
Deep Learning-based Cryptanalysis of Different AES
Modes of Operation

Milena Gjorgjievska Perusheska1, Hristina Mihajloska Trpceska1 and Vesna
Dimitrova1

1 "Ss. Cyril and Methodius" University in Skopje, Faculty of Computer Science and
Engineering, Skopje, North Macedonia

milena.gjorgjievska-perusheska@students.finki.ukim.mk
hristina.mihajloska@finki.ukim.mk

vesna.dimitrova@finki.ukim.mk

Abstract. With the advent of machine learning and the development of
powerful machines, the problem of decryption takes on a new light and opens
new avenues for research. The remarkable rise of technologies and algorithms
contributes to the widespread use of machine learning in various cases. One of
the uses is in cryptanalysis and attack of algorithms used in cryptographic
processes. In this paper, we elaborate the idea by using the deep neural network
to perform the known-plaintext attack on AES to restore as many bits as
possible, on the given plaintext. Moreover, we perform our experiments on
different key sizes and different modes of operation on AES. The results show
that the deep neural network can restore the bits in the whole data set with a
probability of more than 98%, restore two consecutive bytes with more than
70%, and more than half of the plaintext bytes with a probability of 99%.

Keywords: Cryptography, Cryptology, Cryptanalysis, Machine Learning, Deep
Neural Network

1 Introduction

In recent years, when talking about Cryptology as a science, the emphasis has been
put on using resources and the application of ML (Machine Learning) as a discipline
that finds application even when it comes to security. On the one hand, ML is used in
the construction of new security solutions, while on the other hand, it is used in
various attacks and analyses of current methods.

When it comes to the implementation and use of AES (Advanced Encryption
Standard) [1] as a block and symmetric cipher , ML offers potential for expansion
research. Furthermore, while cracking a cipher like AES used to be relatively tricky,
today's theory shows that the attack surface is far broader than previously thought.

Before being chosen as a standard, this primitive was known as the Rijndael block
cipher [2] [3]. Furthermore, the key that is utilized is private and can be 128, 192, or
256 bits in length, ensuring that the security is reliable. The input, output, and mode
of operation will all be in 128-bit block size. The operations carried out inside this
algorithm are based on two-dimensional arrays substitution and permutation.

Additionally, with its modes of operation, AES allows a new way of thinking about
how to make modifications to crack encryption and disclose information. ML is the
best match for analyzing these AES modes of operation using DNN (Deep Neural
Networks) with the intricacy of work in mind.

AES is one of the most popular block ciphers, and over the years, many known
attacks against it have been identified, and their analysis is being improved for future
use. However, there is little research done in the field of machine learning and
cryptanalysis of AES. On the basis of the structural characteristics of the neural
networks and known attacks against AES, the specific experimental system is
designed and discussed in this paper. The capacity to learn from prior experience and
improve known facts allows some of the attacks to be implemented into a
well-constructed DNN and create a model that can be utilized for other analyses.

Additionally, in this paper, the focus is on the analysis of the ECB (Electronic
CodeBook), CBC (Cipher Block Chaining), and Ctr (Counter) modes of operation in
AES through known plaintext-ciphertext pairs. To be more specific, the pairs are
encrypted separately and independently of the modes and key sizes, which are 128-,
192-, and 256-bits long. Furthermore, the study is based on the training and testing of
a DNN that provides specific block restoration findings. On the other hand, the
experimental findings give details on the subsequent recovered blocks as well as the
consequences of using DNN as a decipher. Finally, the proposed DL-based
cryptanalysis is a promising step towards a more efficient and automated test for
checking the safety not for the AES as a standalone cipher but more for the other
primitives that use AES in some mode of operation.

The remainder of this paper is organized as follows: in Section 2, we give a short
overview of the usage of DNN in different cryptanalysis scenarios. In Section 3, we
describe in more detail the DNN framework that will be used in experiments in the
rest of the paper. In order to perform a machine learning approach in this
cryptanalysis, we need to set up the experimental environment, generate data, adjust
the parameters and obtain the train and test phase, which are all explained in Section
4. Section 5 contains our main experimental results on using the deep neural network
to perform the known-plaintext attack on AES in different modes of operation to
restore as many bits as possible on the given plaintext. We conclude our paper in
Section 6.

2 Related work

The symmetric crypto primitives have been the most attractive target for attacks for a
long time. In a general case, the attacks can be divided into two cryptanalysis groups,
differential, and linear attacks. The differential cryptanalysis analyzes how differences
of plaintext pairs result in differences of the resultant ciphertext pairs and is done by
the well-known chosen-plaintext attack [4]. On the other hand, linear cryptanalysis is
a statistical method where linear approximations between plaintext bits, ciphertext,
and key bits are analyzed. The known-plaintext attack on block ciphers obtains it [5].

Afterward, there was a huge improvement in the area of cryptanalysis, and many other
cryptanalytic attacks were developed. In this paper, we focus on the known-plaintext
attack where the plaintext can be restored from the ciphertext without knowing the
key. In order to skip the part with the mathematical calculations about the linear
approximations between the bits, we combine the power of machine learning and
neural networks to recognize a given pattern [6]. Pattern recognition is thus equivalent
to the issue of decrypting a ciphertext by knowing the plaintext. In this scenario, even
with the smaller amount of data (compared to the traditional method) of plaintext and
ciphertext bits pairs, the neural network can be well trained and afterward used for
testing.

However, traditional cryptanalysis methods have flaws in terms of attack difficulty
and the quantity of data necessary for them, which DNN cryptanalysis can address.
Whether or not you have the key, DNN analysis can answer a wide range of problems
and raise many concerns about other security issues. There are several vulnerabilities
in symmetric ciphers, such as block ciphers, that can be exploited for security
breaches. Knowing the key or not, the analysis with DNN can solve many different
variations of problems and open up many additional questions for other security
issues.

A few scientific publications are concentrating on utilizing DNN to identify the
mapping relationship between plaintexts, ciphertexts, and the key. The work in [7]
presented results about attacking the DES and 3DES, where a known-plaintext attack
is based on neural networks. They successfully trained a neural network to retrieve
plaintext from ciphertext without any interaction with the keys. Also, there is another
attack on nonlinear characteristics of DES by using a neural network [8]. In this work,
the authors show the application of a neural cryptanalysis approach to DES S-box.
With this approach, they obtained the correct values for some of the key bits. The
authors in [9] use backpropagation neural networks to perform cryptanalysis on AES
to restore plaintext. Their results show that the neural network can restore the entire
byte with more than 40% probability. The authors in [10] use a neural network to
predict the key from a dataset used to encrypt a collection of plaintexts acquired using
a lightweight block cipher - Simon cipher. The author in [11] trains neural networks to
distinguish the output of Speck cipher with a given input difference from random data
and exploit differential properties of round-reduced Speck. Another successful attack
on lightweight block ciphers, such as Simon and Speck, is done in [12]. The results
show that the DL-based cryptanalysis can recover the key bits successfully when the
keyspace is restricted to 64 ASCII characters. And the newest developments in [13]
demonstrate an analysis of Gohr’s deep neural network distinguishers [11] and give
possible directions even to improve the existing accuracy of the proposed DNN.

3 DNN framework

Neural networks are a subset of machine learning (ML) that refers to a specific type of
multi-layered model that learns data representations by layering smaller statistical
components. With the combination of many hidden layers and non-linear activation

functions a representation of complicated patterns in datasets is created. A neural
network takes an input and sends it through several layers of hidden neurons,
represented as functions with unique coefficients that must be learnt, to produce a
prediction representing the combined input of all the neurons. This type of capacity is
associated with the brain's biological neuron, which interprets incoming signals from
the body as a piece of information based on prior knowledge and experience [14].
Various neurons are stacked in layers, and each input is processed via the layers to
generate an output. Each layer-to-layer link has a weight that is changed by two
propagation methods: backpropagation and feedforward.

A collection of input features and some random weights in a feedforward neural
network will be tuned via backward propagation. The difference between anticipated
and goal output is computed during backpropagation, and the weight values are
updated using a method [15]. Furthermore, backpropagation is represented as
computing the derivative. It is essentially the chain rule from calculus, in which a
minor change in the set of weights impacts the ultimate loss. During the training
phase, the derivative or gradient retains that change.

The weights are separated into sets and input into a hidden layer, which has a
second set of weights leading to the anticipated output and loss. Additionally, the
impact of changing weights on the concealed layer should be addressed. If there are
more weights to consider, the chain rule from output to input will be used to continue
the process. A neural network is considered to have completed one iteration when it
has read the number of records given by the batch size in both the forward and
backward directions. The uniform distribution approach is used to establish the
neurons' weights, and they are modified after each iteration. The neurons are given
estimated weights and bias values at the conclusion of each iteration. One epoch is
defined as the number of iterations that have been done throughout the whole dataset.
For each record in the dataset, estimated values for each neuron in the network would
have been assigned at the end of one epoch.

4 Model for cryptanalysis

The model learns more and provides better outcomes due to using more hidden layers
[16]. The primary objective is to learn from the input and provide an output as near as
possible to the plaintexts supplied. Keras [17], a neural network framework that is part
of TensorFlow [18], an open-source toolkit for a variety of machine learning
applications, is utilized for this.

Experimenting with various machine learning techniques to train and evaluate the
model, such as Binary cross-entropy, SGD (Stochastic gradient descent), RELU
(Rectified linear activation function), and Sigmoid function, yielded different results
and addressed different ways of improving the model to improve the experiment's
effectiveness. Furthermore, the approaches are utilized when binary classification
difficulties are encountered and have yielded promising results in the past, as seen by
their usage in various studies. Scikit-learn is a machine learning software package for
the Python language that is used to evaluate data.

The primary issue is that data will be represented in binary format because it
involves two values from the matrix, either 0 or 1. Binary cross-entropy is the most
common and well-known loss function in machine learning. The computations for
these two maximum likelihood estimators are based on distinct assumptions about the
dependent variable.

4.1 Experimental Environment

The DNN, a sequential model with a linear stack of layers, is developed for this
experiment. The input layer features a 128-unit input shape and a RELU activation
function. In addition, there are three hidden layers with a dimension of 256 bits and a
RELU activation function, as well as an input matrix with a size of [n x 128] and an
output matrix with a size of [n x128] and a Sigmoid function. The input and output
layers are each 128 bits in size.

Furthermore, the device on which the training and testing part is performed has the
configuration represented in Table1.

Table 1. Device specifications

Device part Capability

Processor
Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
2.21 GHz

System (OS) Windows 10

GPU NVIDIA GeForce GTX 1050 Ti

Memory 128 GB SSD + 1 TB HDD

RAM 16.0 GB

Even though the plaintexts were encrypted with different key sizes and different
AES modes of operation, after comparing the time required for training a DNN, the
time taken does not change much. The average number of hours required is 0.9. This
was done to see if the training duration, the accuracy, or the complexity of prediction
were affected.

4.2 Data Generation (Dataset)

For the experimental chapter of this research, a dataset comprising pairings of
plaintexts and ciphertexts was required. Still, more specifically, ciphertexts were
obtained by encrypting the plaintexts with different key sizes to demonstrate if there is
a difference or difficulty when training the DNN and comparing the results produced.

The IMDB dataset [3] was utilized to do this, which is made up of movie reviews
with individual lengths of no more than 200 words, with about 50K reviews recorded
as several lengthy phrases. According to the dataset description, the reviews are
unique, which is the major point of interest and will be demonstrated further on.

The reviews dataset will represent the plaintexts and will be utilized for DNN
training and testing. In addition, the dataset is prepared for the model using a few

basic processes in order to get accurate results. To begin, every input in the encryption
procedure must be divisible by 16 (measure in bytes) or 128 (measure in bits) in order
to use a 128-bit block of AES encryption.

To avoid further issues with encryption, such as padding with zero bytes, which
would confuse the training process and provide unexpected results, each review is
reduced to a size that is divisible by 16. In other words, the difference between the
plaintext's length and the remaining characters is picked for the following step from a
single plaintext.

When considering ECB mode, there is one encryption according to the key, apart
from CBC and Ctr modes where there are two different encryptions where the IV
(Initialization vector) is also considered. Moreover, one encryption type is when each
IV is unique and used separately for every plaintext, and the other is the usage of the
same IV for the whole dataset.

Then, keys with sizes of 16 bytes (128 bits), 24 bytes (192 bits), and 32 bytes (256
bits) are generated using cryptographically safe pseudo-random number generators.
Additionally, each plaintext is encoded as a binary string and encrypted with each key
separately to generate a ciphertext as an output, resulting in three distinct datasets of
plaintext and ciphertext pairings for the training process, for each mode of operation.

After that, because the pairings are in byte string format, the model cannot be
created without first formatting the plaintexts and ciphertexts into bit arrays. Natural
language must be converted into machine language, such as numerical vectors, when
employing a machine learning method like DNN.

Furthermore, between plaintexts and ciphertexts, an appropriate bit scale is
produced, where the length of the plaintext bits equals the length of the ciphertext
bits. This is done in order to prevent issues with dataset size while training the DNN.
Following that, all of the plaintext and ciphertext bit arrays are combined into a
matrix, or so-called 2D array, with a fixed column size of 128 bits and a row size of
about 3 million, with exception when using Ctr mode with the same IV, where the row
size is about 1.5 million. This is due to the fact that the encryption is performed on

text of the same length, characters.210

4.3 Parameter Selection

The inputs are pairs of 128-bit blocks of plaintexts and ciphertexts [(p1, c1), … (pn,
cn)] , from a binary matrix of order , with specified by the dataset's[𝑛×128] 𝑛
train-test divide of 80 percent and 20 percent. Each bit array of the plaintext and
ciphertext pairings corresponds to one neuron in the input layer. Following that, the
data is passed through three hidden layers with a 256-dimensional dimension and a
RELU activation function. The output layer generates outputs [o1, …, on] using a
sigmoid function and a 128-dimensional dimension. An optimizer, loss function, and
monitoring metrics are all set up before the model is trained. The dataset was trained
with Binary cross-entropy loss functions, SGD as an optimizer, and accuracy as the
measure.

4.4 Training Phase

The input data and target data, which in this case are the plaintexts and ciphertexts,
make up the training procedure of the presented model, accounting for 80 percent of
the total dataset (3 million blocks). Batch size, epochs, and validation data are also
available. Furthermore, the important notion here is that the model must be able to
recognize when it is incorrect, which we accomplish by computing some type of loss.

The loss that is computed is determined by the task at hand, although it usually
entails minimizing the difference between the expected and actual output. Batch size
refers to the number of samples per gradient update, epochs to the number of training
cycles, and validation data to the data used to assess the loss and any model metrics at
the conclusion of each epoch [19].

Once making a prediction, a history object is returned that stores all the loss values
and other metric data in memory for use in visualizations or reports. To put it another
way, it's a dictionary that keeps track of training loss and metrics values over time, as
well as validation loss and metrics values. The loss function's main objective is to
assess how excellent or poor the predicted probabilities are; thus, it should return high
values for bad predictions and low values for good ones.

Binary cross-entropy compares the expected distribution of whether the bits will be
predicted to the actual distribution and seeks to minimize the discrepancies between
the two.

During the training phase, Binary cross-entropy and SGD produce a score
representing the average difference between the actual and projected probability
distributions for correct prediction. Under the maximum likelihood inference
framework, the score is minimized for a perfect cross-entropy, which is the chosen
loss function.

As the epoch size grows, the accuracy above shows the properly predicted bits as
well as the loss during training. It can be shown that using this combination of
optimizer and loss function, the results may be discussed further.

4.5 Test Phase

One of the most challenging aspects of training a DNN is determining the right
number of epochs and batch sizes. The learning algorithm's major characteristics are
batch size and SGD. When training the network, the batch size affects the accuracy of
the error gradient estimate. The speed and consistency of the learning process increase
as the batch size grows [20].

Furthermore, while dealing with large datasets, it is inevitable that the number of
training instances will be large, and the network's weights will be modified to ensure
that the model's performance is always improved. The batch size is set to 5000 for this
purpose, implying that 5000 samples from the training set will be used to estimate the
error gradient before the model weights are changed.

An epoch, on the other hand, denotes that the learning algorithm only makes one
run over the training set, which was previously divided into batches of varying sizes.
Furthermore, the validation set includes the test set, which contains 20% of the
plaintexts and ciphertexts.

5 Experimental Results

The constructed model exceeded expectations and contributed to the thoughts and
analyses that will be discussed in this chapter. These outcomes are split into three
datasets, each containing ciphertexts obtained by encrypting the given plaintexts with
different key sizes and AES modes of operation. Furthermore, the train data was
evaluated using the test set, which is 20% of the plaintext and ciphertext data, with an
average accuracy of 98.44% for ECB mode, 93.09% for CBC mode with different IV,
98.44% for CBC mode with same IV, 98.29% for CTR mode with different IV and
93.18% for CTR mode with the same IV, reflecting the overall predicted bits in a
128-bit block.

Tables 2-7 provide a representation of the results obtained. Moreover, the main
focus was on four types of experiments: restoring the bits in the whole dataset
(accuracy), restoring an entire block individually (accuracy score), restoring two
consecutive bytes in a block and restoring more than a half of the bytes within the
block. There is a ratio between the number of true positives and false positives
determined by the precision score. The precision score allows the classifier to avoid
labelling a negative sample as positive. The recall score, which preserves the ratio
between true positives and false negatives and tends to discover all positive samples
(in this example, a matched bit), is another measure used for assessment. Finally, an
F1 score (see [21]) is calculated as a weighted average of accuracy and recall.

When considering Table 7, there are results which represent calculations of
restoring two consecutive bytes that vary from 33% up to 77.1% and restoring more
than half of the bytes in a block in the range of 59.8% up to 99.8%. All the results are
according to the complexity of the cipher, its key, and the operation mode used.

Table 2. Results for AES-ECB mode

AES-ECB-128 AES-ECB-192 AES-ECB-256
Accuracy 98.81% 98.19% 98.33%

Loss 3.44% 4.98% 4.64%
Accuracy score 32.10% 18% 20.45%
Precision score 98.87% 98.26% 98.42%

Recall score 98.9% 98.35% 98.46%
F1 score 98.88% 98.30% 98.44%

Table 3. Results for AES-CBC mode with different IV

AES-CBC-128 AES-CBC-192 AES-CBC-256
Accuracy 98.46% 82.94% 97.87%

Loss 4.31% 4.72% 5.74%
Accuracy score 22.30% 7.44% 1.32%

Precision score 98.54% 83.85% 97.99%
Recall score 98.57% 84.24% 98.02%

F1 score 98.55% 84.03% 98.00%

Table 4. Results for AES-CTR mode with different IV

AES-CTR-128 AES-CTR-192 AES-CTR-256
Accuracy 98.47% 98.38% 98.03%

Loss 4.29% 4.52% 5.37%
Accuracy score 23.33% 21.52% 15.63%
Precision score 98.55% 98.47% 98.13%

Recall score 98.58% 98.49% 98.19%
F1 score 98.56% 98.48% 98.16%

Table 5. Results for AES-CBC mode with the same IV

AES-CBC-128 AES-CBC-192 AES-CBC-256
Accuracy 98.40% 98.52% 98.40%

Loss 4.45% 4.18% 4.44%
Accuracy score 21.81% 24.53% 22.01%
Precision score 98.45% 98.59% 98.48%

Recall score 98.54% 98.63% 9.52%
F1 score 98.50% 98.61% 98.50%

Table 6. Results for AES-CTR mode with the same IV

AES-CTR-128 AES-CTR-192 AES-CTR-256
Accuracy 93.47% 93.03% 93.05%

Loss 16.88% 17.77% 17.77%
Accuracy score 11.98% 6.89% 7.53%
Precision score 93.93% 93.51% 93.53%

Recall score 93.82% 93.40% 93.43%
F1 score 93.87% 93.46% 93.48%

Table 7. Results for two consecutive bytes and more than half of the bytes guessed within a
block

Encryption mode Two consecutive bytes
guessed

More than half of the bytes
guessed

AES-Same-CTR-128 33% 65.2%
AES-Same-CTR-192 30.9% 59.8%

AES-Same-CTR-256 30.8% 60.1%
AES-Diff-CTR-128 74.8% 99.6%
AES-Diff-CTR-192 73.8% 99.6%
AES-Diff-CTR-256 70.3% 99.3%
AES-Diff-CBC-128 74.7% 99.7%
AES-Diff-CBC-192 46% 68.3%
AES-Diff-CBC-256 68.5% 99.1%

AES-Same-CBC-128 74% 99.6%
AES-Same-CBC-192 75.3% 99.7%
AES-Same-CBC-256 74.1% 99.6%

AES-ECB-128 77.1% 99.8%
AES-ECB-192 75.8% 99.7%
AES-ECB-256 73% 99.6%

Furthermore, Figures 1-15 provide a sampling of the differences between the
original and predicted bytes in the block. The first 50 blocks of the data from the
complete set for a simplified visual representation are taken as an example. The
calculations are based on the encrypted blocks with different key sizes and AES
modes of operation. Every result from an encrypted block is separate and not
connected with a result obtained in another mode. More accurately, every figure is a
representation of the same part of blocks from the dataset (128-bit blocks), in which
every individual block consists of 16 bytes. Each byte from each original and
predicted block is extracted and compared bit by bit, yielding a value ranging from 0
(no difference in both bytes) to 1 (no match in both bytes), as indicated in the color
scheme.

Fig. 1. Histogram representation of predicted bytes per block when using AES-ECB-128

Fig. 3. Histogram representation of predicted bytes per block when using AES-ECB-192

Fig. 3. Histogram representation of predicted bytes per block when using AES-ECB-256

Fig. 4. Histogram representation of predicted bytes per block when using AES-CBC-128 with
different IV

Fig. 5. Histogram representation of predicted bytes per block when using AES-CBC-192 with
different IV

Fig. 6. Histogram representation of predicted bytes per block when using AES-CBC-256 with
different IV

Fig. 7. Histogram representation of predicted bytes per block when using AES-CBC-128 with
same IV

Fig. 8. Histogram representation of predicted bytes per block when using AES-CBC-192 with
same IV

Fig. 9. Histogram representation of predicted bytes per block when using AES-CBC-256 with
same IV

Fig. 10. Histogram representation of predicted bytes per block when using AES-CTR-128 with
different IV

Fig. 11. Histogram representation of predicted bytes per block when using AES-CTR-192 with
different IV

Fig. 12. Histogram representation of predicted bytes per block when using AES-CTR-256 with
different IV

Fig. 13. Histogram representation of predicted bytes per block when using AES-CTR-128 with
same IV

Fig. 14. Histogram representation of predicted bytes per block when using AES-CTR-192 with
same IV

Fig. 15. Histogram representation of predicted bytes per block when using AES-CTR-256 with
same IV

The histograms show that the best results are obtained when utilizing the
AES-ECB mode of operation for encryption and that the results degrade as the
complexity of the encryption method increases.

6 Conclusion

This research was created with the goal of observing how machine learning may be
used to analyse algorithms from the subject of cryptography and act based on the
obtained data. The experimental part includes a demonstration of AES with ECB,
CBC, and Ctr modes of operation as plaintext-ciphertext attacks, as well as
cryptanalysis using a neural network. To be more precise, we use the known-plaintext
attack on AES with different modes of operation and different key sizes in order to see
how the neural network will act and what kind of results can be obtained.

The proposed attack trains a neural network to decrypt ciphertext without
knowing the encryption key. The attack successfully reduced the time and found
almost 99% of the bits in the whole dataset. Something that is most relevant in
cryptanalysis of the symmetric cipher is guessing two consecutive bytes, which can be
seen from the experiments reaching more than 70% for some specific AES mode of
operation.

Another point worth mentioning is that thanks to new technological
developments, neural network training is becoming a simple operation that everyone
can comprehend, and the time required is drastically reduced, according to prior
records available online.

Different outcomes were produced while training a neural network to attack
and give cryptanalysis of cryptographic methods. Having different algorithms and
methods for experimenting with the results proves the power of ML and opens up a
variety of new ideas for implementing and automating cryptanalysis.

To summarize, the reported results are typical of ML when deep learning
models are built and trained in a shorter amount of time. Neural networks may learn
from their mistakes by calculating and updating errors, and they can generate output
that isn't constrained by the inputs they're given.

References

1. Advanced encryption standard (AES)., Federal Information Processing Standards Publication
197, (2001).

last accessed 2021/08/31
2. The Simon and Speck Families Of Lightweight Block Ciphers (PDF), ePrint, (2013).
3. Kaggle, “IMDB dataset (Sentiment analysis) in CSV format”,

https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format, last
accessed 2021/08/20.

4. E. Biham, and A. Shamir, Differential cryptanalysis of DES-like Cryptosystems, Journal of
Cryptology, Vol.4, No.1, pp.3-72,1991.

5. M. Matsui, Linear cryptanalysis Method for DES Cipher, in T. Helleseth (Ed.) Advances in
Cryptology – EUROCRYPT’93, LNCS 765, pages 386-397, Springer Verlag, 1994.

6. Yegnanarayana, B.: Artificial neural networks for pattern recognition. Department of
Computer Science and Engineering, Indian Institute of Technology, Madras 600036, India
(1993).

7. Mohammed M. Alani, Neuro-Cryptanalysis of DES and Triple-DES, Department of
Computing, Middle East College, Muscat, Sultanate of Oman, p.2-4, 2011.

8. M. Danziger and M. A. A. Henriques, “Improved cryptanalysis combining differential and
artificial neural network schemes,” in Proceedings of the International Telecommunications
Symposium (ITS), pp. 1–5, Vienna, Austria, August 2014.

9. Hu, X. and Zhao, Y., Research on Plaintext Restoration of AES Based on Neural Network.
Security and Communication Networks, (2018), pp.1-9.

10. Jayachandiran, K.: A Machine Learning Approach for Cryptanalysis. Department of
Computer Science, Golisano College of Computing and Information Sciences, Rochester
Institute of Technology, Rochester, NY 14586 (2018).

11. A. Gohr, “Improving attacks on round-reduced speck32/64 using deep learning,” Advances
in Cryptology-CRYPTO 2019, Springer, Berlin, Germany, pp. 150–179, 2019.

12. So, J., Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers. Security and
Communication Networks, (2020), pp.1-11.

13. Benamira A., Gerault D., Peyrin T., Tan Q.Q. (2021) A Deeper Look at Machine
Learning-Based Cryptanalysis. In: Canteaut A., Standaert FX. (eds) Advances in Cryptology
– EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science, vol 12696.
Springer, Cham.

14. Chio, C., Freeman, D.: Machine Learning & Security: Protecting systems with data and
algorithms. First Edition. O’Reilly Media, Incorporated, USA (2018).

15. Meduim, Towards Data Science, The mathematics behind deep learning,
https://towardsdatascience.com/the-mathematics-behind-deep-learning-f6c35a0fe077, last
accessed 2021/08/26.

16. Gjorgjievska Perusheska, M., Dimitrova, V., Popovska-Mitrovikj, A. and Andonov, S.,
Application of Machine Learning in Cryptanalysis Concerning Algorithms from Symmetric
Cryptography. Lecture Notes in Networks and Systems, (2021), pp.885-903.

17. Keras, “The Functional API”, https://keras.io/guides/functional_api/
18. Tensorflow, “Tensorflow Core”, https://www.tensorflow.org/overview
19. Machine learning mastery, Difference Between a Batch and an Epoch in a Neural Network

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch, last
accessed 2020/08/10.

20. Brownlee, J.: Better Deep Learning. Machine Learning Mastery (2018).
21. Scikit-learn, Precision-Recall,

https://scikitlearn.org/0.15/auto_examples/plot_precision_recall.html, last accessed
2021/08/21.

