories/classes: Normal, Pre-
hypertension, Stage 1 Hypertension, Stage 2 Hypertension
[23].

Considering the used dataset (small number of samples
in the Stage 1,2 Hypertension) the BP is divided in three
categories, presented in Table II.

TABLE II: Blood Pressure Categorization

Category SBP DBP Number of Samples
Normal < 120 < 80 16597
Prehypertension 120� 139 80� 89 17689
Hypertension � 140 � 90 9942

6) Balancing the classes: The used dataset suffers
from class imbalance. An imbalanced dataset will skew
the results favoring the most common class. The most
popular balancing method SMOTE (Synthetic Minority
Oversampling Technique) was not successful in this study,
since the input vectors are presented as time distributed
sequences.

The method of undersampling is utilized for the two-
class classification (First experiment). The undersampling
is done by randomly discarding majority class instances
from the training dataset. As for the Second experiment
with the three BP classes, another balancing method is
used - the class weight method, simply by assigning more
weight to the less represented class. The undersampling
is abandoned, since a reduction of the training data in
the three class-classification with this particular dataset
negatively impacted the learning process.

C. Model Structure

Based on previous studies, it is concluded that LSTM
neural networks are suitable for BP classification problem,
following the fact that the input vectors are two chronolog-
ical arrays of points, one of ECG and one of PPG signals.

A CNN-LSTM architecture combines CNN layers for
extraction of features from input data with LSTM for
sequence prediction [24]. CNN-LSTM contains both CNN
and LSTM layers. The input into the ANN are two se-
quences each made up from 1000 data points representing
PPG and ECG signals. These sequence are split into sub-
sequences. Each subsequence represents the same signals
in a different time step. A single input vector is a stream
of real numbers, representing the filtered ECG and PPG
signal, in the following format: (100, 10, 2), corresponding
to (length of subsequences, timesteps, features).

The built model is an multivariate CNN-LSTM, an
ensemble of two neural networks, one for each variable
(PPG and ECG), with the same structure that link to the
same output layer:

- First experiment: 2 neurons representing the blood
pressure categories (0: Hypotension, 1: Nothypotension).

- Second experiment: 3 neurons representing the blood
pressure categories (0: Normal, 1: Prehypertension, 2:
Hypertension).

D. Evaluation Metrics

In this section, the used metrics in order to evaluate the
models are elaborated. Since we developed classification
models, the following evaluation metrics are used: accu-
racy, precision, recall, f1 score, AUROC values. Also, Sup-
port, as well as Macro and Weighted averaging schemas
are presented. The schemas average the metrics into a
single value to evaluate the performance of the model:

1) Support: The number of samples in the testing
dataset labeled as a class.

2) Macro average: Macro average is a schema used
in multiclass classification, i.e. calculating corresponding
metrics independently and averages the results.

3) Weighted average: Weighted average is schema that
averages metrics like precision and recall for all classes
in a dataset by assigning weights to each class depending
on their importance.

IV. RESULTS AND DISCUSSION

In this section, the results obtained using the aforemen-
tioned methodology and the chosen LSTM-CNN model
are presented.

A. Model Training and Evaluation

In the scope of this research, many different model
structures have been explored. The model presented below
was the most successful in the research so far. The network
has a batch size of 128 and runs for 20 epochs.

In the presented experiments 85% of the dataset is used
to train the model, while the remaining 15% is used for
testing, i.e. evaluating the model’s results. A validation
dataset containing 10% from the training dataset is used
to prevent overfitting. An ADAM optimizer with a learning
rate of 0.03 was used to train the models. The learning rate
is selected utilizing a naive approach, by experimenting
with different values - it is concluded that this value gives
the best loss.

The First Experiment
The overall accuracy of the best model is 0.76. The

model evaluation is given in Table III with the class
labels: ’0’ as Hypotension and ’1’ as Nothypotension. The
AUROC value is 0.74. The precision for the Hypotension
class is small-scale, partly due to the fact that this is the
minority class. However, reasonably good recall and f1
scores rates are achieved. The model takes 147.14s to train
and uses 148 MB of RAM.
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TABLE III: Results - First experiment

precision recall f1-score support
0:Hypotension 0.46 0.71 0.56 1395
1:Nothypotension 0.91 0.78 0.84 5240

accuracy 0.76 6635
macro avg 0.69 0.75 0.70 6635
weighted avg 0.82 0.76 0.78 6635

In Table IV the confusion matrix from the First exper-
iment is presented.

TABLE IV: Confusion matrix - First experiment

Predicted labels
Hypotension Nothypotension

Tr
ue Hypotension 996 399

Nothypotension 1165 4075

The Second Experiment
The overall accuracy of the best model is 0.66. The

model evaluation is given in Table V with the class labels:
’0’ as Normal, ’1’ as Prehypertension and ’2’ as Hyperten-
sion. The precision and recall rates for the Normal class
are fairly high. Evaluation of the model shows that it has
trouble distinguishing between the Prehypertension and
Hypertension classes. Prehypretension is a less advanced
form of hypertension. The AUROC values for each of the
classes are 0.791, 0.688 and 0.729, respectively. The model
takes 358.33s to train and and uses 148 MB of RAM.

TABLE V: Results - Second experiment

precision recall f1-score support
0:Normal 0.78 0.70 0.74 2461
1:Prehypertension 0.60 0.68 0.64 2653
2:Hypertension 0.61 0.57 0.59 1521

accuracy 0.66 6635
macro avg 0.66 0.65 0.65 6635
weighted avg 0.67 0.66 0.66 6635

In Table VI the multiclass confusion matrix from this
experiment is presented.

TABLE VI: Confusion matrix - Second experiment

Predicted labels
Normal Prehyper-

tension
Hyper-
tension

Tr
ue

Normal 1717 674 97
Prehypertension 393 1806 454

Hypertension 90 569 862

B. Discussion

The obtained results give an excellent starting point
to develop a classification model for BP estimation that
can be embedded on a compact patch-like biosensor that
contains ECG and PPG sensors. Once the model is built,
the classification process is delivered in real time, as the
real-life situations require.

The First experiment with the two classes is an idea
that presents itself as a simplified version of the classic
BP classification problem. The achieved reasonably good

recall rates (0,71 and 0,78 for the two classes) and the
f1 score rates, lead us to believe that further research in
this direction would be productive. We also tried a four-
class classification (Hypotension, Normal, Prehypertension
and Hypertension), but the obtained results were not
satisfactory.

There are several reasons that impacted the results in the
First and Second experiment - the value of the segment
size (8 sec.) might be too short of an interval to accurately
deduce the blood pressure. Further study focusing on this
aspect is required. Still, the model can distinguish between
the different categories and training the same model on a
larger dataset can improve the results.

The model is limited by the fact that it works with
fixed segments instead of dynamic ones. Blood pressure
varies during the span of the day. The changes to BP
can happen gradually. Other works have proven that cal-
ibrating a model to a patient produces far better results
because it allows the model to learn the patient specific
morphological characteristics. This study attempts to build
a generalized model, a model that’s expected to perform
reasonably well on any patient.

Using an extensive dataset from different sources will
help to overcome the pointed obstacles.

V. CONCLUSION

The goal of this research is to create a model that can be
used on a patch-like device, capable of fast BP category
classification. The proposed solution is developed to be
used during assessment of subjects in emergency situations
with high number of casualties. The patch-like multisensor
needs to function with no regard of the person’s age and
gender. The only information that can be used are the
momentarily values of the detected ECG and PPG signals.
The developed model is to perform in real-time and to
allow continuous monitoring of blood pressure on a device
with limited memory capacity and limited battery life [1].

This paper proposes a solution to the given request
- models an input as a sequence of ECG and PPG
signals and outputs a BP category. Since we are dealing
with raw signals, the focus is on the preprocessing part.
The instances of the used dataset [19] have 3 features:
ABP, PPG and ECG waveforms. The SBP and DBP are
extracted from the ABP signals, while the PPG and ECG
signals are standardized and filtered to serve as the input
vectors, processed by a trained CNN-LSTM model.

Two different experiment were undertaken. The First
one is the main goal of this study, the two-class BP
classification (Table I). The AUROC value is 0.74. The
precision for the Hypotension class is small-scale, partly
due to the fact that this is the minority class. However,
sufficiently good recall (0,71 and 0,78) and f1 scores rates
are achieved. In the Second experiment, the dataset is
divided in three BP categories (Table II). The AUROC
values for each of the classes are 0.791, 0.688 and 0.729,
respectively. The Normal BP is classified distinctively well
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(f1=0,74; precision=0,78; recall 0,70), but the recognition
of the other two classes was not successful.

The summarised results from the First experiment in-
dicate that the two-class classification including the hy-
potension category should be considered as a solution
for the fast BP categorization during the triage process.
We believe that this simplified BP classification is more
suitable for the patch-like device, since it can help in the
detection of the sudden BP drop as the first sign of possible
internal bleeding.

Future work includes adjusting the segment size making
sure that segments from the same signal are all either in
the train or in the test set. Also, we intend refining the
results by developing regression models for BP estimation
with deep learning approach, using Big Data.
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