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Abstract — Kubernetes is one of the most popular container 
orchestrators today, but IPv4 address scarcity and the lucrative 
reseller market introduce problems for cluster administrators 
who would like to deploy publicly available applications, 
without resorting to NAT. We discuss the extent of IPv6 support 
in recent versions of Kubernetes and offer solutions for IPv6 
dual-stack implementation. We also provide a reference dual-
stack IPv6 Kubernetes network architecture that can be 
employed in existing or new clusters. 
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I. INTRODUCTION  
The rapid progress achieved in the last few decades in both 

compute capacity and network performance has led to a 
paradigm shift, from static bare-metal servers, through long-
lived virtual machines to ephemeral containers that have 
gained a noticeable popularity in recent years. Even though 
the ultimate goal is to make a more efficient use of the 
underlying infrastructure both in terms of performance and 
security, nonetheless various issues have arisen during the 
quest for running as many applications as possible on the same 
hardware. 

To facilitate easier management of large fleets of 
ephemeral containers distributed among different computing 
nodes, various container orchestrators have been developed, 
some of which started their lives in the laboratories of popular 
internet companies, others as community-based open-source 
efforts. One such example which enjoys a large user-base 
today is Kubernetes [1], [2], a project whose roots can be 
traced back to Google and later open-sourced and transformed 
into a community led effort. All container orchestrators, 
regardless of their underlying architecture, aim to ease the 
process of deploying new containers, dealing with scheduling, 
resource limitations, security, fault-tolerance, and networking. 
However, a persistent issue that poses challenges both for 
administrators and end-users alike is the ephemerality of the 
containers and the effects that this behavior has on network 
connections, especially when multiple containers are backing 
a single user-facing application. Since containers can be 
started and stopped at any point in time, additional helper 
components are deployed to ensure the routing of network 
packets only to those instances that are currently active and 
healthy. Publishing of such containerized applications, 
allowing public access to the wider world instead of only to 
the containers that are part of the same container network 
interface (CNI), is also a challenge. The various mitigation 
techniques that have been employed to alleviate the IPv4 
address shortages, such as network address translation (NAT) 
further complicate this, breaking end-to-end connectivity, 
reducing transparency, and making troubleshooting harder.  

While customers of the major cloud providers offering 
managed Kubernetes services have the option of effortlessly 
leasing IPv4 addresses through complementary load-
balancing products, on-premise deployments of container 
orchestrators must either acquire a suitably large IPv4 block 
of addresses, or find alternatives for publicly exposing the 
hosted applications. Unfortunately, the dramatic growth in 
IPv4 prices as a result of their increasing scarcity and a 
thriving reseller market [3] has made managing IPv4 address 
blocks infeasible for many organizations that do not already 
possess them. Of course, the best solution to this problem is to 
simply adopt IPv6, thus overcoming any addresses shortages, 
eliminating the need for workarounds that break end-to-end 
connectivity, such as NAT. Unfortunately, the current state of 
IPv6 adoption is less than satisfactory, and according to 
Google’s statistics only 34.33% of its users use IPv6 for 
accessing the site [4]. The low adoption rate is further 
confirmed by the fact that many popular web sites do not 
support IPv6 at all, mandating the use of dual-stack solutions 
for coexistence of IPv4 and IPv6 for the foreseeable future. 
Frustrated with the state of things, enthusiast groups have even 
published monitoring pages that track IPv6 support across the 
most popular sites [5], in an effort to publicize the problem. 
Cloud providers have also shown varying levels of support for 
this new protocol, adding support only recently [6], handing 
out very limited address spaces [7], or limiting the availability 
across different product families, thus forcing users to again 
use mitigation techniques [8].  

For system administrators to fully implement IPv6, all 
intermediate components need to support it, in tandem with 
the underlying core infrastructure. One of the most popular 
container orchestrators today, Kubernetes offers beta level 
support for dual-stack networking, a feature enabled by 
default since version 1.21, released in the spring of 2021. 
However, additional tools are required to allow seamless 
integration with existing network infrastructure and hosting of 
public facing applications within Kubernetes clusters. 

The aim of this paper is to evaluate the level of support 
that the Kubernetes project offers for IPv6 networking, 
identify major challenges for implementing IPv6 Kubernetes 
connectivity in existing infrastructures and offer a sample 
architecture which can be reused to achieve this goal. The rest 
of this paper is organized as follows: in section II we introduce 
the necessary Kubernetes components and networking 
concepts, reflecting on existing work that has been published 
in this field, as well as offer ways in which IPv6 connectivity 
can be achieved even without support from upstream internet 
service providers. In section III we describe the current state 
of IPv6 support in Kubernetes, discussing additional third-
party components relevant for on-premise installations that 
ease the process of hosting public facing applications. Taking 
into account the various characteristics and maturity levels of 
these addons, in section IV we propose a sample Kubernetes 



IPv6 architecture which can be used both in current and new 
deployments, allowing seamless integration with existing 
infrastructure, and automatic assignment of routable IPv4 and 
IPv6 addresses to applications instantiated in the cluster. We 
conclude the paper with section V, outlining plans for future 
work, and areas for improvement.  

II. BACKGROUND AND RELATED WORK 
Kubernetes as one of the most popular container 

orchestrators today has a complex architecture comprised of 
different components running on nodes with specific roles 
[9]. In the subsections that follow we first briefly explain the 
necessary concepts, before continuing with an overview of 
existing literature dealing with IPv6 migration techniques and 
Kubernetes networking. 

A. Essential Kubernetes Components 
Kubernetes is a container orchestration software that 

allows container deployment among different nodes joined 
together in a cluster. The atomic unit of Kubernetes is called a 
pod, which represents at least one, possibly more containers 
that share an execution context. The master nodes are 
responsible for storing the cluster information, listening for 
state changes, and deciding which worker nodes to execute the 
instantiated pods. On the other hand, workers communicate 
with the masters and using a container runtime execute the 
scheduled workloads. 

B. Kubernetes Use-Cases and Networking 
Apart from the traditional use-case for deploying 

microservice based applications, Kubernetes has been 
successfully used as an underlying system for many Platform 
as a Service (PaaS) and Software as a Service (SaaS) offerings 
in the cloud [10]. An interesting development is the increasing 
popularity of Kubernetes for edge-based [11] workloads 
where resources are severely constrained, requiring 
alternative approaches and development of more lightweight 
Kubernetes distributions [12]. Nonetheless, the core features 
remain unchanged and the requirement for external access to 
deployed workloads is still present. 

Kubernetes supports different types of network addresses 
[13], regulating access to the deployed applications and the 
underlying backing pods, as well as providing higher level 
abstractions such as load-balancers with an associated rotation 
strategy, in an effort to deal with the inherent ephemerality of 
the spawned containers. Access to a pool of publicly routable 
IP addresses is a requirement for effortless and automatic 
publishing of deployed applications, without the need for any 
manual infrastructure configuration for port forwarding or 
NAT rules definition. Unfortunately, the scarcity of IPv4 
address space and low adoption rates of IPv6, combined with 
the limited support for IPv6 by the various Kubernetes addons 
needlessly complicate such efforts. 

C. Related Work 
The scarcity of IPv4 space has been a known problem for 

decades, and efforts to mitigate it have preceded its 
exhaustion. Richter et al. [14] describe the limited availability 
of IPv4 address space and offer possible mitigation 
techniques. One such popular option today with users located 
where IPv6 adoption levels are low among internet service 
providers (ISPs) is the use of tunnel brokers [15] which can 
allocate a dedicated IPv6 space for free, upon request. 
However, in such scenarios other issues arise such as 
questions relating to performance and security [16], since the 

tunnel broker has access to all the network traffic in addition 
to the ISP. Sookun et al. [17] and Kumar et al. [18] analyze 
the performance aspects of such IPv4 to IPv6 migration 
techniques using network simulation. In the Kubernetes 
camp, the authors of [19] benchmark various CNI plugins that 
allow the creation of overlay networks, facilitating internal 
and external communication between and towards pods. 
These analyses are focused only on IPv4 connectivity.  

While there is extensive literature dealing with the 
adoption aspects of IPv6 on one hand, and network 
optimization of Kubernetes clusters on the other, 
unfortunately, to the best of our knowledge, no 
comprehensive analysis tackling these subjects in relation to 
one another exists yet. 

III. KUBERNETES IPV6 SUPPORT AND SERVICE PUBLISHING 
When an application is deployed in a Kubernetes cluster, 

there are three primary, production-ready, ways in which it 
can be exposed publicly so that it can be accessed outside the 
internal cluster network. Since all approaches have their 
benefits and drawbacks, an appropriate choice needs to be 
made, depending on the network requirements of the 
application. 

For web-based applications that use HTTP as their 
transport protocol, an Ingress object can be instantiated, acting 
as a publicly reachable reverse proxy with access to the 
internal cluster network and thus the deployed applications as 
well. However, this approach is limited when it comes to 
applications that use other application-level protocols. In such 
cases, the use of either a LoadBalancer service, or a ClusterIP 
service with the ExternalIP parameter needs to be set [20], so 
that direct access to the instantiated backing pods is provided. 
While these two approaches are similar, when using external 
IPs with a ClusterIP type service, the allocation must be made 
manually, and explicitly set by the administrator, due to the 
lack of support for automatic IP address management (IPAM). 
Contrary to this, the LoadBalancer service type offers support 
for automatic provisioning and IP allocation, provided that the 
underlying infrastructure is appropriately configured as well. 
Most cloud providers today integrate the Kubernetes load 
balancing behavior with their standalone load balancing 
products, which are often marketed as separate features, and 
billed independently. Users of on-premise Kubernetes clusters 
must install a separate load-balancing plugin which can 
perform the task of IP address allocation and appropriate 
routing within the internal network, in cooperation with the 
CNI. 

In cases when many applications hosted within the cluster 
need to be publicly accessible, the shortage of IPv4 addresses 
and their ever-increasing price can make such efforts 
completely impossible or prohibitively expensive. Kubernetes 
has been improving IPv6 support with each new version since 
1.9, where IPv6-only support was introduced as an alpha 
feature, before graduating to beta in 1.18. However, IPv6 dual-
stack support was introduced later, first as an alpha feature in 
1.16, before graduating to beta only recently, in version 1.21, 
and being enabled by default for new deployments [21]. 
Moreover, to implement an IPv6 ready cluster, explicit 
support from the underlying CNI plugin responsible for 
establishment of the container network is required as well. 
Currently only a handful of such plugins support dual-stack 
operation, with different limitations and behaviors, depending 



on how they are implemented, and whether they act on layer-
2 or layer-3. 

Even though the use of an IPv6 compliant CNI plugin 
would indeed offer IPv6 reachability over the internet, explicit 
support for IPv6 load-balancer addresses is necessary as well, 
both when it comes to cloud-based or on-premise cluster 
setups. For self-managed installations, this requires the 
installation of a load-balancing addon, which would be 
capable of allocating routable addresses on demand. There are 
multiple approaches that can be taken, the most popular ones 
being: 

• Allocating additional IPs to the existing network 
interfaces of the Kubernetes nodes, with the network 
plugin responding to ARP requests of IPv4 services, 
and NDP requests of IPv6 services. 

• Establishment of a peering session with a border 
router, advertising the allocated IPs of the created 
services. 

While there are multiple load-balancing plugins in the 
CNCF portfolio [22] that are capable of supporting the 
creation of LoadBalancer Kubernetes objects, the most widely 
used in practice is MetalLB, which traces its roots back to 
Google as well, similar to Kubernetes itself. MetalLB supports 
both modes of operation described above for IPv4, but only 
the first one for IPv6, while support for direct peering sessions 
for purposes of IPv6 advertisements is currently under 
development [23].  

IV. SAMPLE IPV6 KUBERNETES ARCHITECTURE 
In this section we present a sample IPv6 Kubernetes 

cluster architecture by combining a compliant CNI plugin 
with a load-balancing addon that offers IPv6 support. By 
directly integrating with the existing network infrastructure 
and reusing devices that are already in-place we ensure high-
performance and a familiar management process. 

A. Calico as a CNI Plugin 
Calico is a layer-3 implementation of a CNI plugin which 

by default uses BGP full-mesh topology to peer Kubernetes 
nodes between themselves and distribute network routes 
within the cluster. Additionally, full support for Kubernetes 
network policy objects is provided, allowing the creation of 
inbound and outbound filtering rules which are automatically 
translated to the appropriate IPTables representation by the 
Calico daemon running on each affected node. Unlike the 
majority of other alternatives, Calico also offers full IPv6 
dual-stack support [24], the reason why we have selected it for 
our sample architecture.  

B. Avoiding Source NAT 
During the deployment process of every Kubernetes 

cluster, the administrator should choose appropriate IPv4 and 
IPv6 subnets which will be reserved for pod and Service IP 
address allocation, respectively. The pod IP range is further 
subdivided into equal smaller subnets, each one allocated to a 
specific node within the cluster and advertised to the others 
using the previously established BGP session. In this manner, 
each pod deployed on a given node is assigned an IP address 
from the dedicated subnet for that given cluster member. Care 
must be taken to select sufficiently large subnets, since this 
can limit the number of pods that can be scheduled on a given 
node. A graphical representation of this behavior is shown in 
Fig. 1. However, since by default BGP sessions are 

established only between the cluster nodes, other devices are 
not aware of the existence of these routes, and communication 
with hosts located outside the cluster requires source NAT, 
where the source IP will be the routable IP address of the 
Kubernetes node hosting the pod [25]. As discussed 
previously, this breaks end-to-end connectivity and NAT is 
something that we would like to avoid. Fortunately, Calico has 
an option of peering with an external router as well [26], 
giving the option of advertising the allocated IP ranges, 
disabling NAT, and establishing true end-to-end connectivity. 
This is reflected in Fig. 1 where the source IP of a request sent 
from within the pods does not change as it traverses network 
boundaries. However, if not enough IPv4 addresses are 
available, then source NAT will have to be performed by the 
gateway, but at least this will be transparent within the local 
network.  

It is not expected that every deployment of Kubernetes 
will have access to a core router speaking BGP to advertise 
the assigned prefixes, but there are free workarounds that can 
be implemented. For example, there are many open-source 
firewall solutions that support the installation of a BGP 
speaker, such as PfSense, OPNSense, VyOS. In case no native 
IPv6 connectivity is offered by the ISP, or only a limited 
number of addresses are provided, tunnel brokers can be 
utilized, some of which offer /48 subnets upon request.  

C. Optimizing Performance 
By utilizing a BGP full-mesh topology, a significant 

overhead will be placed on each node in case of a large 
Kubernetes cluster, since each member will have to maintain 
BGP sessions with all others. The solution to this old and 
well-known problem is to utilize a route reflector, or multiple 
route reflectors for redundancy, which would in turn 
redistribute the routes to the Kubernetes nodes. In this 
manner, each node only maintains BGP sessions with the 
route reflectors, significantly lowering the computing 
overhead. The Calico CNI plugin by default supports peering 
with external route reflectors and can even convert an 

 
 

Fig. 1. IPv4 and IPv6 pod communication without NAT 



existing Calico BGP speaker to a route reflector [27]. In terms 
of on-premise deployments, many of the open-source BGP 
implementations do support acting as a route reflector as well. 

D. Choosing a Load-Balancing Option 
The last remaining piece of the puzzle is choosing the 

load-balancer plugin which would be able to automatically 
allocate routable IP addresses to instantiated services and 
advertise these to the border router. Since the previously 
discussed MetalLB implementation still does not support 
BGP peering and advertisement of IPv6 prefixes, alternatives 
need to be found. Furthermore, even if it did support peering, 
this would complicate things, since multiple sessions would 
be required for each node, one for Calico and one for 
MetalLB. PureLB is another load-balancer implementation 
for Kubernetes which aims to solve the double peering 
problem by allocating addresses to a virtual interface, which 
in turn can be advertised by using a routing protocol. In our 
case we can leverage Calico to advertise these ranges as well, 
by utilizing the support for load balancer IP advertisements 
[28], present since version 3.18. 

V. CONCLUSION 
Even after 10 years since the World IPv6 Day, IPv6 

adoption is still low, and many residential ISPs and popular 
websites do not support this protocol. Faced with IPv4 
address space exhaustion and the lucrative business 
developed around IPv4 trading, customers are faced with 
little choice than to embrace IPv6, especially new service 
providers whose goal is to serve large amounts of customers 
without employing mitigation techniques such as NAT. 

In this paper we evaluated the state of IPv6 support in 
Kubernetes, provided a sample architecture using open-
source components such as the Calico CNI and the PureLB 
load-balancing plugin, and optimized the performance by 
utilizing route-reflectors. We also discussed alternative ways 
of obtaining IPv6 support in cases where the ISP does not 
support this newer protocol, through tunnel brokers.  

An area for future research is the performance comparison 
between various CNI plugins when it comes to IPv6, and how 
this differs with results obtained in existing literature relating 
to their support of IPv4. 

ACKNOWLEDGEMENT 
The work presented in this paper has received funding 

from the Faculty of Computer Science and Engineering under 
the “SCAP” project. 

REFERENCES 
[1] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, 

‘Borg, Omega, and Kubernetes: Lessons learned from three 
container-management systems over a decade’, Queue, vol. 14, no. 1, 
pp. 70–93, Jan. 2016, doi: 10.1145/2898442.2898444. 

[2] M. Lukša, Kubernetes in action. Shelter Island, NY: Manning 
Publications Co, 2018. 

[3] I. Livadariu, A. Elmokashfi, and A. Dhamdhere, ‘On IPv4 transfer 
markets: Analyzing reported transfers and inferring transfers in the 
wild’, Computer Communications, vol. 111, pp. 105–119, Oct. 2017, 
doi: 10.1016/j.comcom.2017.07.012. 

[4] ‘IPv6 – Google’. https://www.google.com/intl/en/ipv6/statistics.html 
(accessed Aug. 24, 2021). 

[5] L. Haugen, ‘Why No IPv6? The World’s Largest Websites Lacking 
IPv6 Support’. https://whynoipv6.com/ (accessed Aug. 25, 2021). 

[6] ‘Google Cloud - July 20 2021 Announcement’, Google Cloud. 
https://cloud.google.com/vpc/docs/release-notes (accessed Aug. 25, 
2021). 

[7] ‘Azure Public IP address prefix - Azure Virtual Network’. 
https://docs.microsoft.com/en-us/azure/virtual-network/public-ip-
address-prefix (accessed Aug. 25, 2021). 

[8] ‘Overview of IPv6 - Azure Load Balancer’. 
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-
ipv6-overview (accessed Aug. 25, 2021). 

[9] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, 
‘Horizontal Pod Autoscaling in Kubernetes for Elastic Container 
Orchestration’, Sensors, vol. 20, no. 16, Art. no. 16, Jan. 2020, doi: 
10.3390/s20164621. 

[10] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and 
O. F. Rana, ‘Characterising resource management performance in 
Kubernetes’, Computers & Electrical Engineering, vol. 68, pp. 286–
297, May 2018, doi: 10.1016/j.compeleceng.2018.03.041. 

[11] A. Palade, A. Kazmi, and S. Clarke, ‘An Evaluation of Open Source 
Serverless Computing Frameworks Support at the Edge’, in 2019 
IEEE World Congress on Services (SERVICES), Milan, Italy, Jul. 
2019, pp. 206–211. doi: 10.1109/SERVICES.2019.00057. 

[12] S. Böhm and G. Wirtz, ‘Profiling Lightweight Container Platforms: 
MicroK8s and K3s in Comparison to Kubernetes’, presented at the 
13th Central European Workshop on Services and their Composition, 
Bamberg, Germany, Mar. 2021. 

[13] N. Nguyen and T. Kim, ‘Toward Highly Scalable Load Balancing in 
Kubernetes Clusters’, IEEE Commun. Mag., vol. 58, no. 7, pp. 78–
83, Jul. 2020, doi: 10.1109/MCOM.001.1900660. 

[14] P. Richter, M. Allman, R. Bush, and V. Paxson, ‘A Primer on IPv4 
Scarcity’, SIGCOMM Comput. Commun. Rev., vol. 45, no. 2, pp. 21–
31, Apr. 2015, doi: 10.1145/2766330.2766335. 

[15] ‘Hurricane Electric Free IPv6 Tunnel Broker’. 
https://tunnelbroker.net/ (accessed Aug. 25, 2021). 

[16] S. A. Abdulla, ‘Survey of security issues in IPv4 to IPv6 tunnel 
transition mechanisms’, IJSN, vol. 12, no. 2, p. 83, 2017, doi: 
10.1504/IJSN.2017.083830. 

[17] Y. Sookun and V. Bassoo, ‘Performance analysis of IPv4/IPv6 
transition techniques’, in 2016 IEEE International Conference on 
Emerging Technologies and Innovative Business Practices for the 
Transformation of Societies (EmergiTech), Aug. 2016, pp. 188–193. 
doi: 10.1109/EmergiTech.2016.7737336. 

[18] R. K. CV and H. Goyal, ‘IPv4 to IPv6 Migration and Performance 
Analysis using GNS3 and Wireshark’, in 2019 International 
Conference on Vision Towards Emerging Trends in Communication 
and Networking (ViTECoN), Mar. 2019, pp. 1–6. doi: 
10.1109/ViTECoN.2019.8899746. 

[19] R. Kumar and M. C. Trivedi, ‘Networking Analysis and Performance 
Comparison of Kubernetes CNI Plugins’, in Advances in Computer, 
Communication and Computational Sciences, Singapore, 2021, pp. 
99–109. doi: 10.1007/978-981-15-4409-5_9. 

[20] ‘Kubernetes Service External IPs’, Kubernetes. 
https://kubernetes.io/docs/concepts/services-
networking/service/#external-ips (accessed Aug. 25, 2021). 

[21] ‘Kubernetes IPv4/IPv6 dual-stack’, Kubernetes. 
https://kubernetes.io/docs/concepts/services-networking/dual-stack/ 
(accessed Aug. 25, 2021). 

[22] ‘CNCF Cloud Native Interactive Landscape – Service Proxies’, 
CNCF Cloud Native Interactive Landscape. https://landscape.cncf.io 
(accessed Aug. 25, 2021). 

[23] ‘Add support for MP BGP encoding for IPv4 and IPv6 by 
ykulazhenkov · Pull Request #590 · metallb/metallb’, GitHub. 
https://github.com/metallb/metallb/pull/590 (accessed Aug. 25, 
2021). 

[24] ‘Configure dual stack or IPv6 only’. 
https://docs.projectcalico.org/networking/ipv6 (accessed Aug. 25, 
2021). 

[25] ‘Kubernetes Cluster Networking’, Kubernetes. 
https://kubernetes.io/docs/concepts/cluster-
administration/networking/ (accessed Aug. 25, 2021). 

[26] ‘Configure BGP peering’. 
https://docs.projectcalico.org/networking/bgp (accessed Aug. 25, 
2021). 

[27] ‘Configuring Route Reflectors in Calico’, Tigera, Mar. 22, 2019. 
https://www.tigera.io/blog/configuring-route-reflectors-in-calico/ 
(accessed Aug. 25, 2021). 

[28] ‘Advertise Kubernetes service IP addresses’. 
https://docs.projectcalico.org/archive/v3.18/networking/advertise-
service-ips (accessed Aug. 25, 2021). 

 


