

Cryptanalysis of Round-Reduced ASCON

powered by ML

Dushica Jankovikj

Faculty of Computer Science and

Engineering

Ss. Cyril and Methodius University

Skopje, Republic of North Macedonia
dushica.jankovikj@students.finki.ukim.mk

Hristina Mihajloska Trpceska

Faculty of Computer Science and

Engineering

Ss. Cyril and Methodius University

Skopje, Republic of North Macedonia
hristina.mihajloska@finki.ukim.mk

Vesna Dimitrova

Faculty of Computer Science and

Engineering

Ss. Cyril and Methodius University

Skopje, Republic of North Macedonia
vesna.dimitrova@finki.ukim.mk

Abstract— Our research focuses on attacking Ascon, a

lightweight block cipher presented as a candidate in the NIST

Lightweight Cryptography Standardization Process. This block

cipher provides authenticated encryption with associated data

functionalities. We propose a cryptanalysis model based on deep

learning (DL), where the goal is to predict plaintext bits given

knowledge of the ciphertext and other publicly known cipher

input parameters. Our experiments show that such known-

plaintext attacks can be successfully executed on a round

reduced version of the cipher stripped of the finalization phase.

This, in turn, validates the theoretical results. Cryptographic

algorithms are complex for the purpose of security and cannot

be easily broken by an ML model in their regular form (not

reduced). We explore multiple dataset generation techniques,

model design, and training hyperparameters.

Keywords—lightweight cryptography, cryptanalysis, known

plaintext attack, machine learning, deep learning

I. INTRODUCTION

Cryptanalysis studies the inner workings of ciphers, the
ciphertexts they produce, and cryptosystems in general. The
goal is understanding the inner workings of information
systems, uncovering hidden aspects of their operation, and
then discovering or developing techniques toward breaking
them or exposing their weaknesses. This discipline is not
inherently malicious, it is often used to discover the use cases
when a breach in a security system can be achieved so it can
be prevented in the future by improving the system. Cipher
standardization includes extensive security evaluations where
any attacks the cipher might fall weak to are discussed.
Attackers performing cryptanalysis hope to obtain access to
encrypted data and to infer the raw data value without
knowledge of the actual cryptographic key.

Cryptanalysis of block ciphers is not a new idea [1]. This
has been persistently studied, and as a result many
cryptanalytic techniques have been proposed. Most papers list
differential, linear and integral cryptanalysis, attacks which
exploit the algebraic degree, meet-in-the middle attack.
Legacy cryptanalytic technologies are known to require a
great deal of resources, whether that be time, memory, known
plaintexts.

Due to the fact that machine learning (ML) and
cryptanalysis share many of the same concepts and concerns,
they have been described as “sister fields” [2]. This
relationship originates from the similarity in the goal of both
disciplines: to learn some unknown function given pairs of
input and output values (in the cryptanalysis scenario, these
values can be ciphertext and plaintext pairs). We propose a
ML based approach to cryptanalysis, more precisely, within
the deep learning (DL) realm.

Encryption methods are considered lightweight if they are
characterized by small memory requirements and
computational complexity. Their use is suitable in constrained

devices (low memory, power or computation resources) where
performance of heavier cryptographic standards is not
acceptable. Due to the lower complexity of operation as a
requirement, these types of ciphers seem eligible for
cryptanalysis using machine learning.

II. ASCON

A. Notation

This section defines some basic notation which will be

used in the following sections. Here we define that ⊕ stands

for XOR, right and left bit rotations will be denoted as ≫ and
≪ respectively, while a||b represents the concatenation of two
bit strings a and b.

B. Ascon

Ascon is a family of ciphers equipped to handle
authenticated encryption with associated data and hashing [3].
Our focus falls on the encryption functionality of the cipher.

Ascon uses a duplex-sponge-based mode of operation for
authenticated encryption. At the core of operation stands a
lightweight permutation, which is used for all family
members. The permutation is used to apply substitution-
permutation network (SPN) based transformations iteratively
using multiple rounds. Input parameters are key, tag and nonce
where different modes support different bit lengths of these
parameters. Namely Ascon branches out into two versions,
Ascon128 and Ascon96, both of which have differences in the
parameters and the achieved security levels. The
recommended choice is said to be Ascon128 and it is the focus
of the analysis in this paper. This mode operates on a plaintext
block size of 64 bits.

The cipher operates using a 320 bit internal state which
gets updated and transformed by the sponge function. The
permutation gets applied in a=12 rounds (for initialization and
finalization phases) and b=8 rounds (for encryption process).
Encryption happens when the input plaintext block is XOR-
ed with the first 64 bits of the state. The part of the state that
“meets” the plaintext block (the first 64 bits of the state) are
called the rate r bits, while the rest are called the capacity bits.
Cipher operations can be divided in four phases:

1. Initialization: The bits of the internal state are
populated using the key K (whose number of bits are
represented by k) and nonce N. More precisely, the
internal state is filled by the vector IV||K||N where IV
is some initialization vector and calculated as:
k||r||a||b||0160-k. After the internal state registry of
bits is no longer empty, initialization can begin. The
320 bit internal state is initialized using 12 rounds of
the Ascon permutation p.

2. Associated Data processing: updates the state using
associated data blocks Ai.

3. Plaintext Processing: injects plaintext blocks Pi into
the state and extracts ciphertext blocks Ci. Ci can be

calculated as Pi ⊕ Sr, where Sr presents the r bits

from an internal state. After this operation is
performed, the internal bits in Sr accept the value of
Ci themselves.

4. Finalization: injects the key K into the capacity bits
of the state (Sc). After this, finalization is carried out
similarly to initialization - in 12 permutation rounds.
Upon completion, an authentication tag T is
produced with authenticates both the associated data
and the encrypted message.

As mentioned, the internal state S of the cipher consists of
320 bits. It is divided into 5 “words” of 64 bits each. We will
denote them S1, S2, S3, S4, S5; where S1 is equivalent to Sr.
The Ascon permutation module consists of three
transformations that affect the state as follows:

1. Addition of Round Constants: XOR-s a round specific
1-byte constant to the state word S3. The round
constants exist within the cipher stored in a lookup
table [3].

2. Nonlinear Substitution Layer: applies a 5-bit S-box 64
times in parallel in a bit-sliced fashion (vertically,
across words) [4]. The S-box mapping rules are
presented in the official cipher specification [3].

3. Linear Diffusion Layer: provides diffusion within
each state word by XOR -ing different rotated copies
of each word (horizontally, within each word). The
transformations for each state word are shown below.

S1 = S1 ⊕ (S1 ≫ 19) ⊕ (S1 ≫ 28)

S2 = S2 ⊕ (S2 ≫ 61) ⊕ (S2 ≫ 39)

S3 = S3 ⊕ (S3 ≫ 1) ⊕ (S3 ≫ 6)

S4 = S4 ⊕ (S4 ≫ 10) ⊕ (S4 ≫ 17)

S5 = S5 ⊕ (S5 ≫ 7) ⊕ (S5 ≫ 41)

The permutation in Аscon is used during the initialization,
when it is applied in 12 rounds. During encryption, it is
applied in 8 rounds in between each plaintext being processed.

C. Round reducing ciphers

In the world of ciphers, rounds refer to the number of

times some internal cipher function is applied to the data. For

Ascon, rounds are used when the cipher's permutation is

applied to the cipher state in different stages of the cipher

operation. As mentioned, initialization applies the

permutation 12 times (variable a), while the encryption uses

the same permutation 8 times (variable b). Multiple

applications of some function that mix up and shift the data

bits ensure better confusion of the bits - security through

complexity of the transformation. Namely, by mixing the data

repeatedly (multiple rounds), it gets harder to simply return

the data to its internal state. For Ascon, multiple iterations of

the SPN transformations lead to a state where the

transformation becomes layered, and the result is hard to

express in terms of a single formula where all the

modifications applied to a specific bit through the rounds can

be tracked.

Cipher specifications are created with a thick background

of experimentation and proof that defines the specific number

of rounds used for the cipher operation. The number of

rounds is chosen with security, but also with performance in

mind. For example, Ascon with more than 8 rounds in the

encryption permutation module might be more secure, but not

secure to the point where the performance hindering is worth

it. This is a lightweight cipher after all, so performance

optimization is key.

Our cryptanalysis efforts focus on a round reduced Ascon,

but only in the encryption phase. This means, the

initialization carries out using all the rounds it is meant to, but

for the encryption permutation module we experimented with

using 1, up to 8 rounds.

D. Simplified Ascon

Aside from using a round reduced Ascon, which is

common in cryptanalysis attempts, we additionally strip the

cipher of the initialization phase. By using an empty

associated data input, that section can also be considered

avoided. The figure below (will use a better figure), shows

the sections that aren't relevant to our work as grayed out.

Beginning with an initialized state, the first plaintext block

P1 is injected in the first state word. This modified the state

itself but outputs C1 as a result as well. Then the state is

processed using the encryption permutation pb (where b is

reduced). Next, P2 is XOR -ed to the first state word to obtain

C2.

Fig 1 Ascon encryption (simplified version omits greyed out processes)

We are focused on discovering the relationship between

P2 and C2, thus producing plaintext recovery attacks.

Additionally, if knowledge of P1 and C1 is assumed,

knowing the first state word after initialization is also

assumed.

E. Traditional cryptanalysis of Ascon

The security analysis of Ascon [5] proposed by its creators

gives a detailed inspection of the possible weaknesses when

rounds are being reduced. In their work they apply cube-like,

differential, and linear cryptanalysis to evaluate the security.

The focus falls on practical key-recovery attacks on round-

reduced versions of Ascon-128. The initialization phase was

round reduced to 5 out of 12 rounds. Theoretical key recovery

attacks were proven as feasible for up to 6 rounds of

initialization. From the aspect of forgery, a practical forgery

attack was presented for 3 rounds of the finalization, while a

theoretical forgery attack was presented for 4 rounds

finalization and zero-sum distinguishers for the full 12-round

Ascon permutation.

They present attempts of linear cryptanalysis of Ascon

which can be considered first in the related research efforts

and prove the bounds on the minimum number of active s-

boxes for the Ascon permutation.

III. MACHINE LEARNING FRAMEWORK

A. Machine learning concepts

Machine learning (ML) is a term that can be used to

describe algorithms that can perform intelligent predictions

based on a data set. The dataset part is necessary since ML

seeks to automatically learn meaningful relationships and

patterns from examples and observations.

The algorithms do multiple passes over the data which

enables them to iteratively learn and uncover hidden

relationships and complex patterns in the data points.

In literature, the algorithms are often referred to as

models. Choosing the appropriate model for a learning task

depends on the complexity of the function, and the

dimensionality and volume of data.

Artificial neural networks represent a family of algorithms

whose internal processing units are mathematical functions.

These models take inspiration from the neurons in the human

brain, and so, the processing units are, each connection

transmitting signals like synapses in the brain. The strength

of these signals depends on an internal weight for each model,

which is updated and adjusted through the learning process.

This affects subsequent processing in the network since the

connected neurons only process signals if the signal strength

exceeds a certain threshold. An activation function defines

this threshold.

Neurons aren’t chaotically distributed throughout the

model; instead, they are organized into layers. The neurons

within a layer do not communicate; instead, they are linked

only to neurons in the previous and following layer.

Depending on the type of neurons, the information (signal)

flow can be one-directional (data flows from one layer to the

next), bi-directional (data flows in different directions). Data

enters the model through the input layer and exists in the form

of predictions through the output layer. The layers in between

are hidden and are tasked with learning a non-linear mapping

between the input and output layers.

Deep learning (DL) is a machine learning technique

which uses deep neural networks (DNN) that contain more

than one hidden layer. These networks follow deeply nested

architectures and can consist of advanced neurons with

multiple activation functions and more complex internal

functions. The simplest forms of ML can estimate and learn

simple linear functions, while complex neural networks can

be used to estimate complex functions. DL uses multiple

layers to progressively extract higher level learnable features

from the input data and as a result is capable of learning

nonconvex and nonlinear functions [6].

B. Machine learning in cryptanalysis

The closeness of cryptanalysis and machine learning has

been theoretically established for three decades [3], but even

so, the research community has been scarce of practical

efforts which exploit more possibilities this similarity offers.

For the most part, practical work in ML driven side channel

analysis (SCA) tasks has shown as very valuable. The earliest

efforts utilized support vector machines (SVM) [7], but

recently DL enhanced SCA has gained a lot of traction.

Ghor’s work in [2] introduces a ML based cryptanalysis

strategy which later inspires further work in the domain. His

work uses DL mechanisms to produce a neural based

distinguisher tasked to perform key recovery attacks on the

lightweight block cipher Speck [8].

The authors in [9] proposes a detailed analysis of the

functionality of the new neural distinguisher who was thus far

known to work as a black box. Studying the classified sets led

to the conclusion that the neural distinguisher relies on the

differential distribution on the ciphertext pairs. Moreover,

they propose a ML based distinguisher which performs

similarly using simple standard machine learning tools.

The other authors, [6] proposes a DL based cryptanalysis

model whose task is to predict the key of block ciphers given

known (plaintext, ciphertext) pairs. Their experiments show

that the DL based approach successfully recovers the key bits

in a reduced key space scenario. When key space restriction

is not applied, the attacks are not successful unless the ciphers

are round reduced. Their work is focused on lightweight

block ciphers: simplified DES, Simon, and Speck.

Perushevska et al. in [10] apply DL for the cryptanalysis

of the DES algorithm. The model uses (ciphertext, plaintext)

pairs during training to learn to predict the plaintext. DES

works in 16 rounds; their work analyses the full

implementation and a reduced-round implementation with

only one round. Also, in [11] they implement a deep neural

network to perform a known-plaintext attack on AES. The

goal is to recover the bits of the plaintext. Their work

encompasses a wide range of experiments using different key

sizes and modes of operation on AES. The results show that

the proposed approach can restore the bits in the whole data

set with a probability of more than 98%, and more than half

of the plaintext bytes with a probability of 99%.

IV. METHODOLOGY

A. Prediction task

Our aim is to construct a model which would be able to

predict the plaintext Pi given the ciphertext Ci. This

effectively is a known plaintext attack where using pairs (Pi,

Ci) we aim to train a DL model. The model is then tested in

order to evaluate the number of plaintext bits it can correctly

guess when provided with the ciphertext bits as input.

B. Dataset generation

A cipher algorithm is a sequence of operations which can

roughly be explained as a very complex mathematical

formula where the end goal is to conceal and obscure the

input data. However, in order to conduct any data

transformation, a few other elements are needed. These

elements come in the form of raw input data which introduces

randomness to the process since the inner workings of a

cipher are not secret. A key and nonce are necessary to

initialize the state of Ascon, this is a necessary step before

any data concealing can even begin.

Encryption is already a complex nonlinear data

transformation and as such it is not straightforward to learn.

We keep this in mind when generating a dataset to train the

model with. By carefully crafting the dataset and placing

some restrictions and rules upon it, we ensure that aside from

the complexity of the algorithm, the input data is not entirely

random and all over the place. That can be achieved by using

a dataset where the inputs have small variability: any input i

does not differ from any other input j by more than x bits

(where x is some small number). This way, the model can

gradually learn how small differences in the input manifest in

the output. The same key was used for the creation of one

dataset, since we want to simulate it as an ingrained part of

the cipher itself, and not as a randomizing input parameter.

Dataset generation begins with the generation of one

random key which will be used throughout the generation

process. For the dataset creation, we created 1000 low

variability ciphertexts and 1000 low variability nonces and

then we combined each ciphertext with all the nonces from

the nonces dataset. This resulted in a dataset with 1 million

pairs of type (ciphertext, nonce). For each pair, the nonce and

the predefined fixed key were used to initialize the cipher

state. After initialization, associated data comes into play

(mentioned in the introduction). However, the associated data

affects the internal state, making it go through more rounds

of permutation. We decided to eliminate this step (since it is

optional) in order to simplify the processing as much as

possible, so we didn’t use associated data input (left it empty).

This still does a change to the state, and 1 is XOR-ed to the

last bit of the state. After the initialization, one is able to see

the existing state of the cipher.

Ascon encrypts data by XOR-ing the data block (64 bits)

to the first word of the state (also 64 bits, so no need for

padding): Pi ⊕ S1. Knowing the plaintext-ciphertext pair

produced by this XOR reveals the first word of the state itself.

In our dataset generation we wish to focus on the

encryptions produced when the cipher state has gone through

encryption permutation rounds. This is possible by skipping

the first plaintext block (since it only meets with the

initialized state that doesn’t get affected by the encryption

permutation) and focusing on the second block of the

plaintext. We set the first block of the plaintext to all 0’s.

Knowing this, it can be assumed that the first word of the state

is revealed as well, since we controlled the first input block.

This is a subject to a later discussion.

Now, moving on to a phase where the encryption

permutation module has been executed and using b

encryption rounds, the permutation was applied to the state.

Ascon applies the permutation in b=8 rounds. We

experimented with round reduced versions which use from 1

up to 8 rounds, and for each round option we generated the

next cipher state. This is important since XOR-ing the state

to the generated ciphertext in the pairs provides the plaintext

in the equation. This might seem like a backwards way to

generate (plaintext, ciphertext) pairs, but since the ciphertext

is the input to the model, it has to be the starting point

(generated first) so the variability across the dataset can be

controlled and reduced.

The resulting dataset contains 1 million records, each with

values: (ciphertext, nonce, plaintext, state). Since the nonces

are repeated for the dataset, this can be considered as a

simulation of a nonce misuse scenario. This is not a

disruption of the rules for train test datasets - no input train

data is repeated in the test data. Additionally, even if the

number of unique ciphertexts in the dataset is 1000, the

number of unique (ciphertext, nonce) input pairs is 1.000.000.

C. Feature selection

Hinting plaintext bits. The problem can be simplified

further, by tasking the model to predict only a subset of the

plaintext bits, while the other bits of the plaintext are revealed

to it and are used as input when training. This captures the

scenarios when chunks of plain data can be sniffed and

uncovered, and only some parts remain unknown. In our

work, we have experimented with revealing the first x bits of

the plaintext and predicting the remaining bits, where x varies

from 0 to 32.

Previous state. As hinted earlier, the state of the first word

of the cipher after initialization is a sequence of 64 bits which

might be revealed to the model. Just as the section above, this

leads to branching in the experimentation department.

Namely, one can use the state as additional information to the

ciphertext and nonce in the task of predicting the plaintext.

This state can be considered as completely unknown,

partially revealed (a subset of the bits used as input to the ML

model) or completely known.

D. Applying machine learning

The design of the models is responsible for the model

performance. Specifying the hyperparameters of a model

refers to defining the number of layers and neurons,

activation function.

The number of layers, the number of nodes and the type

of neurons in each hidden layer are hyperparameters that

control the topology of the network. In our work we used a

deep neural network with fully connected (dense) layers

whose inside neurons connect to every neuron in the

preceding layer. At each node, the input data (signal) gets

multiplied by the weights in a node. The resulting value is

then transformed using an activation function to produce the

output (or activation) of the node.

In order to use stochastic gradient descent with

backpropagation of errors when training DNN’s, the

activation function must be chosen so that complex

relationships between input and output data can be learnt all

while avoiding oversaturation. The ReLU activation function

outputs the input if it is positive, otherwise outputs zero.

Neurons in all layers except the output layers were set to use

this activation function.

The sigmoid activation function is nonlinear and

transforms the input data into a value between 0.0 and 0.1.

Inputs larger than 1.0 are mapped to the upper bound (1.0),

while extremely small values converge to 0.0. This is the

default function to use when a binary answer is required. This

activation is applied in the output layer of the neural network;

the final sigmoid activation function performs the binary

classification, and it dictates the prediction for each output

bit. The cutoff is done by a threshold in a way that if

siqmoid(x) is greater than the threshold then the result is 1

(the default value for the threshold is 0.5).

1) Optimizer

During the compilation of the model, the Adam optimizer,

and binary cross entropy loss were used. Adam is an

optimization algorithm created as an extension to stochastic

gradient descent whose task is to iteratively update network

weights based on input data. The algorithm works with the

gradient and the squared gradient variables to calculate an

exponential moving average [12].

2) Loss

Loss functions measure the deviation between a model's

estimation of a value and the actual value. The loss function

maps model predictions to their associated costs.

Classification tasks aim to produce a discrete class prediction

as output. Binary classification tasks are even simpler since

only two classes exist. Our research is in the realm of binary

classification, in the sense that we are predicting the values

of bits in the plaintext which.

Entropy can be defined as a measure of randomness of the

data during processing. It is a way to express the uncertainty

associated with a given probability distribution. Difference

between the randomness of two random variables is binary

cross entropy. As the predicted probability diverges

increasingly from the expected label the cross-entropy loss

increases.

3) Train/test partitions

The models were trained on 80/20 train test datasets

derived from the generated dataset (1 million records). Data

is randomly picked from the dataset to generate the train and

test datasets, and they are used equally for each model. This

means, all models see the same training data, and get

evaluated for the same test data.

4) Training Hyperparameters

Machine learning models have hyperparameters which

control the learning process. These parameters can in turn

affect the time to train and test the model, as well as the

model’s performance as well. Performance variations of the

models are likely caused by a subset of all the

hyperparameters, and we will be focusing on two of them

below.

The batch size controls the accuracy of the estimate of the

error gradient during training. Using larger batch sizes allows

for speedups fueled by parallel computation using a GPU. A

batch refers to the number of training samples used in an

iteration

An epoch encompasses a single complete pass of all the

training data through the machine learning algorithm. The

model learns by updating the weight of nodes at the end of

each epoch. Defining the number of epochs means

controlling the number of times the model gets the

opportunity to learn from the data.

If the batch size is defined big enough to include the entire

training data, then the number of epochs will be equal to the

number of iterations. This is usually not the case in practice

since most models require more than one epoch to familiarize

themselves with the data and learn. Generally, if d is the size

of the dataset, while the number of epochs is e and batch size

is b, the number of iterations i can be expressed as i = d*e/b

Choosing the hyperparameter values requires a deep

understanding of the data supported by a lot of

experimentation. The following section provides our insights

about these hyperparameters.

V. EXPERIMENTS AND RESULTS

A. Setup

The neural networks in our research were implemented

using the TensorFlow 2, Keras module. Initially we

experimented with different neural network architectures, but

in the end we settled for a fully connected neural network

with 5 hidden layers between the input and output layers. The

number of nodes is discussed below:

• Input layer: 1024 neurons.

• Hidden layers: The number of neurons in the layers

ordered from input to output: 2048, 2048, 2014, 512,

256 fully connected neurons.

• Output layer: number of bits the model aims to learn

and predict.

We experimented with networks with more layers and

different neuron configurations, but that didn’t seem to affect

performance in a noticeable way. However, this is not

eliminated as a direction for work in the future.

As mentioned, we used ReLU activation for the input and

hidden layers, and sigmoid activation for the output layer.

The Adam optimizer was used with the binary crossentrophy

loss function.

Our experiments focused on estimating the model's

performance when different options are used for the input

data:

• Plaintext hinting: the number of bits of the plaintext

revealed to the model on input, while the rest is used

as target when classifying

• State word reveal: whether the state of the cipher

from the previous step (right after initialization) is

available as input.

The number of epochs significantly affected performance

consistency; variable results were obtained from multiple

runs using 50 epochs for training. Better stability is achieved

when 500 epochs are used. We used 5000 for batch size.

B. Performance metric

The classification results are expressed in terms of

“percentage of correctly guessed bits”. This is an aggregate

metric across all test prediction results. More precisely, the

metric percentage of correctly guessed bits is calculated for

each test sample and then averaged for all. We also include a

minimum and maximum guessed bits within one test sample

metric. The goal is to catch the instances with low accuracy

even if their number is low and will not affect the global

metric in a noticeable way.

C. Results

The experiments displayed in the tables below used 150

epochs for training using a batch size of 5000.

When hinting the first j plaintext bits to the model and

using them as input we use the notation P[:j]. We

experimented with different options for plaintext hinting:

• Revealing the first half of the plaintext P and using

it as input during training, while the other half was

the target for predictions.

• Revealing only the first 20 bits and predicting the

remaining 44 bits.

• Revealing no plaintext bits and predicting the entire

plaintext block.

State hinting: The experiments where the input is enriched

with the state of the cipher immediately after initialization are

denoted as CNS0. The ones where only the ciphertext bits and

the nonce bits are used as input for the model are denoted CN.

In the table below, the column Rounds denotes the

number of encryption rounds used when generating the

dataset, while the column Accuracy displays the percentage

of correctly guessed bits metric.

TABLE I. DL MODEL PERFORMANCE SUMMARY

Rounds Plaintext hinting Accuracy

1 P[:32] 0.9947

2 P[:32] 0.9858

3 P[:32] 0.9989

4 P[:32] 0.9989

5 P[:32] 0.99997

6 P[:32] 0.7736

7 P[:32] 0.5149

8 P[:32] 0.5339

1 P[:20] 0.9879

2 P[:20] 0.9756

3 P[:20] 0.9747

4 P[:20] 0.9818

5 P[:20] 0.8907

6 P[:20] 0.8532

7 P[:20] 0.5108

8 P[:20] 0.5339

The experiment results in the table above were obtained using

full state hinting (all the bits of the previous state are

revealed: CTNS0)

When using no plaintext hints and no state hints, the

performance of the models drops quickly: the precision for

predicting the plaintext bits for b=1 is somewhere around 0.7.

Our experimental results confirm that as the number of

rounds increases, the harder it becomes to learn the inherent

plaintext-ciphertext bit relationships. This aligns with the

theoretical results, and hope lies in the future that deeper

analysis and more advanced DL techniques will exceed the

theoretical results.

VI. CONCLUSION

Our work marks an experimental approach to

cryptanalysis of Ascon using DL models. We believe this to

be the first ML-based cryptanalysis of the named cipher.

While lightweight ciphers are not new to DL-based attacks,

the previous attempts are focused on key recovery. We

successfully predict the plaintext (with known plaintext

attack) with an accuracy of 0.998 percent.

A significant drawback is that our efforts attack a very

niche-specific dataset where the randomness and variability

are brought to a minimum. The generated dataset has a nonce

misuse situation, which does the job of reducing randomness

but is not a likely real-world scenario. The cipher itself is

stripped of the finalization phase, which introduces a lot of

security and ensures data integrity.

In practice, the cipher assumes and enforces randomness

by applying nonces correctly and functioning as a unit where

all the phases are being executed. Such functions can be very

complex, and ML would not be able to find meaningful

relationships between the inputs and the outputs. In a non-

restricted scenario, DL-based cryptanalysis fails to attack the

block ciphers.

We plan to extend our work in the future by randomizing

the datasets more and strengthening the model performance

using techniques more focused on the model design and

training. Hopefully, this inspires the application of more ML-

based attacks in the domain of cryptanalysis in the future.

ACKNOWLEDGEMENT

This research was partially supported by Faculty of

Computer Science and Engineering at “Ss Cyril and

Methodius” University in Skopje.

REFERENCES

[1] A. Gohr, “Improving Attacks on Round-Reduced Speck32/64 Using
Deep Learning,” Bundesamt f¨ur Sicherheit in der Informationstechnik
(BSI), Germany, 2019

[2] R. L. Rivest, “Cryptography and Machine Learning,” Laboratory for
Computer Science Massachusetts Institute of Technology Cambridge,
MA 02139,

[3] C. Dobraunig, M. Eichlseder, F Mendel, and M. Schläffer, “Ascon
v1.2,” May 2021

[4] P. Grabher, J. Großschädl, and D. Page, “Light-Weight Instruction Set
Extensions for Bit-Sliced Cryptography”, In: Oswald, E., Rohatgi, P.
(eds) Cryptographic Hardware and Embedded Systems – CHES 2008,
2008

[5] C. Dobraunig, M. Eichlseder, F Mendel, and M. Schläffer,
“Cryptanalysis of Ascon,” March 2021

[6] U. M. Khokhar, “Deep Learning-Based Cryptanalysis of Lightweight
Block Ciphers”, July 2020

[7] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J.
Vandewalle, “Machine learning in side-channel analysis: a first study”,
October 2011

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L.
Wingers, “The Simon and Speck Families of Lightweight Block
Ciphers”, June 2013

[9] A. Benamira, D. Gerault, T. Peyrin, and Q. Q. Tan, “A Deeper Look at
Machine Learning-Based Cryptanalysis”,

[10] M. Gj. Perusheska, H M. Trpceska, V. Dimitrova, “Deep Learning-
Based Cryptanalysis of Different AES Modes of Operation”, March
2022

[11] S. Andonov, J. Dobreva, L. Lumburovska, S. Pavlov, V. Dimitrova,
and A. Popovska-Mitrovikj “Application of Machine Learning in DES
Cryptanalysis”, September 2020

[12] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”,
2014

