
29th Telecommunications forum TELFOR 2021 Serbia, Belgrade, November 23-24, 2021.

978-1-6654-2585-8/21/$31.00 ©2021 IEEE

Evaluating IPv6 Support in Kubernetes
Vojdan Kjorveziroski

Faculty of Computer Science and
Engineering, Ss. Cyril and Methodius

University
Skopje, North Macedonia

vojdan.kjorveziroski@finki.ukim.mk

Anastas Mishev
Faculty of Computer Science and

Engineering, Ss. Cyril and Methodius
University

Skopje, North Macedonia
anastas.mishev@finki.ukim.mk

Sonja Filiposka
Faculty of Computer Science and

Engineering, Ss. Cyril and Methodius
University

Skopje, North Macedonia
sonja.filiposka@finki.ukim.mk

Abstract — Kubernetes is one of the most popular container
orchestrators today, but IPv4 address scarcity and the lucrative
reseller market introduce problems for cluster administrators
who would like to deploy publicly available applications,
without resorting to NAT. We discuss the extent of IPv6 support
in recent versions of Kubernetes and offer solutions for IPv6
dual-stack implementation. We also provide a reference dual-
stack IPv6 Kubernetes network architecture that can be
employed in existing or new clusters.

Keywords — cloud computing, IPv6, Kubernetes, containers,
overlay networks

I. INTRODUCTION
The rapid progress achieved in the last few decades in both

compute capacity and network performance has led to a
paradigm shift, from static bare-metal servers, through long-
lived virtual machines to ephemeral containers that have
gained a noticeable popularity in recent years. Even though
the ultimate goal is to make a more efficient use of the
underlying infrastructure both in terms of performance and
security, nonetheless various issues have arisen during the
quest for running as many applications as possible on the same
hardware.

To facilitate easier management of large fleets of
ephemeral containers distributed among different computing
nodes, various container orchestrators have been developed,
some of which started their lives in the laboratories of popular
internet companies, others as community-based open-source
efforts. One such example which enjoys a large user-base
today is Kubernetes [1], [2], a project whose roots can be
traced back to Google and later open-sourced and transformed
into a community led effort. All container orchestrators,
regardless of their underlying architecture, aim to ease the
process of deploying new containers, dealing with scheduling,
resource limitations, security, fault-tolerance, and networking.
However, a persistent issue that poses challenges both for
administrators and end-users alike is the ephemerality of the
containers and the effects that this behavior has on network
connections, especially when multiple containers are backing
a single user-facing application. Since containers can be
started and stopped at any point in time, additional helper
components are deployed to ensure the routing of network
packets only to those instances that are currently active and
healthy. Publishing of such containerized applications,
allowing public access to the wider world instead of only to
the containers that are part of the same container network
interface (CNI), is also a challenge. The various mitigation
techniques that have been employed to alleviate the IPv4
address shortages, such as network address translation (NAT)
further complicate this, breaking end-to-end connectivity,
reducing transparency, and making troubleshooting harder.

While customers of the major cloud providers offering
managed Kubernetes services have the option of effortlessly
leasing IPv4 addresses through complementary load-
balancing products, on-premise deployments of container
orchestrators must either acquire a suitably large IPv4 block
of addresses, or find alternatives for publicly exposing the
hosted applications. Unfortunately, the dramatic growth in
IPv4 prices as a result of their increasing scarcity and a
thriving reseller market [3] has made managing IPv4 address
blocks infeasible for many organizations that do not already
possess them. Of course, the best solution to this problem is to
simply adopt IPv6, thus overcoming any addresses shortages,
eliminating the need for workarounds that break end-to-end
connectivity, such as NAT. Unfortunately, the current state of
IPv6 adoption is less than satisfactory, and according to
Google’s statistics only 34.33% of its users use IPv6 for
accessing the site [4]. The low adoption rate is further
confirmed by the fact that many popular web sites do not
support IPv6 at all, mandating the use of dual-stack solutions
for coexistence of IPv4 and IPv6 for the foreseeable future.
Frustrated with the state of things, enthusiast groups have even
published monitoring pages that track IPv6 support across the
most popular sites [5], in an effort to publicize the problem.
Cloud providers have also shown varying levels of support for
this new protocol, adding support only recently [6], handing
out very limited address spaces [7], or limiting the availability
across different product families, thus forcing users to again
use mitigation techniques [8].

For system administrators to fully implement IPv6, all
intermediate components need to support it, in tandem with
the underlying core infrastructure. One of the most popular
container orchestrators today, Kubernetes offers beta level
support for dual-stack networking, a feature enabled by
default since version 1.21, released in the spring of 2021.
However, additional tools are required to allow seamless
integration with existing network infrastructure and hosting of
public facing applications within Kubernetes clusters.

The aim of this paper is to evaluate the level of support
that the Kubernetes project offers for IPv6 networking,
identify major challenges for implementing IPv6 Kubernetes
connectivity in existing infrastructures and offer a sample
architecture which can be reused to achieve this goal. The rest
of this paper is organized as follows: in section II we introduce
the necessary Kubernetes components and networking
concepts, reflecting on existing work that has been published
in this field, as well as offer ways in which IPv6 connectivity
can be achieved even without support from upstream internet
service providers. In section III we describe the current state
of IPv6 support in Kubernetes, discussing additional third-
party components relevant for on-premise installations that
ease the process of hosting public facing applications. Taking
into account the various characteristics and maturity levels of
these addons, in section IV we propose a sample Kubernetes

IPv6 architecture which can be used both in current and new
deployments, allowing seamless integration with existing
infrastructure, and automatic assignment of routable IPv4 and
IPv6 addresses to applications instantiated in the cluster. We
conclude the paper with section V, outlining plans for future
work, and areas for improvement.

II. BACKGROUND AND RELATED WORK
Kubernetes as one of the most popular container

orchestrators today has a complex architecture comprised of
different components running on nodes with specific roles
[9]. In the subsections that follow we first briefly explain the
necessary concepts, before continuing with an overview of
existing literature dealing with IPv6 migration techniques and
Kubernetes networking.

A. Essential Kubernetes Components
Kubernetes is a container orchestration software that

allows container deployment among different nodes joined
together in a cluster. The atomic unit of Kubernetes is called a
pod, which represents at least one, possibly more containers
that share an execution context. The master nodes are
responsible for storing the cluster information, listening for
state changes, and deciding which worker nodes to execute the
instantiated pods. On the other hand, workers communicate
with the masters and using a container runtime execute the
scheduled workloads.

B. Kubernetes Use-Cases and Networking
Apart from the traditional use-case for deploying

microservice based applications, Kubernetes has been
successfully used as an underlying system for many Platform
as a Service (PaaS) and Software as a Service (SaaS) offerings
in the cloud [10]. An interesting development is the increasing
popularity of Kubernetes for edge-based [11] workloads
where resources are severely constrained, requiring
alternative approaches and development of more lightweight
Kubernetes distributions [12]. Nonetheless, the core features
remain unchanged and the requirement for external access to
deployed workloads is still present.

Kubernetes supports different types of network addresses
[13], regulating access to the deployed applications and the
underlying backing pods, as well as providing higher level
abstractions such as load-balancers with an associated rotation
strategy, in an effort to deal with the inherent ephemerality of
the spawned containers. Access to a pool of publicly routable
IP addresses is a requirement for effortless and automatic
publishing of deployed applications, without the need for any
manual infrastructure configuration for port forwarding or
NAT rules definition. Unfortunately, the scarcity of IPv4
address space and low adoption rates of IPv6, combined with
the limited support for IPv6 by the various Kubernetes addons
needlessly complicate such efforts.

C. Related Work
The scarcity of IPv4 space has been a known problem for

decades, and efforts to mitigate it have preceded its
exhaustion. Richter et al. [14] describe the limited availability
of IPv4 address space and offer possible mitigation
techniques. One such popular option today with users located
where IPv6 adoption levels are low among internet service
providers (ISPs) is the use of tunnel brokers [15] which can
allocate a dedicated IPv6 space for free, upon request.
However, in such scenarios other issues arise such as
questions relating to performance and security [16], since the

tunnel broker has access to all the network traffic in addition
to the ISP. Sookun et al. [17] and Kumar et al. [18] analyze
the performance aspects of such IPv4 to IPv6 migration
techniques using network simulation. In the Kubernetes
camp, the authors of [19] benchmark various CNI plugins that
allow the creation of overlay networks, facilitating internal
and external communication between and towards pods.
These analyses are focused only on IPv4 connectivity.

While there is extensive literature dealing with the
adoption aspects of IPv6 on one hand, and network
optimization of Kubernetes clusters on the other,
unfortunately, to the best of our knowledge, no
comprehensive analysis tackling these subjects in relation to
one another exists yet.

III. KUBERNETES IPV6 SUPPORT AND SERVICE PUBLISHING
When an application is deployed in a Kubernetes cluster,

there are three primary, production-ready, ways in which it
can be exposed publicly so that it can be accessed outside the
internal cluster network. Since all approaches have their
benefits and drawbacks, an appropriate choice needs to be
made, depending on the network requirements of the
application.

For web-based applications that use HTTP as their
transport protocol, an Ingress object can be instantiated, acting
as a publicly reachable reverse proxy with access to the
internal cluster network and thus the deployed applications as
well. However, this approach is limited when it comes to
applications that use other application-level protocols. In such
cases, the use of either a LoadBalancer service, or a ClusterIP
service with the ExternalIP parameter needs to be set [20], so
that direct access to the instantiated backing pods is provided.
While these two approaches are similar, when using external
IPs with a ClusterIP type service, the allocation must be made
manually, and explicitly set by the administrator, due to the
lack of support for automatic IP address management (IPAM).
Contrary to this, the LoadBalancer service type offers support
for automatic provisioning and IP allocation, provided that the
underlying infrastructure is appropriately configured as well.
Most cloud providers today integrate the Kubernetes load
balancing behavior with their standalone load balancing
products, which are often marketed as separate features, and
billed independently. Users of on-premise Kubernetes clusters
must install a separate load-balancing plugin which can
perform the task of IP address allocation and appropriate
routing within the internal network, in cooperation with the
CNI.

In cases when many applications hosted within the cluster
need to be publicly accessible, the shortage of IPv4 addresses
and their ever-increasing price can make such efforts
completely impossible or prohibitively expensive. Kubernetes
has been improving IPv6 support with each new version since
1.9, where IPv6-only support was introduced as an alpha
feature, before graduating to beta in 1.18. However, IPv6 dual-
stack support was introduced later, first as an alpha feature in
1.16, before graduating to beta only recently, in version 1.21,
and being enabled by default for new deployments [21].
Moreover, to implement an IPv6 ready cluster, explicit
support from the underlying CNI plugin responsible for
establishment of the container network is required as well.
Currently only a handful of such plugins support dual-stack
operation, with different limitations and behaviors, depending

on how they are implemented, and whether they act on layer-
2 or layer-3.

Even though the use of an IPv6 compliant CNI plugin
would indeed offer IPv6 reachability over the internet, explicit
support for IPv6 load-balancer addresses is necessary as well,
both when it comes to cloud-based or on-premise cluster
setups. For self-managed installations, this requires the
installation of a load-balancing addon, which would be
capable of allocating routable addresses on demand. There are
multiple approaches that can be taken, the most popular ones
being:

• Allocating additional IPs to the existing network
interfaces of the Kubernetes nodes, with the network
plugin responding to ARP requests of IPv4 services,
and NDP requests of IPv6 services.

• Establishment of a peering session with a border
router, advertising the allocated IPs of the created
services.

While there are multiple load-balancing plugins in the
CNCF portfolio [22] that are capable of supporting the
creation of LoadBalancer Kubernetes objects, the most widely
used in practice is MetalLB, which traces its roots back to
Google as well, similar to Kubernetes itself. MetalLB supports
both modes of operation described above for IPv4, but only
the first one for IPv6, while support for direct peering sessions
for purposes of IPv6 advertisements is currently under
development [23].

IV. SAMPLE IPV6 KUBERNETES ARCHITECTURE
In this section we present a sample IPv6 Kubernetes

cluster architecture by combining a compliant CNI plugin
with a load-balancing addon that offers IPv6 support. By
directly integrating with the existing network infrastructure
and reusing devices that are already in-place we ensure high-
performance and a familiar management process.

A. Calico as a CNI Plugin
Calico is a layer-3 implementation of a CNI plugin which

by default uses BGP full-mesh topology to peer Kubernetes
nodes between themselves and distribute network routes
within the cluster. Additionally, full support for Kubernetes
network policy objects is provided, allowing the creation of
inbound and outbound filtering rules which are automatically
translated to the appropriate IPTables representation by the
Calico daemon running on each affected node. Unlike the
majority of other alternatives, Calico also offers full IPv6
dual-stack support [24], the reason why we have selected it for
our sample architecture.

B. Avoiding Source NAT
During the deployment process of every Kubernetes

cluster, the administrator should choose appropriate IPv4 and
IPv6 subnets which will be reserved for pod and Service IP
address allocation, respectively. The pod IP range is further
subdivided into equal smaller subnets, each one allocated to a
specific node within the cluster and advertised to the others
using the previously established BGP session. In this manner,
each pod deployed on a given node is assigned an IP address
from the dedicated subnet for that given cluster member. Care
must be taken to select sufficiently large subnets, since this
can limit the number of pods that can be scheduled on a given
node. A graphical representation of this behavior is shown in
Fig. 1. However, since by default BGP sessions are

established only between the cluster nodes, other devices are
not aware of the existence of these routes, and communication
with hosts located outside the cluster requires source NAT,
where the source IP will be the routable IP address of the
Kubernetes node hosting the pod [25]. As discussed
previously, this breaks end-to-end connectivity and NAT is
something that we would like to avoid. Fortunately, Calico has
an option of peering with an external router as well [26],
giving the option of advertising the allocated IP ranges,
disabling NAT, and establishing true end-to-end connectivity.
This is reflected in Fig. 1 where the source IP of a request sent
from within the pods does not change as it traverses network
boundaries. However, if not enough IPv4 addresses are
available, then source NAT will have to be performed by the
gateway, but at least this will be transparent within the local
network.

It is not expected that every deployment of Kubernetes
will have access to a core router speaking BGP to advertise
the assigned prefixes, but there are free workarounds that can
be implemented. For example, there are many open-source
firewall solutions that support the installation of a BGP
speaker, such as PfSense, OPNSense, VyOS. In case no native
IPv6 connectivity is offered by the ISP, or only a limited
number of addresses are provided, tunnel brokers can be
utilized, some of which offer /48 subnets upon request.

C. Optimizing Performance
By utilizing a BGP full-mesh topology, a significant

overhead will be placed on each node in case of a large
Kubernetes cluster, since each member will have to maintain
BGP sessions with all others. The solution to this old and
well-known problem is to utilize a route reflector, or multiple
route reflectors for redundancy, which would in turn
redistribute the routes to the Kubernetes nodes. In this
manner, each node only maintains BGP sessions with the
route reflectors, significantly lowering the computing
overhead. The Calico CNI plugin by default supports peering
with external route reflectors and can even convert an

Fig. 1. IPv4 and IPv6 pod communication without NAT

existing Calico BGP speaker to a route reflector [27]. In terms
of on-premise deployments, many of the open-source BGP
implementations do support acting as a route reflector as well.

D. Choosing a Load-Balancing Option
The last remaining piece of the puzzle is choosing the

load-balancer plugin which would be able to automatically
allocate routable IP addresses to instantiated services and
advertise these to the border router. Since the previously
discussed MetalLB implementation still does not support
BGP peering and advertisement of IPv6 prefixes, alternatives
need to be found. Furthermore, even if it did support peering,
this would complicate things, since multiple sessions would
be required for each node, one for Calico and one for
MetalLB. PureLB is another load-balancer implementation
for Kubernetes which aims to solve the double peering
problem by allocating addresses to a virtual interface, which
in turn can be advertised by using a routing protocol. In our
case we can leverage Calico to advertise these ranges as well,
by utilizing the support for load balancer IP advertisements
[28], present since version 3.18.

V. CONCLUSION
Even after 10 years since the World IPv6 Day, IPv6

adoption is still low, and many residential ISPs and popular
websites do not support this protocol. Faced with IPv4
address space exhaustion and the lucrative business
developed around IPv4 trading, customers are faced with
little choice than to embrace IPv6, especially new service
providers whose goal is to serve large amounts of customers
without employing mitigation techniques such as NAT.

In this paper we evaluated the state of IPv6 support in
Kubernetes, provided a sample architecture using open-
source components such as the Calico CNI and the PureLB
load-balancing plugin, and optimized the performance by
utilizing route-reflectors. We also discussed alternative ways
of obtaining IPv6 support in cases where the ISP does not
support this newer protocol, through tunnel brokers.

An area for future research is the performance comparison
between various CNI plugins when it comes to IPv6, and how
this differs with results obtained in existing literature relating
to their support of IPv4.

ACKNOWLEDGEMENT
The work presented in this paper has received funding

from the Faculty of Computer Science and Engineering under
the “SCAP” project.

REFERENCES
[1] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,

‘Borg, Omega, and Kubernetes: Lessons learned from three
container-management systems over a decade’, Queue, vol. 14, no. 1,
pp. 70–93, Jan. 2016, doi: 10.1145/2898442.2898444.

[2] M. Lukša, Kubernetes in action. Shelter Island, NY: Manning
Publications Co, 2018.

[3] I. Livadariu, A. Elmokashfi, and A. Dhamdhere, ‘On IPv4 transfer
markets: Analyzing reported transfers and inferring transfers in the
wild’, Computer Communications, vol. 111, pp. 105–119, Oct. 2017,
doi: 10.1016/j.comcom.2017.07.012.

[4] ‘IPv6 – Google’. https://www.google.com/intl/en/ipv6/statistics.html
(accessed Aug. 24, 2021).

[5] L. Haugen, ‘Why No IPv6? The World’s Largest Websites Lacking
IPv6 Support’. https://whynoipv6.com/ (accessed Aug. 25, 2021).

[6] ‘Google Cloud - July 20 2021 Announcement’, Google Cloud.
https://cloud.google.com/vpc/docs/release-notes (accessed Aug. 25,
2021).

[7] ‘Azure Public IP address prefix - Azure Virtual Network’.
https://docs.microsoft.com/en-us/azure/virtual-network/public-ip-
address-prefix (accessed Aug. 25, 2021).

[8] ‘Overview of IPv6 - Azure Load Balancer’.
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-
ipv6-overview (accessed Aug. 25, 2021).

[9] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim,
‘Horizontal Pod Autoscaling in Kubernetes for Elastic Container
Orchestration’, Sensors, vol. 20, no. 16, Art. no. 16, Jan. 2020, doi:
10.3390/s20164621.

[10] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and
O. F. Rana, ‘Characterising resource management performance in
Kubernetes’, Computers & Electrical Engineering, vol. 68, pp. 286–
297, May 2018, doi: 10.1016/j.compeleceng.2018.03.041.

[11] A. Palade, A. Kazmi, and S. Clarke, ‘An Evaluation of Open Source
Serverless Computing Frameworks Support at the Edge’, in 2019
IEEE World Congress on Services (SERVICES), Milan, Italy, Jul.
2019, pp. 206–211. doi: 10.1109/SERVICES.2019.00057.

[12] S. Böhm and G. Wirtz, ‘Profiling Lightweight Container Platforms:
MicroK8s and K3s in Comparison to Kubernetes’, presented at the
13th Central European Workshop on Services and their Composition,
Bamberg, Germany, Mar. 2021.

[13] N. Nguyen and T. Kim, ‘Toward Highly Scalable Load Balancing in
Kubernetes Clusters’, IEEE Commun. Mag., vol. 58, no. 7, pp. 78–
83, Jul. 2020, doi: 10.1109/MCOM.001.1900660.

[14] P. Richter, M. Allman, R. Bush, and V. Paxson, ‘A Primer on IPv4
Scarcity’, SIGCOMM Comput. Commun. Rev., vol. 45, no. 2, pp. 21–
31, Apr. 2015, doi: 10.1145/2766330.2766335.

[15] ‘Hurricane Electric Free IPv6 Tunnel Broker’.
https://tunnelbroker.net/ (accessed Aug. 25, 2021).

[16] S. A. Abdulla, ‘Survey of security issues in IPv4 to IPv6 tunnel
transition mechanisms’, IJSN, vol. 12, no. 2, p. 83, 2017, doi:
10.1504/IJSN.2017.083830.

[17] Y. Sookun and V. Bassoo, ‘Performance analysis of IPv4/IPv6
transition techniques’, in 2016 IEEE International Conference on
Emerging Technologies and Innovative Business Practices for the
Transformation of Societies (EmergiTech), Aug. 2016, pp. 188–193.
doi: 10.1109/EmergiTech.2016.7737336.

[18] R. K. CV and H. Goyal, ‘IPv4 to IPv6 Migration and Performance
Analysis using GNS3 and Wireshark’, in 2019 International
Conference on Vision Towards Emerging Trends in Communication
and Networking (ViTECoN), Mar. 2019, pp. 1–6. doi:
10.1109/ViTECoN.2019.8899746.

[19] R. Kumar and M. C. Trivedi, ‘Networking Analysis and Performance
Comparison of Kubernetes CNI Plugins’, in Advances in Computer,
Communication and Computational Sciences, Singapore, 2021, pp.
99–109. doi: 10.1007/978-981-15-4409-5_9.

[20] ‘Kubernetes Service External IPs’, Kubernetes.
https://kubernetes.io/docs/concepts/services-
networking/service/#external-ips (accessed Aug. 25, 2021).

[21] ‘Kubernetes IPv4/IPv6 dual-stack’, Kubernetes.
https://kubernetes.io/docs/concepts/services-networking/dual-stack/
(accessed Aug. 25, 2021).

[22] ‘CNCF Cloud Native Interactive Landscape – Service Proxies’,
CNCF Cloud Native Interactive Landscape. https://landscape.cncf.io
(accessed Aug. 25, 2021).

[23] ‘Add support for MP BGP encoding for IPv4 and IPv6 by
ykulazhenkov · Pull Request #590 · metallb/metallb’, GitHub.
https://github.com/metallb/metallb/pull/590 (accessed Aug. 25,
2021).

[24] ‘Configure dual stack or IPv6 only’.
https://docs.projectcalico.org/networking/ipv6 (accessed Aug. 25,
2021).

[25] ‘Kubernetes Cluster Networking’, Kubernetes.
https://kubernetes.io/docs/concepts/cluster-
administration/networking/ (accessed Aug. 25, 2021).

[26] ‘Configure BGP peering’.
https://docs.projectcalico.org/networking/bgp (accessed Aug. 25,
2021).

[27] ‘Configuring Route Reflectors in Calico’, Tigera, Mar. 22, 2019.
https://www.tigera.io/blog/configuring-route-reflectors-in-calico/
(accessed Aug. 25, 2021).

[28] ‘Advertise Kubernetes service IP addresses’.
https://docs.projectcalico.org/archive/v3.18/networking/advertise-
service-ips (accessed Aug. 25, 2021).

