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Abstract— Our research focuses on attacking Ascon, a 

lightweight block cipher presented as a candidate in the NIST 

Lightweight Cryptography Standardization Process. This block 

cipher provides authenticated encryption with associated data 

functionalities. We propose a cryptanalysis model based on deep 

learning (DL), where the goal is to predict plaintext bits given 

knowledge of the ciphertext and other publicly known cipher 

input parameters. Our experiments show that such known-

plaintext attacks can be successfully executed on a round 

reduced version of the cipher stripped of the finalization phase. 

This, in turn, validates the theoretical results. Cryptographic 

algorithms are complex for the purpose of security and cannot 

be easily broken by an ML model in their regular form (not 

reduced). We explore multiple dataset generation techniques, 

model design, and training hyperparameters. 

Keywords—lightweight cryptography, cryptanalysis, known 

plaintext attack, machine learning, deep learning 

I. INTRODUCTION 

Cryptanalysis studies the inner workings of ciphers, the 
ciphertexts they produce, and cryptosystems in general. The 
goal is understanding the inner workings of information 
systems, uncovering hidden aspects of their operation, and 
then discovering or developing techniques toward breaking 
them or exposing their weaknesses. This discipline is not 
inherently malicious, it is often used to discover the use cases 
when a breach in a security system can be achieved so it can 
be prevented in the future by improving the system. Cipher 
standardization includes extensive  security evaluations where 
any attacks the cipher might fall weak to are discussed. 
Attackers performing cryptanalysis hope to obtain access to 
encrypted data and to infer the raw data value without  
knowledge of the actual cryptographic key. 

Cryptanalysis of block ciphers is not a new idea [1]. This 
has been persistently studied, and as a result many 
cryptanalytic techniques have been proposed. Most papers list 
differential, linear and integral cryptanalysis, attacks which 
exploit the algebraic degree, meet-in-the middle attack. 
Legacy cryptanalytic technologies are known to require a 
great deal of resources, whether that be time, memory, known 
plaintexts. 

Due to the fact that machine learning (ML) and 
cryptanalysis share many of the same concepts and concerns, 
they have been described as “sister fields” [2]. This 
relationship originates from the similarity in the goal of both 
disciplines: to learn some unknown function given pairs of 
input and output values (in the cryptanalysis scenario, these 
values can be ciphertext and plaintext pairs). We propose a 
ML based approach to cryptanalysis, more precisely, within 
the deep learning (DL) realm. 

Encryption methods are considered lightweight if they are 
characterized by small memory requirements and 
computational complexity. Their use is suitable in constrained 

devices (low memory, power or computation resources) where 
performance of heavier cryptographic standards is not 
acceptable. Due to the lower complexity of operation as a 
requirement, these types of ciphers seem eligible for 
cryptanalysis using machine learning. 

II. ASCON 

A. Notation 

This section defines some basic notation which will be 

used in the following sections. Here we define that ⊕ stands 

for XOR, right and left bit rotations will be denoted as ≫ and 
≪ respectively, while a||b represents the concatenation of two 
bit strings a and b. 

B. Ascon 

Ascon is a family of ciphers equipped to handle 
authenticated encryption with associated data and hashing [3]. 
Our focus falls on the encryption functionality of the cipher. 

Ascon uses a duplex-sponge-based mode of operation for 
authenticated encryption. At the core of operation stands a 
lightweight permutation, which is used for all family 
members. The permutation is used to apply substitution-
permutation network (SPN) based transformations iteratively 
using multiple rounds. Input parameters are key, tag and nonce 
where different modes support different bit lengths of these 
parameters. Namely Ascon branches out into two versions, 
Ascon128 and Ascon96, both of which have differences in the 
parameters and the achieved security levels. The 
recommended choice is said to be Ascon128 and it is the focus 
of the analysis in this paper. This mode operates on a plaintext 
block size of 64 bits. 

The cipher operates using a 320 bit internal state which 
gets updated and transformed by the sponge function. The 
permutation gets applied in a=12 rounds (for initialization and 
finalization phases) and b=8 rounds (for encryption process). 
Encryption happens when the input plaintext block is XOR-
ed with the first 64 bits of the state. The part of the state that 
“meets” the plaintext block (the first 64 bits of the state) are 
called the rate r bits, while the rest are called the capacity  bits. 
Cipher operations can be divided in four phases: 

1. Initialization: The bits of the internal state are 
populated using the key K (whose number of bits are 
represented by k) and nonce N. More precisely, the 
internal state is filled by the vector IV||K||N where IV 
is some initialization vector and calculated as: 
k||r||a||b||0160-k. After the internal state registry of 
bits is no longer empty, initialization can begin. The 
320 bit internal state is initialized using 12 rounds of 
the Ascon permutation p. 

2. Associated Data processing: updates the state using 
associated data blocks Ai. 



3. Plaintext Processing: injects plaintext blocks Pi into 
the state and extracts ciphertext blocks Ci. Ci can be 

calculated as Pi ⊕ Sr, where Sr presents the r bits 

from an internal state. After this operation is 
performed, the internal bits in Sr accept the value of 
Ci themselves. 

4. Finalization: injects the key K into the capacity bits 
of the state (Sc). After this, finalization is carried out 
similarly to initialization - in 12 permutation rounds. 
Upon completion, an authentication tag T is 
produced with authenticates both the associated data 
and the encrypted message. 

As mentioned, the internal state S of the cipher consists of 
320 bits. It is divided into 5 “words” of 64 bits each. We will 
denote them S1, S2, S3, S4, S5; where S1 is equivalent to Sr. 
The Ascon permutation module consists of three 
transformations that affect the state as follows: 

1. Addition of Round Constants: XOR-s a round specific 
1-byte constant to the state word S3. The round 
constants exist within the cipher stored in a lookup 
table [3].  

2. Nonlinear Substitution Layer: applies a 5-bit S-box 64 
times in parallel in a bit-sliced fashion (vertically, 
across words) [4]. The S-box mapping rules are 
presented in the official cipher specification [3]. 

3. Linear Diffusion Layer: provides diffusion within 
each state word by XOR -ing different rotated copies 
of each word (horizontally, within each word). The 
transformations for each state word are shown below. 

S1 = S1 ⊕ (S1 ≫ 19) ⊕ (S1 ≫ 28) 

S2 = S2 ⊕ (S2 ≫ 61) ⊕ (S2 ≫ 39) 

S3 = S3 ⊕ (S3 ≫ 1) ⊕ (S3 ≫ 6) 

S4 = S4 ⊕ (S4 ≫ 10) ⊕ (S4 ≫ 17) 

S5 = S5 ⊕ (S5 ≫ 7) ⊕ (S5 ≫ 41) 

The permutation in Аscon is used during the initialization, 
when it is applied in 12 rounds. During encryption, it is 
applied in 8 rounds in between each plaintext being processed. 

C. Round reducing ciphers 

In the world of ciphers, rounds refer to the number of 

times some internal cipher function is applied to the data. For 

Ascon, rounds are used when the cipher's permutation is 

applied to the cipher state in different stages of the cipher 

operation. As mentioned, initialization applies the 

permutation 12 times (variable a), while the encryption uses 

the same permutation 8 times (variable b). Multiple 

applications of some function that mix up and shift the data 

bits ensure better confusion of the bits - security through 

complexity of the transformation. Namely, by mixing the data 

repeatedly (multiple rounds), it gets harder to simply return 

the data to its internal state. For Ascon, multiple iterations of 

the SPN transformations lead to a state where the 

transformation becomes layered, and the result is hard to 

express in terms of a single formula where all the 

modifications applied to a specific bit through the rounds can 

be tracked.  

Cipher specifications are created with a thick background 

of experimentation and proof that defines the specific number 

of rounds used for the cipher operation. The number of 

rounds is chosen with security, but also with performance in 

mind. For example, Ascon with more than 8 rounds in the 

encryption permutation module might be more secure, but not 

secure to the point where the performance hindering is worth 

it. This is a lightweight cipher after all, so performance 

optimization is key. 

Our cryptanalysis efforts focus on a round reduced Ascon, 

but only in the encryption phase. This means, the 

initialization carries out using all the rounds it is meant to, but 

for the encryption permutation module we experimented with 

using 1, up to 8 rounds. 

D. Simplified Ascon 

Aside from using a round reduced Ascon, which is 

common in cryptanalysis attempts, we additionally strip the 

cipher of the initialization phase. By using an empty 

associated data input, that section can also be considered 

avoided. The figure below (will use a better figure), shows 

the sections that aren't relevant to our work as grayed out. 

Beginning with an initialized state, the first plaintext block 

P1 is injected in the first state word. This modified the state 

itself but outputs C1 as a result as well. Then the state is 

processed using the encryption permutation pb (where b is 

reduced). Next, P2 is XOR -ed to the first state word to obtain 

C2.  

 

Fig 1 Ascon encryption (simplified version omits greyed out processes) 

We are focused on discovering the relationship between 

P2 and C2, thus producing plaintext recovery attacks. 

Additionally, if knowledge of P1 and C1 is assumed, 

knowing the first state word after initialization is also 

assumed. 

E. Traditional cryptanalysis of Ascon 

The security analysis of Ascon [5] proposed by its creators 

gives a detailed inspection of the possible weaknesses when 

rounds are being reduced. In their work they apply cube-like, 

differential, and linear cryptanalysis to evaluate the security. 

The focus falls on practical key-recovery attacks on round-

reduced versions of Ascon-128. The initialization phase was 

round reduced to 5 out of 12 rounds. Theoretical key recovery 

attacks were proven as feasible for up to 6 rounds of 

initialization. From the aspect of forgery, a practical forgery 

attack was presented for 3 rounds of the finalization, while a 

theoretical forgery attack was presented for 4 rounds 

finalization and zero-sum distinguishers for the full 12-round 

Ascon permutation.  

They present attempts of linear cryptanalysis of Ascon 

which can be considered first in the related research efforts 

and prove the bounds on the minimum number of active s-

boxes for the Ascon permutation. 



III. MACHINE LEARNING FRAMEWORK 

A. Machine learning concepts 

Machine learning (ML) is a term that can be used to 

describe algorithms that can perform intelligent predictions 

based on a data set. The dataset part is necessary since ML 

seeks to automatically learn meaningful relationships and 

patterns from examples and observations. 

The algorithms do multiple passes over the data which 

enables them to iteratively learn and uncover hidden 

relationships and complex patterns in the data points. 

In literature, the algorithms are often referred to as 

models. Choosing the appropriate model for a learning task 

depends on the complexity of the function, and the 

dimensionality and volume of data.  

Artificial neural networks represent a family of algorithms 

whose internal processing units are mathematical functions. 

These models take inspiration from the neurons in the human 

brain, and so, the processing units are, each connection 

transmitting signals like synapses in the brain. The strength 

of these signals depends on an internal weight for each model, 

which is updated and adjusted through the learning process. 

This affects subsequent processing in the network since the 

connected neurons only process signals if the signal strength 

exceeds a certain threshold. An activation function defines 

this threshold. 

Neurons aren’t chaotically distributed throughout the 

model; instead, they are organized into layers. The neurons 

within a layer do not communicate; instead, they are linked 

only to neurons in the previous and following layer. 

Depending on the type of neurons, the information (signal) 

flow can be one-directional (data flows from one layer to the 

next), bi-directional (data flows in different directions). Data 

enters the model through the input layer and exists in the form 

of predictions through the output layer. The layers in between 

are hidden and are tasked with learning a non-linear mapping 

between the input and output layers.  

Deep learning (DL) is a machine learning technique 

which uses deep neural networks (DNN) that contain more 

than one hidden layer. These networks follow deeply nested 

architectures and can consist of advanced neurons with 

multiple activation functions and more complex internal 

functions. The simplest forms of ML can estimate and learn 

simple linear functions, while complex neural networks can 

be used to estimate complex functions. DL uses multiple 

layers to progressively extract higher level learnable features 

from the input data and as a result is capable of learning 

nonconvex and nonlinear functions [6]. 

B. Machine learning in cryptanalysis 

The closeness of cryptanalysis and machine learning has 

been theoretically established for three decades [3], but even 

so, the research community has been scarce of practical 

efforts which exploit more possibilities this similarity offers. 

For the most part, practical work in ML driven side channel 

analysis (SCA) tasks has shown as very valuable. The earliest 

efforts utilized support vector machines (SVM) [7], but 

recently DL enhanced SCA has gained a lot of traction. 

Ghor’s work in [2] introduces a ML based cryptanalysis 

strategy which later inspires further work in the domain. His 

work uses DL mechanisms to produce a neural based 

distinguisher tasked to perform key recovery attacks on the 

lightweight block cipher Speck [8].  

The authors in [9] proposes a detailed analysis of the 

functionality of the new neural distinguisher who was thus far 

known to work as a black box. Studying the classified sets led 

to the conclusion that the neural distinguisher relies on the 

differential distribution on the ciphertext pairs. Moreover, 

they propose a ML based distinguisher which performs 

similarly using simple standard machine learning tools. 

The other authors, [6] proposes a DL based cryptanalysis 

model whose task is to predict the key of block ciphers given 

known (plaintext, ciphertext) pairs. Their experiments show 

that the DL based approach successfully recovers the key bits 

in a reduced key space scenario. When key space restriction 

is not applied, the attacks are not successful unless the ciphers 

are round reduced. Their work is focused on lightweight 

block ciphers: simplified DES, Simon, and Speck. 

Perushevska et al. in [10] apply DL for the cryptanalysis 

of the DES algorithm. The model uses (ciphertext, plaintext) 

pairs during training to learn to predict the plaintext. DES 

works in 16 rounds; their work analyses the full 

implementation and a reduced-round implementation with 

only one round. Also, in [11] they implement a deep neural 

network to perform a known-plaintext attack on AES. The 

goal is to recover the bits of the plaintext. Their work 

encompasses a wide range of experiments using different key 

sizes and modes of operation on AES. The results show that 

the proposed approach can restore the bits in the whole data 

set with a probability of more than 98%, and more than half 

of the plaintext bytes with a probability of 99%. 

IV. METHODOLOGY 

A. Prediction task 

Our aim is to construct a model which would be able to 

predict the plaintext Pi given the ciphertext Ci. This 

effectively is a known plaintext attack where using pairs (Pi, 

Ci) we aim to train a DL model. The model is then tested in 

order to evaluate the number of plaintext bits it can correctly 

guess when provided with the ciphertext bits as input. 

B. Dataset generation 

A cipher algorithm is a sequence of operations which can 

roughly be explained as a very complex mathematical 

formula where the end goal is to conceal and obscure the 

input data. However, in order to conduct any data 

transformation, a few other elements are needed. These 

elements come in the form of raw input data which introduces 

randomness to the process since the inner workings of a 

cipher are not secret. A key and nonce are necessary to 

initialize the state of Ascon, this is a necessary step before 

any data concealing can even begin. 

Encryption is already a complex nonlinear data 

transformation and as such it is not straightforward to learn. 

We keep this in mind when generating a dataset to train the 

model with. By carefully crafting the dataset and placing 

some restrictions and rules upon it, we ensure that aside from 



the complexity of the algorithm, the input data is not entirely 

random and all over the place. That can be achieved by using 

a dataset where the inputs have small variability: any input i 

does not differ from any other input j by more than x bits 

(where x is some small number). This way, the model can 

gradually learn how small differences in the input manifest in 

the output. The same key was used for the creation of one 

dataset, since we want to simulate it as an ingrained part of 

the cipher itself, and not as a randomizing input parameter.  

Dataset generation begins with the generation of one 

random key which will be used throughout the generation 

process. For the dataset creation, we created 1000 low 

variability ciphertexts and 1000 low variability nonces and 

then we combined each ciphertext with all the nonces from 

the nonces dataset. This resulted in a dataset with 1 million 

pairs of type (ciphertext, nonce). For each pair, the nonce and 

the predefined fixed key were used to initialize the cipher 

state. After initialization, associated data comes into play 

(mentioned in the introduction). However, the associated data 

affects the internal state, making it go through more rounds 

of permutation. We decided to eliminate this step (since it is 

optional) in order to simplify the processing as much as 

possible, so we didn’t use associated data input (left it empty). 

This still does a change to the state, and 1 is XOR-ed to the 

last bit of the state. After the initialization, one is able to see 

the existing state of the cipher. 

Ascon encrypts data by XOR-ing the data block (64 bits) 

to the first word of the state (also 64 bits, so no need for 

padding): Pi ⊕ S1. Knowing the plaintext-ciphertext pair 

produced by this XOR reveals the first word of the state itself. 

In our dataset generation we wish to focus on the 

encryptions produced when the cipher state has gone through 

encryption permutation rounds. This is possible by skipping 

the first plaintext block (since it only meets with the 

initialized state that doesn’t get affected by the encryption 

permutation) and focusing on the second block of the 

plaintext. We set the first block of the plaintext to all 0’s. 

Knowing this, it can be assumed that the first word of the state 

is revealed as well, since we controlled the first input block. 

This is a subject to a later discussion. 

Now, moving on to a phase where the encryption 

permutation module has been executed and using b 

encryption rounds, the permutation was applied to the state. 

Ascon applies the permutation in b=8 rounds. We 

experimented with round reduced versions which use from 1 

up to 8 rounds, and for each round option we generated the 

next cipher state. This is important since XOR-ing the state 

to the generated ciphertext in the pairs provides the plaintext 

in the equation. This might seem like a backwards way to 

generate (plaintext, ciphertext) pairs, but since the ciphertext 

is the input to the model, it has to be the starting point 

(generated first) so the variability across the dataset can be 

controlled and reduced. 

The resulting dataset contains 1 million records, each with 

values: (ciphertext, nonce, plaintext, state). Since the nonces 

are repeated for the dataset, this can be considered as a 

simulation of a nonce misuse scenario. This is not a 

disruption of the rules for train test datasets - no input train 

data is repeated in the test data. Additionally, even if the 

number of unique ciphertexts in the dataset is 1000, the 

number of unique (ciphertext, nonce) input pairs is 1.000.000. 

C. Feature selection 

Hinting plaintext bits. The problem can be simplified 

further, by tasking the model to predict only a subset of the 

plaintext bits, while the other bits of the plaintext are revealed 

to it and are used as input when training. This captures the 

scenarios when chunks of plain data can be sniffed and 

uncovered, and only some parts remain unknown. In our 

work, we have experimented with revealing the first x bits of 

the plaintext and predicting the remaining bits, where x varies 

from 0 to 32. 

Previous state. As hinted earlier, the state of the first word 

of the cipher after initialization is a sequence of 64 bits which 

might be revealed to the model. Just as the section above, this 

leads to branching in the experimentation department. 

Namely, one can use the state as additional information to the 

ciphertext and nonce in the task of predicting the plaintext. 

This state can be considered as completely unknown, 

partially revealed (a subset of the bits used as input to the ML 

model) or completely known. 

D. Applying machine learning 

The design of the models is responsible for the model 

performance. Specifying the hyperparameters of a model 

refers to defining the number of layers and neurons, 

activation function. 

The number of layers, the number of nodes and the type 

of neurons in each hidden layer are hyperparameters that 

control the topology of the network. In our work we used a 

deep neural network with fully connected (dense) layers 

whose inside neurons connect to every neuron in the 

preceding layer. At each node, the input data (signal) gets 

multiplied by the weights in a node. The resulting value is 

then transformed using an activation function to produce the 

output (or activation) of the node.  

In order to use stochastic gradient descent with 

backpropagation of errors when training DNN’s, the 

activation function must be chosen so that complex 

relationships between input and output data can be learnt all 

while avoiding oversaturation. The ReLU activation function 

outputs the input if it is positive, otherwise outputs zero. 

Neurons in all layers except the output layers were set to use 

this activation function. 

The sigmoid activation function is nonlinear and 

transforms the input data into a value between 0.0 and 0.1. 

Inputs larger than 1.0 are mapped to the upper bound (1.0), 

while extremely small values converge to 0.0. This is the 

default function to use when a binary answer is required. This 

activation is applied in the output layer of the neural network; 

the final sigmoid activation function performs the binary 

classification, and it dictates the prediction for each output 

bit. The cutoff is done by a threshold in a way that if 

siqmoid(x) is greater than the threshold then the result is 1 

(the default value for the threshold is 0.5). 

1) Optimizer 

During the compilation of the model, the Adam optimizer, 

and binary cross entropy loss were used. Adam is an 

optimization algorithm created as an extension to stochastic 



gradient descent whose task is to iteratively update network 

weights based on input data. The algorithm works with the 

gradient and the squared gradient variables to calculate an 

exponential moving average [12]. 

2) Loss 

Loss functions measure the deviation between a model's 

estimation of a value and the actual value. The loss function 

maps model predictions to their associated costs. 

Classification tasks aim to produce a discrete class prediction 

as output. Binary classification tasks are even simpler since 

only two classes exist. Our research is in the realm of binary 

classification, in the sense that we are predicting the values 

of bits in the plaintext which. 

Entropy can be defined as a measure of randomness of the 

data during processing. It is a way to express the uncertainty 

associated with a given probability distribution. Difference 

between the randomness of two random variables is binary 

cross entropy. As the predicted probability diverges 

increasingly from the expected label the cross-entropy loss 

increases. 

3) Train/test partitions 

The models were trained on 80/20 train test datasets 

derived from the generated dataset (1 million records). Data 

is randomly picked from the dataset to generate the train and 

test datasets, and they are used equally for each model. This 

means, all models see the same training data, and get 

evaluated for the same test data. 

4) Training Hyperparameters 

Machine learning models have hyperparameters which 

control the learning process. These parameters can in turn 

affect the time to train and test the model, as well as the 

model’s performance as well. Performance variations of the 

models are likely caused by a subset of all the 

hyperparameters, and we will be focusing on two of them 

below. 

The batch size controls the accuracy of the estimate of the 

error gradient during training. Using larger batch sizes allows 

for speedups fueled by parallel computation using a GPU. A 

batch refers to the number of training samples used in an 

iteration 

An epoch encompasses a single complete pass of all the 

training data through the machine learning algorithm. The 

model learns by updating the weight of nodes at the end of 

each epoch. Defining the number of epochs means 

controlling the number of times the model gets the 

opportunity to learn from the data. 

If the batch size is defined big enough to include the entire 

training data, then the number of epochs will be equal to the 

number of iterations. This is usually not the case in practice 

since most models require more than one epoch to familiarize 

themselves with the data and learn. Generally, if d is the size 

of the dataset, while the number of epochs is e and batch size 

is b, the number of iterations i can be expressed as i = d*e/b 

Choosing the hyperparameter values requires a deep 

understanding of the data supported by a lot of 

experimentation. The following section provides our insights 

about these hyperparameters. 

V. EXPERIMENTS AND RESULTS 

A. Setup 

The neural networks in our research were implemented 

using the TensorFlow 2, Keras module. Initially we 

experimented with different neural network architectures, but 

in the end we settled for a fully connected neural network 

with 5 hidden layers between the input and output layers. The 

number of nodes is discussed below: 

• Input layer: 1024 neurons. 

• Hidden layers: The number of neurons in the layers 

ordered from input to output: 2048, 2048, 2014, 512, 

256 fully connected neurons. 

• Output layer: number of bits the model aims to learn 

and predict. 

We experimented with networks with more layers and 

different neuron configurations, but that didn’t seem to affect 

performance in a noticeable way. However, this is not 

eliminated as a direction for work in the future. 

As mentioned, we used ReLU activation for the input and 

hidden layers, and sigmoid activation for the output layer. 

The Adam optimizer was used with the binary crossentrophy 

loss function. 

Our experiments focused on estimating the model's 

performance when different options are used for the input 

data:  

• Plaintext hinting: the number of bits of the plaintext 

revealed to the model on input, while the rest is used 

as target when classifying 

• State word reveal: whether the state of the cipher 

from the previous step (right after initialization) is 

available as input. 

The number of epochs significantly affected performance 

consistency; variable results were obtained from multiple 

runs using 50 epochs for training. Better stability is achieved 

when 500 epochs are used. We used 5000 for batch size. 

B. Performance metric 

The classification results are expressed in terms of 

“percentage of correctly guessed bits”. This is an aggregate 

metric across all test prediction results. More precisely, the 

metric percentage of correctly guessed bits is calculated for 

each test sample and then averaged for all. We also include a 

minimum and maximum guessed bits within one test sample 

metric. The goal is to catch the instances with low accuracy 

even if their number is low and will not affect the global 

metric in a noticeable way. 

C. Results 

The experiments displayed in the tables below used 150 

epochs for training using a batch size of 5000.  

When hinting the first j plaintext bits to the model and 

using them as input we use the notation P[:j]. We 

experimented with different options for plaintext hinting: 

• Revealing the first half of the plaintext P and using 

it as input during training, while the other half was 

the target for predictions. 



• Revealing only the first 20 bits and predicting the 

remaining 44 bits. 

• Revealing no plaintext bits and predicting the entire 

plaintext block. 

State hinting: The experiments where the input is enriched 

with the state of the cipher immediately after initialization are 

denoted as CNS0. The ones where only the ciphertext bits and 

the nonce bits are used as input for the model are denoted CN. 

In the table below, the column Rounds denotes the 

number of encryption rounds used when generating the 

dataset, while the column Accuracy displays the percentage 

of correctly guessed bits metric. 

TABLE I.  DL MODEL PERFORMANCE SUMMARY 

Rounds Plaintext hinting Accuracy 

1 P[:32] 0.9947 

2 P[:32] 0.9858 

3 P[:32] 0.9989 

4 P[:32] 0.9989 

5 P[:32] 0.99997 

6 P[:32] 0.7736 

7 P[:32] 0.5149 

8 P[:32] 0.5339 

1 P[:20] 0.9879 

2 P[:20] 0.9756 

3 P[:20] 0.9747 

4 P[:20] 0.9818 

5 P[:20] 0.8907 

6 P[:20] 0.8532 

7 P[:20] 0.5108 

8 P[:20] 0.5339 

The experiment results in the table above were obtained using 

full state hinting (all the bits of the previous state are 

revealed: CTNS0) 

When using no plaintext hints and no state hints, the 

performance of the models drops quickly: the precision for 

predicting the plaintext bits for b=1 is somewhere around 0.7.  

Our experimental results confirm that as the number of 

rounds increases, the harder it becomes to learn the inherent 

plaintext-ciphertext bit relationships. This aligns with the 

theoretical results, and hope lies in the future that deeper 

analysis and more advanced DL techniques will exceed the 

theoretical results. 

VI. CONCLUSION 

Our work marks an experimental approach to 

cryptanalysis of Ascon using DL models. We believe this to 

be the first ML-based cryptanalysis of the named cipher. 

While lightweight ciphers are not new to DL-based attacks, 

the previous attempts are focused on key recovery. We 

successfully predict the plaintext (with known plaintext 

attack) with an accuracy of 0.998 percent. 

A significant drawback is that our efforts attack a very 

niche-specific dataset where the randomness and variability 

are brought to a minimum. The generated dataset has a nonce 

misuse situation, which does the job of reducing randomness 

but is not a likely real-world scenario. The cipher itself is 

stripped of the finalization phase, which introduces a lot of 

security and ensures data integrity. 

In practice, the cipher assumes and enforces randomness 

by applying nonces correctly and functioning as a unit where 

all the phases are being executed. Such functions can be very 

complex, and ML would not be able to find meaningful 

relationships between the inputs and the outputs. In a non-

restricted scenario, DL-based cryptanalysis fails to attack the 

block ciphers.  

We plan to extend our work in the future by randomizing 

the datasets more and strengthening the model performance 

using techniques more focused on the model design and 

training. Hopefully, this inspires the application of more ML-

based attacks in the domain of cryptanalysis in the future. 
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