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ABSTRACT	

Novel	computing	paradigms	aim	to	enable	better	hardware	utilization,	allowing	a	
greater	 number	 of	 applications	 to	 be	 executed	 on	 the	 same	 physical	 resources.	
Serverless	computing	is	one	example	of	such	an	emerging	paradigm,	enabling	faster	
development,	 more	 efficient	 resource	 usage,	 as	 well	 as	 no	 requirements	 for	
infrastructure	 management	 by	 end	 users.	 Recently,	 efforts	 have	 been	 made	 to	
utilize	serverless	computing	at	the	network	edge,	primarily	focusing	on	supporting	
Internet	 of	 Things	 (IoT)	 workloads.	 This	 study	 explores	 open	 issues,	 outlines	
current	progress,	and	summarizes	existing	research	findings	about	serverless	edge	
computing	for	IoT	by	analyzing	67	relevant	papers	published	between	01.01.2015	
and	01.09.2021.	We	discuss	the	state-of-the-art	research	in	8	subject	areas	relevant	
to	 the	use	of	serverless	at	 the	network	edge,	derived	 through	 the	analysis	of	 the	
selected	articles.	Results	show	that	even	though	there	is	a	noticeable	interest	for	



	
	

	
	

2	

Vol.	9,	Issue	5,	October-2021	Transactions	on	Networks	and	Communications	(TNC)	

Services	for	Science	and	Education	–	United	Kingdom	

this	topic,	further	work	is	needed	to	adapt	serverless	to	the	resource	constrained	
environment	of	the	edge.	

	
Keywords:	 Edge	 Computing;	 Cloud	 Computing;	 Function	 as	 a	 Service;	 Serverless	
Computing;	Internet	of	Things;	Review.	

	
INTRODUCTION		

The	cloud	revolution	has	introduced	the	concept	of	*	(anything)	as	a	service	[1],	an	abstraction	
allowing	users	 to	 think	of	 computing	 infrastructure	and	software	 in	general	as	 just	another	
utility	for	which	they	pay	monthly	expenditures.	While	from	the	user	perspective	the	Software	
as	a	Service	(SaaS)	offerings	unburden	them	from	thinking	about	new	features,	upgrades,	and	
even	security	patches,	developers	still	have	to	interact	with	lower-level	abstractions.	One	of	the	
most	popular	developer-oriented	products	 is	Platform	as	a	Service	(PaaS),	allowing	them	to	
more	easily	publish	and	host	applications.	However,	not	all	infrastructure	related	aspects	are	
abstracted	to	the	desirable	extent	and	the	underlying	programming	models	have	not	changed;	
developers	 still	 need	 to	 provide	 a	 complete	 software	 package	 and	 decide	 what	 additional	
components	they	would	like	to	use,	such	as	the	database	product,	messages	queues,	or	caching	
systems.		
	
The	 recent	 introduction	 of	 the	 serverless	 computing	 concept,	 comprised	 of	 Function	 as	 a	
Service	 (FaaS)	 and	Backend	as	 a	 Service	 (BaaS)	 aims	 to	 alleviate	 these	developer	problems	
allowing	them	to	focus	just	on	the	core	functionality	of	their	product.	Despite	its	name,	there	
are	still	servers	involved	in	this	paradigm,	but	they	are	not	the	concern	of	the	developers,	since	
the	 provider	 deals	with	 the	 scaling,	 deployment,	 and	 runtime	 configuration	 of	 not	 only	 the	
developer's	code	but	the	associated	backend	services	such	as	databases	as	well.	The	developer	
simply	provides	the	core	functionality	in	terms	of	the	necessary	function	code	(Function	as	a	
Service)	 and	 achieves	 statefulness,	 caching,	 user	 registration,	 and	 all	 other	 backend	 related	
services	by	utilizing	other	managed	products	by	the	provider	(Backend	as	a	Service)	[2].	
	
Even	though	the	first	commercial	serverless	product	has	been	published	in	2015	[3]	as	a	cloud	
service	aimed	primarily	at	web	developers,	quickly	alternative	use-cases	have	been	identified	
as	well.	With	the	meteoric	rise	 in	the	number	of	 internet	of	things	(IoT)	devices,	 there	 is	an	
ever-growing	 need	 for	 increased	 compute	 and	 network	 capacity,	 as	 well	 as	 new	 product	
features	which	would	enable	new	usage	scenarios.	To	lower	the	communication	latency	with	
infrastructure	 located	 in	 the	 cloud,	 the	 trend	 of	 edge	 computing	 has	 emerged,	 moving	
computing	capacity	closer	to	the	data	source,	reducing	delays.	However,	from	the	developers'	
perspective,	the	programming	practices	have	not	changed,	with	a	major	difference	being	that	
they	also	need	to	account	for	the	more	limited	computing	capacity	when	their	applications	are	
deployed	at	the	edge	compared	to	the	cloud.	
	
In	recent	years	the	idea	of	utilizing	serverless	computing	at	the	network	edge	has	emerged,	thus	
allowing	 the	 deployment	 of	 lightweight	 functions	 across	 the	 infrastructure.	 Existing	 cloud	
providers	have	quickly	adapted	their	product	portfolios	[4],	[5],	allowing	users	to	self-host	the	
serverless	runtimes	on	their	own	hardware	at	the	network	edge.	A	number	of	existing	open-
source	serverless	projects	have	also	published	more	lightweight	versions	of	their	products	[6],	
[7]	and	completely	new	platforms	have	been	proposed	as	well	[8].	Attempts	to	transparently	
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bridge	the	divide	between	the	edge	and	cloud	by	allowing	cross-compatibility	of	the	developed	
functions	have	also	been	made,	thus	offering	an	edge-cloud	continuum.	
	
Although	serverless	edge	computing	is	a	new	and	dynamic	research	field	with	great	potential	
for	event	driven	IoT	workloads	[9],	there	are	a	number	of	open	challenges	that	hinder	a	wider	
adoption.	The	aim	of	this	paper	is	to	describe	these	issues	and	outline	recent	efforts	aimed	at	
solving	 them.	 To	 this	 effect,	we	 have	 conducted	 a	 systematic	 analysis	 of	 67	 state-of-the-art	
research	papers	published	between	1st	of	January	2015	and	1st	of	September	2021,	with	the	
intention	of	identifying	the	current	research	trends	and	open	issues.	
	
The	rest	of	this	paper	is	organized	as	follows:	in	section	0	we	analyze	related	research	to	IoT	
serverless	computing	at	the	network	edge,	and	then	continue	to	section	0	where	we	outline	the	
methodology	for	our	survey.	In	section	0	we	describe	the	identified	open	issues	and	discuss	in	
detail	the	relevant	state-of-the-art	research	aimed	at	solving	them.	We	conclude	the	paper	with	
section	0,	focusing	on	next	steps	and	future	research	directions.	
	
Related	Research	Papers	for	Serverless	IoT	
Both	 serverless	 and	 IoT	 are	 active	 research	 topics,	 gathering	 sizeable	 interest	 from	 the	
community	because	of	the	wide-ranging	effects	that	they	might	have	on	people's	everyday	lives.	
The	 full	 extent	 of	 IoT	 applications	 ranges	 from	 smart	 devices	 at	 home,	 to	 increased	
manufacturing	efficiency,	 and	 improvements	 to	quality	of	 life	 through	better	environmental	
predictions	and	early	warning	systems.	Combining	this	with	the	efficiency	and	easy	scalability	
of	the	serverless	paradigm,	augmented	by	the	greatly	reduced	development	effort	and	shorter	
time	 to	 market,	 makes	 IoT	 and	 serverless	 an	 appropriate	 match	 for	 accommodating	 the	
expected	influx	of	new	IoT	devices.	
	
These	aspects	are	contributing	factors	to	the	existence	of	numerous	review	papers	describing	
open-research	problems	and	disseminating	existing	findings	either	for	serverless	or	IoT,	but,	
to	the	best	of	our	knowledge,	no	paper	focusing	explicitly	on	both	of	those	aspects	has	been	
published	 yet.	 The	 aim	of	 this	 review	 is	 to	 fill	 that	 gap	 and	 look	 at	 the	 serverless	 research	
challenges	associated	when	it	is	used	primarily	for	event	based	IoT	workloads,	especially	when	
such	workloads	require	low	latency,	and	need	to	be	performed	at	the	network	edge.		
	
A	 common	 theme	 across	 existing	 literature	 is	 the	 consensus	 that	 the	 usage	 of	 serverless	 is	
expected	 to	 skyrocket	 in	 the	 near	 future	 [10],	 [11],	 as	 solutions	 to	 the	 open	 problems	 are	
emerging.	Perhaps	one	of	the	more	pressing	issues	for	serverless	computing	is	the	difference	
in	 the	 various	 implementations	 regarding	 the	 runtime	 environments	 and	 the	 variable	
performance	that	they	are	offering	as	a	result	of	the	chosen	architecture	for	function	execution,	
such	as	virtual	machines,	containers,	or	native	execution	[12],	[13].	The	authors	of	[12]	propose	
unikernels	as	a	possible	workaround	for	this	problem,	allowing	a	function	to	be	packaged	with	
all	of	 its	 library	dependencies	and	hardware	interaction	frameworks,	omitting	requirements	
for	a	base	operating	system	or	a	hypervisor.		
	
The	introduced	abstraction	of	BaaS,	and	its	externalization	in	terms	of	the	running	functions	is	
identified	 as	 another	 area	 for	 improvement,	 resulting	 in	 poor	 performance	 for	 I/O	 bound	
workloads	that	need	to	communicate	with	fast	storage,	which	in	this	case	is	accessed	through	
network	APIs,	adding	overhead	and	latency,	leading	to	longer	execution	times	[12],	[14],	[15].	
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This	increase	in	execution	time	can	potentially	cause	function	timeouts,	since	depending	on	the	
platform,	 function	 execution	 time	 can	 be	 severely	 limited	 [12].	 Another	 concern	 is	 also	 the	
increased	cost	that	might	be	incurred,	as	a	result	of	this	slowdown,	even	though	serverless	is	
deemed	a	more	cost-efficient	solution	that	other	alternatives	that	do	not	offer	a	scale-to-zero	
capability	[15].	
	
One	way	in	which	cost	can	be	reduced	is	by	migrating	from	a	commercial	serverless	platform	
to	a	self-hosted	one,	potentially	avoiding	the	vendor	 lock-in	commonly	associated	with	such	
public	platforms	[16].	Further	research	is	required	in	this	area,	to	determine	common	patterns	
for	 the	 initial	 creation	 of	 serverless	 applications	 or	 migration	 of	 existing	 cloud-based	
applications	 to	 a	 serverless	 architecture	 [15],	 [16].	 However,	 the	 very	 nature	 of	 granular	
functions	 with	 a	 well-defined	 functionality	 might	 be	 of	 great	 benefit	 to	 such	 efforts,	 since	
existing	code	can	be	reused	in	various	other	systems,	promoting	composition	and	the	mash-up	
development	 paradigm.	 Such	 ideas	will	 likely	 result	 in	 the	 establishment	 of	many	 function	
marketplaces	where	developers	will	be	able	to	either	share	or	sell	their	functions	[13],	[15].	Of	
course,	 further	 work	 on	 vendor	 abstraction	 and	 cross-platform	 serverless	 compatibility	 is	
needed	before	such	community	sharing	efforts	can	be	realized.		
	
Reusing	 functions	 from	 unknown	 developers	 naturally	 opens	 the	 question	 of	 security.	
Serverless	 computing	 differs	 from	 regular	 cloud	 computing	 based	 on	VMs	 or	 even	 physical	
servers,	since	the	security	aspects	are	in	most	cases	handled	by	the	provider,	which	is	especially	
true	in	public	environments,	limiting	the	customizability	of	security	policies	by	end	users	[12],	
[14],	[15].	When	devising	new	runtime	optimizations,	great	care	should	be	taken	not	only	on	
function	 performance,	 but	 on	 function	 isolation	 as	 well,	 keeping	 in	 mind	 that	 serverless	
platforms	are	multi-tenant	environments.		
	

	

	
Despite	 these	 challenges,	 serverless	 is	 considered	one	of	 the	 enabling	 aspects	 of	 future	 IoT	
infrastructures	[13],	[14],	[17].	By	moving	serverless	computing	to	the	edge	of	the	network,	and	
establishing	an	edge-cloud	continuum,	application	developers	can	get	the	best	of	both	the	edge	
and	cloud	paradigms.	Through	the	utilization	of	advanced	scheduling	strategies	for	selecting	
the	location	where	the	workload	will	be	executed,	either	the	potentially	 limitless	computing	
capacity	of	the	cloud	can	be	leveraged,	or	the	low	latency	of	the	edge,	depending	on	the	context.	
Distributed	 scheduling	 algorithms	 [18]	 play	 a	 very	 prominent	 role	 in	 such	 edge-cloud	
scenarios,	where	the	lower	execution	performance	of	the	edge	can	easily	offset	the	time	savings	
achieved	 by	 eliminating	 the	 transfer	 delay	 to	 the	 more	 resource	 rich	 cloud,	 leading	 to	
suboptimal	 implementations.	 This	 requires	 careful	 consideration	 of	 the	 scale-down-to-zero	
behavior	which	although	results	in	lowered	cost,	increases	the	initial	start-up	time	of	the	first	
function	instance.	
	

RESEARCH	METHOD	
To	obtain	broad	initial	results	we	have	identified	the	following	terms	for	our	database	search:	
(“serverless”	∨	“faas”	∨	“function	as	a	service”	∨	“function-as-a-service”	∨	“baas”	∨	“backend	as	

Figure	1.	High-level	Overview	of	the	Applied	Research	Method	
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a	service”	∨	“backend-as-a-service”)	∧	(“iot”	∨	“internet	of	things”	∨	“internet-of-thigs”).	Even	
though	our	main	 focus	are	serverless	challenges	at	 the	network	edge,	we	have	purposefully	
omitted	mention	of	either	edge	or	edge	computing	in	the	search	query,	so	that	even	papers	who	
do	 not	 explicitly	 mention	 them	 but	 do	 mention	 serverless	 in	 an	 IoT	 context	 are	 returned.	
Authors	often	discuss	serverless	issues	and	present	new	approaches	in	a	wider	network	context	
without	 explicitly	 targeting	 or	 even	mentioning	 the	 network	 edge,	 but	 in	many	 cases	 these	
contributions	are	indeed	applicable	to	it	and	thus	provide	valuable	insight.	
	
Using	 the	previously	 identified	 search	 keywords	we	have	used	 six	 popular	 databases:	 IEEE	
Xplore,	ACM,	Arxiv,	Google	Scholar,	Springer,	and	Science	Direct	to	identify	relevant	papers.	The	
criteria	for	consideration	of	any	paper	were:	i)	published	between	01.01.2015	and	01.09.2021;	
ii)	full-text	available	to	the	authors	of	this	paper	in	English;	iii)	contains	clear	reference	to	IoT	
serverless	computing	and	discusses	issues	directly	or	indirectly	applicable	in	an	edge	context;	
iv)	is	peer	reviewed,	grey	literature	was	omitted.		
	
We	have	initially	obtained	217	results,	which	after	applying	the	above	inclusion	criteria	were	
reduced	to	64	which	underwent	a	full-text	reading.	During	this	phase	we	have	actively	searched	
for	additional	cited	relevant	papers.	As	a	result	of	the	full	text	reading,	we	have	identified	11	
papers	 that	 were	 not	 relevant	 to	 the	 topic	 and	 added	 14	 extra	 entries	 as	 a	 result	 of	 the	
snowballing	technique.	At	the	end,	we	have	accepted	67	papers	in	total,	based	on	which	we	have	
derived	our	classification	framework	presented	in	the	next	section.	Figure	1	shows	a	graphical	
representation	of	our	workflow.	
	
Open	Issues	and	Existing	Research	Findings	
In	the	subsections	that	follow	we	discuss	the	relevant	open	issues	identified	through	the	full-
text	analysis	of	the	selected	papers	and	describe	potential	solutions	and	mitigations.	We	follow	
up	on	the	topic	categorization	that	was	performed	in	[19]	which	represented	an	exploratory	
systematic	mapping	of	serverless	trends	at	the	network	edge.	In	this	paper	we	provide	an	in-
depth	 discussion	 for	 each	 identified	 topic	 of	 interest	 and	 relevant	 subtopics,	 outlining	 the	
current	state-of-the-art	research	in	this	emerging	field.	
	
Efficiency	
The	fact	that	at	the	lowest	level	serverless	architectures	are	a	time-sharing	concept,	efficiency	
optimizations	are	at	the	heart	of	this	paradigm,	since	any	breakthroughs	directly	impact	both	
the	service	providers,	as	well	as	the	customers.	Reducing	the	functions'	footprint	and	execution	
times	allows	more	workload	 to	be	executed	on	 the	same	 infrastructure,	as	well	as	 lowering	
costs,	thus	promoting	serverless	as	a	feasible	alternative	for	latency	constrained	applications.		
The	set	of	requirements	that	a	serverless	platform,	especially	one	deployable	to	the	network	
edge,	should	support	can	be	summarized	with	the	following	characteristics	[20]:	i)	provide	an	
event-driven	and	short-lived	execution	of	serverless	functions;	ii)	offer	support	for	high	density	
and	multi-tenancy;	iii)	provide	low	latency	as	to	support	the	requirements	of	IoT	workloads;	
iv)	 deal	 with	 high	 churn	 of	 serverless	 functions,	 executed	 repeatedly,	 with	 a	 short-lived	
execution	time.		
	
The	main	problem	in	this	area	that	has	attracted	a	significant	interest	both	from	academia	and	
the	 industry	 is	 how	 to	 reduce	 the	 initial	 start-up	 time	 of	 a	 serverless	 function.	 This	 is	 also	
popularly	known	as	the	cold	start	problem.	We	elaborate	further	on	this	issue	in	the	subsection	
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that	 follows.	We	 then	proceed	 to	 introduce	 the	various	proposed	 solutions	 to	 this	problem,	
starting	 with	 WebAssembly,	 and	 moving	 onto	 other	 runtime	 environments	 such	 as	 micro	
virtual	machines	and	unikernels.	We	conclude	the	discussion	on	efficiency	and	optimization	
with	a	description	of	recent	efforts	to	reduce	serverless	functions'	sizes.	Table	1	provides	an	
overview	of	the	discussed	topics	in	each	paper	relevant	to	this	section.	
	

Table	1.	Overview	of	Research	Topics	and	Related	Papers	from	an	Efficiency	Perspective	
Topic	 Papers	 Total	
Footprint	Reduction	 [21]–[27]	 7	
Containers	 [12],	[26],	[28]	 3	
WebAssembly	 [20]–[22]	 3	
Native	Execution	 [12],	[27]	 2	
Micro	VMs	 [12]	 1	
SDN	 [29]	 1	
Unikernels	 [12]	 1	
VMs	 [12]	 1	

	
The	Cold	Start	Problem	and	Container	Pre-Warming	
The	 cold	 start	 problem	 is	 a	 direct	 consequence	 of	 the	 scale-down-to-zero	 approach,	which	
keeps	a	function	instance	running	for	a	limited	amount	of	time,	until	it	finishes	its	execution,	or	
it	 reaches	 the	 timeout	 limit,	 after	which	 it	 is	 terminated.	Upon	 the	next	 invocation,	 another	
instance	 needs	 to	 be	 created,	 incurring	 larger	 start	 up	 costs	 in	 comparison	 to	 the	 scenario	
where	the	same	runtime	environment	is	reused	[9],	[21].	To	mitigate	this	drawback,	numerous	
approaches	have	been	proposed.	One	of	them	is	to	keep	a	pool	of	pre-warmed	containers,	ready	
to	serve	a	given	function	without	incurring	the	cold	start	delay	during	the	first	call	[22],	[30].	
Even	though	this	is	a	possible	solution	to	the	problem,	it	leads	to	greater	resource	usage,	and	
eliminates	one	of	the	positive	aspects	of	serverless	-	the	scale-down-to-zero	feature.	A	slight	
variation	to	this	solution	is	not	discarding	the	runtime	environment	after	a	 function	is	done	
executing,	 and	 instead	 reusing	 it	 for	 any	 future	 invocations,	 a	 strategy	 practiced	 by	 many	
serverless	platforms,	both	commercial	and	open-source.	However,	in	this	way	runtime	isolation	
is	not	guaranteed,	leading	to	security	risks	in	which	temporary	data	from	a	previous	invocation	
by	a	different	user	can	be	accessed	by	a	future	invocation	of	the	function,	in	cases	where	the	
same	environment	is	used.		
	
The	drawbacks	of	the	aforementioned	solutions	have	sparked	the	interest	of	migrating	away	
from	containers	for	serverless	function	execution	and	onto	more	efficient	runtimes.	Examples	
include	WebAssembly,	micro	virtual	machines,	and	unikernels,	among	others.	The	purpose	of	
these	efforts	is	not	only	to	reduce	start	up	times,	but	also	achieve	performance	comparable	to	
the	native	execution	on	bare-metal	hardware.	
	
WebAssembly	
One	 example	 of	 a	more	 efficient	 runtime	 for	 serverless	 functions	 that	 looks	 promising	 and	
attracts	a	noticeable	research	interest	is	WebAssembly.	Even	though	first	envisioned	as	a	web	
technology,	bearing	this	mark	even	in	its	name,	it	has	since	been	adapted	to	a	general-purpose	
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execution	environment,	not	 limited	to	the	browser.	A	number	of	open-source	WebAssembly	
engines	can	be	directly	embedded	into	applications.	Hall	et	al.	[21]	take	this	approach	where	
they	 implement	 a	 serverless	 platform	 inspired	 by	 the	 OpenWhisk	 architecture,	 but	 unlike	
OpenWhisk,	 they	 use	 WebAssembly	 as	 an	 execution	 environment.	 Their	 contribution	 also	
characterizes	function	access	patterns	into	three	distinct	categories:	 i)	single	client,	multiple	
access;	 multiple	 clients,	 single	 access;	 multiple	 clients,	 multiple	 access;	 and	 then	 provide	
benchmarks	comparing	the	performance	of	the	WebAssembly	prototype	to	OpenWhisk.	Results	
show	that	while	the	startup	time	is	significantly	reduced,	execution	time	is	increased,	and	it	is	
slower	than	both	native	and	container-based	execution.	
	
A	possible	 solution	 to	 the	 reduced	performance	 is	 provided	by	Gadepalli	 et	 al.	 first	 in	 [22],	
where	a	prototype	implementation	is	discussed	and	later	in	[20]	where	a	functional	platform	
[31]	 is	 presented.	 Their	 approach	 is	 different	 since	 they	 are	 not	 using	 a	 JavaScript	 virtual	
machine	 as	 the	 execution	 environment	 for	 the	WebAssembly	 serverless	 functions,	 because	
even	 though	 it	 does	 offer	 better	 start	 up	 times	 compared	 to	 containerization,	 it	 reduces	
execution	performance,	as	seen	in	[21].	Instead,	they	develop	a	new	WebAssembly	compiler,	
and	 a	 runtime	 framework	 called	 aWsm	 [32],	 allowing	multiple	 functions	 to	 share	 a	 single	
runtime	instance,	and	bypass	the	kernel	scheduling	and	isolation	features,	instead	relying	on	
its	 own	 implementations.	 This	 approach	 is	 reported	 to	 offer	 start	 up	 times	 measured	 in	
microseconds	and	 function	memory	 footprint	 in	kilobytes.	Results	 in	 [20]	where	 the	Sledge	
platform	 is	 introduced,	 utilizing	 the	 described	 approach,	 show	 4	 times	 better	 latency	 and	
throughput	 comparable	 to	 Nuclio	 [33],	 an	 alternative	 open-source	 serverless	 platform,	
commonly	praised	for	its	speed.	
	
To	conclude,	even	though	WebAssembly	can	be	seen	as	a	potential	solution	to	the	cold	start	
problem,	 several	 issues	 remain	 before	 it	 can	 satisfy	 all	 the	 requirements	 of	 an	 efficient	
serverless	runtime	at	the	edge.		Platforms	utilizing	it	require	careful	consideration	regarding	
the	execution	performance,	as	not	to	offset	any	benefits	acquired	through	the	reduced	start	up	
times.	Furthermore,	with	the	increased	popularity	of	WebAssembly	for	other	use-cases	besides	
serverless,	 it	 is	 expected	 that	 there	 will	 be	 even	 wider	 and	 better	 support	 by	 high-level	
programming	languages,	giving	developers	a	wider	set	of	options.	
	
Micro	Virtual	Machines	
Micro	virtual	machines	can	also	be	seen	as	a	potential	solution	to	the	slow	start-up	speed	of	
regular	 virtual	 machines	 and	 the	 lower	 isolation	 provided	 by	 containers	 compared	 to	 the	
traditional	VM	approach.	The	offered	benefits	in	terms	of	hardware-backed	separation	between	
workloads	and	milliseconds	start-up	times	can	benefit	serverless	use-cases	as	well,	providing	
greater	isolation	between	tenants	and	wider	choice	in	terms	of	supported	underlying	platforms.	
The	first	commercial	services	using	this	technology	both	in	a	serverless	and	serverful	context	
are	already	available	[34].	Amazon	Firecracker	is	one	such	infrastructure	product	whose	micro	
VM	implementation	has	also	been	open-sourced	[35].		
	
The	application	of	micro	virtual	machines	is	still	an	area	under	active	research,	with	interest	
from	 both	 industry	 and	 academia,	 and	 the	 potential	 benefits	 both	 to	 execution	 speed	 and	
workload	isolation	can	be	significant	[36].	
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Unikernels	
Unikernels	also	present	an	alternative	to	the	containerized	execution	of	serverless	workloads,	
offering	reduced	overhead	in	comparison	to	the	other	approaches.	The	idea	behind	unikernels	
is	to	package	the	application	together	with	all	its	dependencies,	as	well	as	system	functions	for	
directly	interfacing	with	the	underlying	hardware,	so	that	it	can	be	instantiated	independently,	
without	the	need	for	a	base	operating	system.	In	this	way,	the	resulting	artifact	size	is	an	order	
of	magnitude	smaller	than	traditional	virtual	machine	images,	while	allowing	native	execution	
performance,	leading	to	more	efficient	resource	usage	and	planning.	
	
The	authors	of	[12]	identify	unikernels	as	a	potential	approach	that	might	be	greatly	utilized	in	
the	future	for	FaaS	execution.	While	there	are	some	existing	unikernel	implementations	today	
[37]	this	still	remains	an	under-researched	topic.	
	
Code	Size	Reduction	
The	 function	 size	 plays	 a	 significant	 role	 in	 the	 cold	 start	 up	 times	 of	 serverless	 functions,	
especially	 on	 resource	 constrained	 edge	 devices.	 Additionally,	 most	 commercial	 serverless	
providers	charge	for	the	storage	of	the	function's	source	code	as	well,	which	can	reach	hundreds	
of	megabytes	when	all	 library	dependencies	are	 taken	 into	account.	Even	 in	 the	case	where	
serverless	platforms	run	on	private	infrastructures,	the	excessive	storage	use	of	large	numbers	
of	functions	cannot	be	overlooked	and	pose	a	challenge	for	computing	devices,	even	more	so	to	
those	with	capacity	and	performance	constrained	storage.	To	overcome	this	problem,	several	
optimization	techniques	have	been	proposed	[23],	[24],	the	main	idea	being	to	prevent	function	
size	from	ballooning	in	cases	where	a	large	library	is	added	as	a	dependency.	This	is	especially	
important	during	the	migration	of	existing	workloads	to	a	serverless	architecture,	where	prior	
technical	debt	might	lead	to	the	reuse	of	well-tested,	albeit	not	serverless	optimized	libraries.	
More	details	regarding	the	possible	optimizations	performed	on	existing	codebases	to	reduce	
their	size	and	avoid	a	full	rewrite	are	given	in	subsection	0,	Serverless	Migration	Guidelines	and	
Benefits,	below.	
	
Scheduling	
Taking	 into	 account	 the	 distributed	 nature	 of	 the	 edge,	 efficient	 scheduling	 algorithms	 are	
required	to	determine	the	best	execution	point	for	a	given	serverless	function.	However,	as	a	
result	of	the	large	number	of	functions	that	might	potentially	be	available,	additional	attention	
should	 be	 paid	 to	 the	 limited	 resources	 of	 the	 edge	 devices,	 which	might	 limit	 how	many	
functions	can	be	served	at	a	given	point	in	time,	due	to	storage	and	performance	constraints.	
The	main	efforts	in	this	area	are	focused	on	developing	efficient	scheduling	algorithms	that	can	
optimize	latency,	cost,	or	bandwidth	usage,	and	help	establish	an	edge-fog-cloud	continuum,	
automatically	finding	the	best	execution	location	that	matches	the	previously	defined	criteria	
or	even	 transparently	migrating	 in-progress	workloads.	There	are	examples	 that	apply	new	
scheduling	approaches	to	commercial	services	[24],	[25],	as	well	as	to	open-source	and	self-
hosted	ones	[38]–[40].	Table	2	categorizes	the	relevant	papers	to	this	topic	according	to	the	
discussion	provided	in	the	subsections	below.	
	
	
	
	
	



	
	

	
	

9	

Kjorveziroski, V., Canto, C. B., Roig, P J., Gilly, K., Mishev, A., Trajkovik, V., Filiposka, S. (2021). IoT Serverless Computing at the Edge: Open Issues 
and Research Direction. Transactions on Networks and Communicaitons, 9(5). 1-33. 

URL:	http://dx.doi.org/10.14738/tnc.95.11231	
	

Table	2.	Overview	of	Research	Topics	and	Related	Papers	from	a	Scheduling	Perspective	
Topic	 Papers	 Total	
Latency	Optimization	 [18],	[20],	[22],	[24],	[26],	[29],	[38]–[53]	 22	
Bandwidth	Optimization	 [18],	[29],	[40],	[48],	[51],	[54]	 6	
AI	&	ML	 [26],	[39],	[41]–[43]	 5	
Container	Prewarming	 [26],	[30],	[39],	[41],	[55]	 5	
Price	Optimization	 [18],	[25],	[29],	[43],	[50]	 5	
On-the-fly	Migration	 [18],	[44],	[54]	 3	

	
Optimization	of	Commercial	Serverless	Platforms	
Elgamal	 et	 al.	 [25]	 present	 an	 algorithm	 aimed	 at	 the	 AWS	 serverless	 portfolio,	 capable	 of	
scheduling	functions	either	on	the	edge,	on	devices	utilizing	AWS	Greengrass,	or	in	the	cloud,	
using	the	AWS	Lambda	service.	The	fact	that	functions	can	be	seamlessly	reused	across	these	
two	 services,	without	 any	modification,	 allows	 the	 scheduling	 system	 to	 see	 the	 edge	 as	 an	
extension	 to	 the	 cloud.	 The	 presented	 approach	 is	modeled	 as	 a	 constrained	 shortest	 path	
problem,	 with	 the	 aim	 of	 finding	 the	 minimum	 execution	 cost,	 without	 going	 over	 the	
predefined	latency	threshold.	Further	cost	savings	can	be	achieved	during	cloud	execution	by	
combining	 the	 logic	of	multiple	distinct	 functions	 into	a	single	one,	eliminating	 the	need	 for	
function	chaining,	which	is	charged	extra.	Pelle	et	al.	[24]	also	implement	an	abstraction	layer	
between	Greengrass	and	AWS	Lambda,	creating	a	decision	system	about	which	infrastructure	
to	use	 and	where	 to	 execute	 the	 functions,	 incorporating	metrics	 from	 commercial	 and	on-
premise	SDN	networking	devices.	
	
A	similar	approach	to	the	previously	described	system	by	Elgamal	et	al.	in	[25]	is	taken	by	Pelle	
et	 al.	 in	 [24],	 with	 the	 focus	 on	 optimizing	 the	 deployed	 function	 layout	 through	 function	
grouping	 and	 resource	 requirement	 optimization,	 achieving	 better	 performance	 and	 lower	
cost.	The	proposed	solution	uses	a	two-layer	architecture,	where	the	first	layer	can	generate	a	
software	layout	which	describes	how	the	different	functions	will	be	grouped,	what	will	be	their	
resource	requirements,	and	whether	they	will	be	executed	at	the	edge	or	in	the	cloud,	all	based	
on	previous	metrics	and	defined	constraints.	The	second	layer	acts	as	an	adapter	layer	and	is	
responsible	for	the	deployment	of	the	generated	layout	on	the	used	infrastructure.	Even	though	
in	 the	 initial	 prototype	 only	 AWS	 services	 are	 supported,	 the	 abstraction	 provided	 by	 this	
second	 layer	 allows	 other	 serverless	 products	 to	 be	 supported	 in	 the	 future	 as	well,	which	
would	allow	function	scheduling	across	different	providers,	selecting	the	one	that	offers	 the	
most	favorable	terms.	
	
Optimization	of	Open-Source	Serverless	Platforms	
Unlike	 contributions	 that	 focus	on	 commercial	platforms,	 those	using	open-source	 software	
meant	to	be	run	and	maintained	independently	focus	on	latency	as	the	primary	optimization	
goal.	Cicconetti	et	al.	[38]	present	a	scheduling	algorithm	for	serverless	functions	that	can	select	
the	most	optimal	node	from	a	list	of	distributed	nodes,	all	offering	the	same	function	instance.	
Utilizing	a	software	defined	network	(SDN)	architecture,	and	assigning	different	roles	to	edge	
devices,	a	hierarchical	decision	system	is	implemented,	allowing	to	choose	the	device	offering	
the	most	optimal	execution	latency.	The	prototype	implementation	is	developed	on	top	of	the	
OpenWhisk	platform,	and	the	source	code	is	publicly	available	[56].	
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Another	approach	focusing	on	an	existing	open-source	serverless	platform	is	presented	in	[39],	
using	 Knative.	 By	 using	 linear	 regression	models	 to	 predict	when	 requests	 for	 a	 particular	
function	will	be	received,	as	well	as	their	volume,	a	prediction	system	is	built.	The	idea	is	that	
by	using	prefetching	and	 traffic	prediction,	 the	 cold	 start	delay	penalty	 incurred	during	 the	
initial	 start-up	of	 the	 container	hosting	 the	 given	 serverless	 function	 can	be	mitigated,	 as	 a	
result	of	pre-warming	the	required	number	of	container	instances.	Similar	prediction	systems	
whose	 aim	 is	 reducing	 the	 cold	 start	 penalty	 have	 been	 built	 for	 different	 open-source	
serverless	platforms	commonly	deployed	at	the	network	edge	as	well.	Agarwal	et	al.	[41]	design	
a	 reinforcement	 learning	 scheduling	 algorithm	 for	 Kubeless,	 optimizing	 the	 number	 of	
container	replicas	backing	a	given	serverless	function	depending	on	user	demand,	introducing	
it	as	an	alternative	to	the	native	Kubernetes	auto-scaler	which	is	also	being	utilized	by	Kubeless	
itself.	 Continuing	 the	 trend	 of	 offering	 better	 scheduling	 algorithms	 to	 existing	 serverless	
platforms,	the	authors	of	[26]	have	recently	developed	a	queuing	theory	algorithm	for	function	
scheduling	on	top	of	OpenWhisk.	Their	implementation	also	offers	runtime	optimizations	by	
limiting	the	allocated	CPU	shares	to	already	executing	functions,	on-the-fly.	
	
Smart	Scheduling	Algorithms	for	the	Network	Edge	
This	idea	of	using	prediction	models	is	shared	by	Patman	et	al.	[42],	where	a	heuristic	based	
machine	learning	algorithm	is	presented	to	dynamically	decide	what	combinations	of	functions	
needs	 to	be	deployed	where,	 in	addition	 to	when,	 so	 that	 serverless	 tasks	can	be	efficiently	
scheduled.	However,	their	vision	is	to	reuse	dormant	computing	capacity	of	nearby	devices	for	
the	task	execution	instead	of	offloading	it	to	a	dedicated	edge	infrastructure.		
	
Cho	et	al.	[43]	also	apply	machine	learning	to	scheduling	algorithms	but	this	time	in	a	multi-
access	edge	computing	(MEC)	context,	where	the	initial	tier	of	the	serverless	infrastructure	is	
collocated	with	mobile	base	stations.	Using	a	deep	reinforcement	learning	approach,	workloads	
are	distributed	among	edge	and	remote	cloud	nodes	based	on	various	execution	characteristics,	
including	 QoS,	 cost,	 and	 performance	 requirements.	 This	 trend	 of	 collocating	 compute	
infrastructure	with	mobile	base	stations,	following	the	MEC	specification	and	exploring	efficient	
algorithms	of	choosing	the	best	node	is	also	explored	in	[40].	The	parameter	being	optimized	
by	Cicconetti	et	al.,	in	this	case,	is	the	total	delay	for	completing	the	function,	taking	into	account	
transmission	as	well	as	execution	delays.	However,	another	constraint	is	added	to	the	decision	
process	as	well	since	the	algorithm	is	made	aware	of	potential	specialized	hardware	such	as	
GPUs	that	might	be	available	at	specific	collocated	nodes.	
	
On-the-fly	Migration	
Even	though	there	are	multiple	scheduling	techniques	that	consider	various	factors	during	the	
decision-making	process	 such	as	 latency,	 cost,	 execution	 speed,	or	 available	hardware,	 they	
mainly	 focus	on	 the	 initial	 function	placement.	Karhula	et	al.	 [44]	present	a	way	 in	which	a	
running	serverless	function	can	be	migrated	to	a	different	node,	while	it	is	being	executed.	In	
this	manner,	 it	 is	possible	to	better	balance	the	workload	and	alleviate	memory	pressure	by	
migrating	function	instances	on-the-fly,	instead	of	prematurely	terminating	their	execution	in	
resource	constrained	scenarios.	Also,	looking	at	the	problem	from	a	different	perspective,	this	
also	provides	the	means	for	temporarily	pausing	any	function	which	is	currently	blocked	and	
waits	for	another	function	or	an	I/O	operation	to	complete.	This	approach	has	benefits	both	for	
customers	 and	 service	 providers,	 reducing	 execution	 cost,	 as	 well	 as	 offering	 better	 time	
sharing	of	the	underlying	hardware.	The	potential	cost	reduction	could	be	significant,	and	it	can	
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also	help	to	overcome	the	double-spending	serverless	problem,	where	a	user	is	charged	for	the	
execution	time	of	a	 function	which	is	 idling	and	is	blocked	by	a	synchronous	call	 to	another	
function,	waiting	for	it	to	return	a	result.	
	
IoT	Serverless	Edge	Platforms	

Table	3.	Serverless	Platforms	Specifications	
Name	 Location	 Runtime	 Function	

Languages	
Base	 Open-

Source	
STOIC	[45]	 Any	 Native	 &	

Containers	
Any	 Kubeless	 ✓	[57]	

Serverless	IoT	[58]	 Any	 Containers	 Any	 OpenFaaS	 ✓	[59]	
Pigeon	[30]	 Any	 Containers	 Dockerfile	 Kubernetes	 ✕	
Fog	Function	[54]	 Any	 Containers	 Dockerfile	 FogFlow	 ✓	[60]	
[55]	 Any	 Containers	 Any	 OpenWhisk	 ✕	
CSPOT	[61]	 Any	 Containers	 C,	Python	 Docker	 ✓	[62]	
A3-E	[46]	 Any	 Containers	 Depends	on	base	 OpenWhisk,	

AWS		
✓	[63]	

[64]	 Any	 Containers	 Any	 Kubernetes,	
AWS	Lambda	

✓	
[65]–
[67]	

Clemmys	[28]	 Any	 Containers	 Any	 OpenWhisk	 ✕	
Hcloud	[50]	 Any	 Proprietary	

Platforms,	
Containers	

Python	 IaaS	 &	
Commercial	
Serverless	

✕	

[47]	 Edge,	
Cloud	

Containers	 Any	 Edge	Devices	 ✓	[68]	

[69]	 Edge,	
Cloud	

Native	 &	
Containers	

Python,	 Node.js,	
Java,	C,	C++	

AWS	
Greengrass	 &	
Lambda	

✕	

[70]	 Edge,	
Cloud	

Containers	 N/A	 LXC	 ✕	

EBI-PAI	[48]	 Edge	 Containers	 Any	 OpenWhisk	 ✕	
tinyFaaS	[8]	 Edge	 Containers	 Node.js	 Docker	 ✓	[71]	
Stack4Things	[72]	 Edge	 Containers	 Python,	Node.js	 Qinling,	

Iotronic	
✓	[73]	

Kappa	[74]	 Edge	 Calvin	Runtime	 Calvin	 Script,	
Python	

Calvin	 ✕	

Sched-Sim	[75]	 Edge	 Containers	 Any	 Kubernetes	 ✓	[75]	
Serverless	 MEC	
[76]	

Edge	 Native	 Any	 Any	 ✓	[77]	

	
Real-world	implementations	of	serverless	edge	platforms	have	also	attracted	a	great	research	
interest.	 A	 number	 of	 different	 approaches	 have	 been	 taken,	 such	 as:	 reusing	 existing	
commercial	 offerings,	 adapting	 popular	 open-source	 alternatives	 to	 the	 network	 edge,	 or	
developing	completely	new	solutions	from	scratch.	A	very	encouraging	aspect	is	the	fact	that	
the	 majority	 of	 the	 discussed	 platforms	 below	 have	 chosen	 to	 open-source	 their	
implementations,	 allowing	 others	 to	 reuse,	 or	 even	 improve	 them	 in	 the	 future.	 Another	
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interesting	 development	 are	 efforts	 to	 fuse	 new	 serverless	 platforms	with	 existing	 popular	
commercial	 alternatives,	 through	 the	 introduction	 of	 various	 compatibility	 layers,	 allowing	
function	reuse.	
	
Table	3	lists	the	main	characteristics	of	the	discussed	platforms	below,	and	offers	insight	at	
their	primary	execution	location,	utilized	runtime	technology,	supported	languages	for	writing	
serverless	functions,	as	well	as	their	underlying	base	on	top	of	which	they	are	developed.	It	is	
evident	 that	 many	 researchers	 opt	 to	 base	 their	 implementations	 on	 existing	 serverless	
platforms,	some	of	them	open-source,	a	topic	that	is	further	discussed	in	section	0,	Open-Source	
Solutions.	
	
Serverless	Platforms	Supporting	Multiple	Execution	Locations	
The	current	serverless	platform	research	is	focused	on	providing	versatile	solutions	capable	of	
running	both	at	 the	edge	and	in	the	cloud,	 thus	ensuring	an	edge-cloud	continuum,	utilizing	
decision	making	algorithms	and	finding	the	most	optimal	execution	location.	13	of	the	selected	
platforms	 mention	 that	 they	 are	 designed	 to	 take	 advantage	 of	 more	 than	 one	 execution	
location.	The	basic	idea	is	to	use	the	edge	to	process	smaller	data	samples,	offering	a	local	view,	
while	exploiting	the	larger	processing	power	of	the	cloud	to	generate	global	views	[70].		
	
To	this	effect,	Pinto	et	al.	 [58]	develop	a	platform	[59]	utilizing	a	proxy	component	that	can	
measure	the	execution	time	of	serverless	functions	and	based	on	past	experience	decide	at	what	
layer	 to	execute	a	given	 function.	The	decision-making	process	 in	 terms	of	 finding	 the	most	
optimal	execution	location	is	compared	to	the	multi-armed	bandit	problem,	and	three	different	
algorithmic	implementations	are	presented,	balancing	the	exploration	and	exploitation	aspects	
of	the	issue.	Additionally,	both	[50]	and	[46]	offer	platforms	with	incorporated	scheduling	logic	
for	 edge-cloud	 continuum.	Whereas	 [46]	 factors	 in	 the	 functions'	 requirements	 in	 terms	 of	
service	latency,	battery	consumption,	and	availability	during	the	decision	process,	[50]	aims	to	
provide	a	 compatibility	 layer	between	various	 serverless	providers,	 taking	 into	account	 the	
execution	cost	at	the	various	layers	as	well.	The	presented	solution	continuously	monitors	the	
pricing	 information	 of	 multiple	 public	 serverless	 providers	 and	 based	 on	 this	 information	
deploys	 it	 to	 the	most	 affordable	 one,	 as	 long	 as	 the	 function's	 resource	 requirements	 are	
satisfied.	 To	 ensure	 immutability	 of	 the	 recorded	 pricing	 information	 and	 prevent	 price	
tampering	by	the	administrators	of	the	unified	platform,	a	blockchain	backed	storage	medium	
is	used	for	storing	historical	price	data.	Similar	to	these	approaches,	Zhang	et	al.	[45]	present	a	
platform	suited	for	AI	workloads,	which	can	either	be	natively	executed	at	the	edge,	without	
any	runtime	abstraction,	or	in	the	cloud	using	the	Kubeless	open-source	serverless	platform.	
To	 better	 support	 complex	 workloads,	 the	 availability	 of	 specialized	 hardware	 is	 also	
considered	during	the	decision	process.		
	
Avoiding	 the	problem	of	deploying	elaborate	edge	 infrastructure	or	relaying	on	commercial	
providers,	Avasalcai	et	al.	[47]	develop	a	community	platform	where	participating	users	can	
opt	to	share	their	resources	with	each	other.	Each	application	is	represented	by	a	series	of	tasks	
that	can	be	scheduled	on	available	devices	at	the	edge.	If	not	enough	resources	are	available,	
cloud	capacity	can	be	leveraged	as	well.	The	incentive	mechanism	which	would	entice	users	to	
share	 their	 resources,	 as	well	 as	means	 for	 task	migration	 between	 devices	 have	 not	 been	
defined	yet	and	will	be	a	subject	of	future	research.	
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Extending	Existing	Serverless	Platforms	
Research	efforts	are	not	concentrated	only	on	developing	novel	solutions,	but	also	improving	
the	existing	ones,	in	some	cases	even	those	that	are	commercially	available.	One	such	example	
is	 the	 Clemmys	 [28]	 platform,	 extending	 OpenWhisk	 and	 adding	 support	 for	 the	 Intel	 SGX	
secure	enclave	and	describing	optimizations	that	reduce	the	performance	penalty,	achieving	
comparable	performance	to	native	OpenWhisk	execution.	The	use	of	Intel	SGX	in	a	serverless	
context	is	discussed	in	greater	detail	in	section	0.	Another	example	which	improves	an	existing	
commercial	 solution	 is	 described	 in	 [69],	 where	 the	 AWS	 serverless	 products	 are	 used	 to	
develop	 a	 platform	 that	 can	 either	 execute	 serverless	 functions	 at	 the	 edge,	 using	 devices	
enrolled	into	AWS	Greengrass,	or	in	the	cloud,	utilizing	the	Lambda	serverless	service.	Using	
automatic	 function	 downloading,	 Greengrass	 devices	 can	 autonomously	 reconfigure	
themselves,	and	fetch	any	missing	functions	from	the	cloud,	thus	optimizing	the	storage	usage.	
No	advanced	decision	making	 is	 involved,	and	 the	caller	of	 the	 function	decides	whether	 to	
invoke	 the	 function	 at	 the	 edge	 or	 in	 the	 cloud.	 In	 cases	where	 the	 cloud	 is	 chosen	 as	 the	
execution	location,	the	local	edge	devices	act	as	proxies	in	the	edge-cloud	communication.	
	
Open-source	 alternatives	 which	 can	 also	 transform	 edge	 devices	 to	 function	 executors	 are	
available	as	well.	Tricomi	et	al.	[72]	present	a	platform	[73]	which	modifies	the	Qinling	FaaS	
project	by	OpenStack	[78]	to	extend	function	execution	to	end-devices.	Additionally,	a	graphical	
user	interface	is	offered,	based	on	the	popular	Node-Red	project,	allowing	users	to	easily	define	
function	 chains	 and	 processing	 steps.	 As	with	 other	 container-based	 solutions,	 per	 request	
isolation	 is	 not	 guaranteed	 since	multiple	 functions	 requests	 can	 be	 executed	 by	 the	 same	
container.	Similarly	to	this,	Baresi	et	al.	[55]	also	extend	an	existing	open-source	product,	in	this	
case	 the	OpenWhisk	serverless	solution,	and	develop	a	shared	persistence	 layer,	acting	as	a	
cache	between	different	function	invocations,	mitigating	the	unpredictability	of	whether	any	
subsequent	 function	 invocations	 will	 be	 executed	 in	 the	 same	 or	 in	 a	 different	 container	
environment.	 As	 previously,	 no	 request	 level	 isolation	 is	 guaranteed,	 instead	 leaving	 the	
decision-making	process	to	the	OpenWhisk	scheduler.	
	
Serverless	Platforms	Compatibility	Layers	
To	ease	the	adoption	of	a	newly	proposed	solution,	some	platforms	provide	compatibility	layers	
with	existing	commercial	services,	allowing	function	reuse.	Such	compatibility	layers	have	been	
implemented	previously	as	well,	one	prime	example	being	the	wide	adoption	of	the	S3	protocol	
initially	developed	by	AWS	for	its	object	storage	service.	Today,	various	products	exist,	both	
open-source	and	commercial,	which	reuse	the	S3	API,	providing	programmatic	compatibility	
with	 the	 original	 service.	 The	 authors	 of	 [61]	 present	 a	 system	 that	 offers	 a	 serverless	
compatibility	 layer	 with	 AWS	 Lambda	 and	 can	 run	 across	 a	 wide	 variety	 of	 devices	 with	
different	hardware	specifications,	either	at	the	edge,	fog	or	in	the	cloud.	This	approach	allows	
existing	Lambda	functions	to	be	migrated	and	executed	on	the	new	platform,	without	requiring	
a	rewrite.	Containers	are	used	as	a	runtime	environment,	and	to	mitigate	the	cold	start	issue,	a	
single	container	can	be	shared	by	multiple	functions,	using	memory	isolation	between	them.	
	
Intelligent	Scheduling	of	Serverless	Functions	
Another	technique	 for	avoiding	the	cold	start	 issue	apart	 from	container	re-use	 is	container	
pre-warming,	where	container	instances	are	started	ahead	of	time,	and	wait	for	a	request	to	be	
received.	Of	course,	while	this	does	solve	the	initial	delay	incurred	during	the	first	start-up,	it	
leads	 to	higher	 resource	usage,	 since	 resources	are	utilized	 for	 larger	periods	of	 time,	 even	
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when	not	explicitly	required.	The	Pigeon	[30]	framework	is	one	such	example	that	implements	
an	oversubscribed	static	pool	of	pre-warmed	containers,	keeping	ready	container	instances	of	
all	resource	sizes.	
	
Cheng	et	al.	[54]	also	introduce	a	system	which	can	decide	the	execution	location	of	a	function	
based	 on	 multiple	 optimization	 parameters,	 but	 in	 contrast	 to	 the	 previously	 introduced	
solutions,	the	capability	for	migrating	workloads	on-the-fly	between	the	different	layers	during	
execution	is	provided	as	well.	This	is	made	possible	by	joining	all	nodes	into	a	pool	representing	
a	hierarchical	overlay,	from	where	execution	targets	can	be	dynamically	chosen.	The	serverless	
functions	are	then	executed	by	a	container	runtime	on	the	selected	node.	
	
Finally,	the	authors	of	[64]	promote	the	idea	of	using	serverless	functions	in	a	scientific	context,	
to	 increase	 the	 speed	with	which	 large	amounts	of	data	 can	be	analyzed.	Depending	on	 the	
desired	 execution	 location,	 the	 platform	 can	 either	 take	 advantage	 of	 Kubernetes	 clusters	
operated	on	private	clouds	or	at	 the	network	edge,	as	well	as	 the	commercial	AWS	Lambda	
service	 offering.	 This	 is	 especially	 useful	 for	 privacy	 sensitive	 information	 that	 needs	 to	 be	
preprocessed	as	soon	as	possible	for	anonymization	purposes,	before	moving	it	to	the	cloud	
and	leveraging	its	greater	processing	capacity	for	further	analysis	and	aggregation.	
	
Standalone	Serverless	Platforms	for	the	Network	Edge	
When	running	serverless	at	the	edge	of	the	network,	two	distinct	approaches	are	identified.	The	
first	 approach	 involves	 reusing	 existing	 edge	 devices	 for	 function	 execution,	 utilizing	 their	
spare	 computing	 power.	 This	 is	 also	 called	 deviceless	 edge	 computing	 [70].	 The	 second	
approach	involves	the	building	of	a	dedicated	computing	infrastructure	with	a	single	purpose,	
that	of	processing	edge	data.	Even	 though	often	 these	 two	approaches	are	 intertwined	with	
each	other,	they	are	sometimes	used	to	define	even	more	hierarchical	processing	levels,	placing	
them	before	the	cloud.		
	
An	example	of	a	serverless	platform	that	is	aimed	solely	at	the	edge	is	tinyFaaS	[8],	[71],	where	
the	driving	idea	is	to	make	the	implementation	as	lightweight	as	possible.	Edge	nodes	are	seen	
as	 independent	 devices,	 and	 no	 advanced	 scheduling	 algorithms	 are	 present.	 Functions	 are	
executed	 into	 containers	with	 no	 per-request	 isolation,	 and	 to	 achieve	 lower	 overhead,	 the	
lightweight	CoAP	protocol	is	used	for	the	function	invocation	endpoints,	instead	of	the	more	
traditional	HTTP.	
	
The	repurposing	of	well-known	DevOps	tools	at	the	edge	has	also	been	researched,	Rausch	et	
al.	 [49]	 describe	 efforts	 to	 implement	 a	 serverless	 edge	 platform	 on	 top	 of	 the	 Kubernetes	
container	 orchestrator,	 which,	 by	 default,	 comes	 bundled	 with	 a	 container	 scheduling	
algorithms	on	its	own.	Their	results	show	that	the	included	Kubernetes	scheduler	does	not	cope	
well	in	very	dynamic	environments,	where	large	numbers	of	functions	are	invoked,	as	a	result	
of	the	spawning	and	destruction	of	many	containers	in	short	amounts	of	time.	Of	course,	this	
presents	 a	 challenge	 particularly	 to	 serverless	 projects	 that	 build	 their	 solution	 on	 top	 of	
Kubernetes,	since	they	have	to	implement	workarounds	to	this	issue.	As	described	previously,	
popular	 approaches	 include	 either	 container	 pre-warming	 or	 the	 elimination	 of	 runtime	
isolation,	allowing	container	reuse.	Both	approaches	have	the	same	effect,	reducing	the	number	
of	container	instantiations,	or	at	least	optimizing	the	time	at	which	they	are	done.	With	many	
lightweight	Kubernetes	distributions	targeted	at	the	network	edge[79],	[80],	even	devices	with	
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modest	hardware,	such	as	single	board	computers	can	be	made	part	of	a	computing	cluster	for	
serverless	functions.	
	
Such	 development	 of	 solutions	 that	 allow	 any	 existing	 edge	 devices	 to	 be	 converted	 to	
serverless	function	executors	has	the	potential	to	rapidly	increase	the	adoption	of	serverless	
edge	 computing.	 Current	 examples	 include	 various	 commercial	 offerings	 such	 as	 AWS	
Greengrass	and	Azure	IoT	Hub,	but	research	interest	from	academia	is	present	as	well.	Persson	
et	al.	 [74]	discuss	one	such	solution	that	can	reuse	existing	devices	for	serverless	execution,	
published	in	2017,	the	same	year	that	the	first	such	commercial	service,	AWS	Greengrass	has	
officially	been	announced.	The	solution	is	built	on	top	of	the	existing	Calvin	[81]	framework,	
and	uses	CalvinScript	 for	 function	declaration.	 Similar	 to	 its	 commercial	 counterparts,	node	
tagging	is	also	supported,	allowing	load	scheduling	based	on	the	labels	associated	with	a	given	
device.	
	
Multi-access	Edge	Computing	–	MEC	Serverless	Platforms	
Multi-access	edge	computing	(MEC)	is	an	emerging	trend,	aiming	to	unify	telecommunication	
technologies	and	infrastructure	services,	by	collocating	computing	infrastructure	with	mobile	
providers'	base	stations.	This	approach,	combined	with	advancements	in	telecommunication	
technologies	 such	 as	 the	wider	 adoption	of	 5G,	 act	 as	 enablers	 for	 new	use-cases,	 reducing	
latency	and	defining	vendor	and	application	independent	interfaces.	The	development	of	the	
MEC	 initiative	 is	 done	within	 the	 European	Telecommunications	 Standards	 Institute	 (ETSI)	
[82],	and	has	attracted	a	noticeable	research	interest	as	well.		
	
Recently,	attempts	have	been	made	to	integrate	serverless	computing	with	the	existing	MEC	
initiatives,	which	might	perhaps	lead	to	greater	vendor	independence	in	the	future	through	the	
adoption	 of	 the	 implementation	 agnostic	MEC	APIs.	 Cicconetti	 et	 al.	 in	 [76]	 elaborate	 their	
vision	 for	 such	 integration	 between	 serveless	 and	 MEC,	 tackling	 the	 function	 assignment	
problem	between	various	infrastructures	available	at	the	providers'	base	stations,	and	testing	
their	 performance	 using	 simulations.	 The	 development	 of	 a	 MEC	 compliant	 interface	 for	
existing	serverless	architectures	is	a	work	in	progress	[77].		
	
Contributing	 to	 the	 idea	of	moving	serverless	platforms	close	 to	 the	service	providers'	base	
stations,	 Yang	 et	 al.	 [48]	 reuse	 an	 existing	 open-source	 serverless	 project,	 OpenWhisk,	 and	
implement	a	prototype	solution	built	on	top	of	a	software	defined	network	(SDN)	architecture.	
One	of	the	benefits	of	making	the	service	provider	aware	of	the	infrastructure	is	that	function	
invocation	 can	 be	 done	 by	 dynamically	 reconfiguring	 DNS	 mappings,	 so	 that	 users	 are	
redirected	to	the	most	appropriate	execution	location,	similarly	to	what	is	presented	in	[83].	
	
Continuum	

Table	4.	Overview	of	Reseaerch	Topics	and	Related	Papers	from	a	Continuum	Perspective	
Topic	 Papers	 Total	
Edge,	Cloud	 [24],	[25],	[29],	[42],	[43],	[45]–[47],	[49],	[61],	[69],	[70]	 12	
Edge,	Fog,	Cloud	 [17],	[50],	[51],	[54],	[58],	[64],	[84],	[85]	 8	

	
Edge	computing	with	its	idea	of	providing	limited	compute	capacity	closer	to	the	data	sources,	
near	the	edge,	thus	improving	latency	and	using	available	bandwidth	more	efficiently,	does	not	
make	the	other	 infrastructures,	placed	higher	 in	 the	hierarchy,	obsolete.	On	the	contrary,	 to	
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provide	the	best	user	experience,	as	well	as	the	most	economical	solution,	a	way	in	which	all	
existing	 infrastructure	can	be	used	 is	needed,	exploiting	 the	specific	advantages	of	both	 the	
cloud,	fog,	and	edge	layers.	Table	4	presents	the	included	articles	that	discuss	solutions	capable	
of	being	executed	at	more	than	one	network	location	at	a	given	time.	
	
This	vision	of	achieving	a	hierarchical	computing	infrastructure,	offering	a	seamless	continuum	
between	 the	 different	 layers,	 is	 of	 great	 interest	 to	 both	 the	 creation	 of	 new	 scheduling	
algorithms	as	well	as	the	development	of	full-fledged	platforms,	utilizing	these	algorithms.	A	
careful	 balance	must	 be	 established,	 between	 the	 edge	 and	 the	 cloud,	 because	 even	 though	
there	is	a	reduction	in	latency,	the	computing	power	is	often	limited	at	the	edge,	and	any	time	
savings	secured	as	a	result	of	the	reduced	latency	can	be	lost	to	longer	execution	times.	For	this	
reason,	it	is	recommended	to	perform	only	initial	preprocessing	of	the	data	at	the	edge,	assuring	
its	quality	and	providing	a	fast	response	to	real-time	applications.	In	cases	where	a	more	in-
depth	analysis	is	required,	the	filtered	data	should	be	sent	to	the	cloud,	leveraging	its	greater	
computing	 power.	 Zhang	 et	 al.	 utilize	 this	 concept	 of	 partitioning	 the	 workload	 in	 [51]	 to	
develop	a	system	for	video	stream	analysis.	Multiple	serverless	functions	are	combined	into	a	
pipeline	 and	 partition	 points	 are	 defined.	 All	 functions	 before	 the	 given	 partition	 point	 are	
executed	at	the	network	edge,	closer	to	the	data	source,	while	those	after	the	partition	point	are	
sent	to	the	cloud	to	leverage	its	better	computing	capacity.	
	
There	are	already	implementations	of	scheduling	algorithms	that	dynamically	take	into	account	
both	edge	and	cloud	resources,	and	try	to	optimize	the	function	scheduling	between	them	based	
on	 a	number	of	 different	metrics	 [24],	 [25],	 [43].	 Platforms	 that	 can	be	deployed	 across	 all	
computing	layers,	and	transparently	execute	functions	have	been	introduced	as	well	[45],	[46],	
[50],	[54],	[58],	[69],	[70].	
	
The	authors	of	[84]	present	one	such	platform	that	can	be	deployed	across	the	whole	network,	
and	supports	various	execution	environments,	such	as	virtual	machines,	containers,	and	even	
HPC	 clusters.	 These	 environments	 are	 called	 pilots	 and	 developers	 can	 submit	 serverless	
functions	 for	 execution	 at	 a	 location	 of	 their	 choice.	 Communication	 between	 workloads	
executed	on	different	pilots	is	possible	using	message	brokers.	
	
IoT	Serverless	Edge	Applications	
Despite	 the	very	active	 research	 in	 terms	of	 serverless	efficiency	 improvements,	 scheduling	
optimizations,	and	new	platforms	integrating	these	features,	there	is	a	sizable	interest	in	the	
creation	and	description	of	serverless	applications	as	well.	These	applications	include,	but	are	
not	limited	to,	the	development	of	cyber-physical	systems,	smart	city	improvements,	as	well	as	
better	user	experience	for	augmented	reality	and	virtual	reality	workloads.	While	the	level	of	
technical	sophistication	varies,	they	all	use	either	private	or	public	serverless	platforms,	and	in	
some	 cases	 extend	 this	 usage	 to	 the	 very	network	 edge.	 Such	practical	 examples	 verify	 the	
feasibility	of	the	proposed	solutions	in	relation	to	the	existing	open	issues,	as	well	as	help	in	
identifying	new	ones,	by	targeting	specific	use-cases	or	user	requirements.		
	
Table	 5	 showcases	 the	 relationship	 of	 the	 included	 papers	 to	 the	 subcategories	 discussed	
below,	including	their	preferred	deployment	location.	
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Table	5.	Overview	of	Research	Topics	and	Related	Papers	from	an	IoT	Serverless	Applications	
Perspective	

Topic	 Papers	 Total	
Guidelines	&	Benefits	 [9]–[11],	[13],	[14],	[17],	[18],	[20],	[21],	[23],	[49],	[86]–[91]	 17	
Public	Infrastructure	 [10],	[13],	[23],	[46],	[52],	[53],	[83],	[90],	[92]–[96]	 13	
Private	Infrastructure	 [10],	[13],	[27],	[46],	[55],	[83],	[90],	[92]–[95],	[97]	 12	
Edgea	 [14],	[27],	[52],	[53],	[55],	[83],	[87],	[93]–[95],	[97]	 11	
AR	&	VR	 [13],	[27],	[40],	[42],	[46],	[51],	[55],	[83]	 8	
AI	&	ML	 [13],	[14],	[45],	[48],	[49],	[64],	[96]	 7	
Smart	City	 [23],	[52]–[55],	[64]	 6	
CPS	 [92]–[95],	[97]	 5	
MEC	 [40],	[48],	[55],	[76],	[83]	 5	
Cloudb	 [52],	[53],	[83],	[93]	 4	
Fogc	 [95]	 1	
Blockchain	 [14]	 1	

a	Denotes	serverless	applications	designed	to	leverage	edge	computing		
b	Denotes	serverless	applications	designed	to	leverage	cloud	computing	alongside	edge	and	

fog	
c	Denotes	serverless	applications	designed	to	leverage	fog	computing	

	
CYBER-PHYSICAL	SYSTEMS	

Cyber-physical	 systems	 represent	 environments	 where	 computers	 are	 expected	 to	 directly	
interact	with	 them,	 using	 real-world	 physical	 actions.	 Notable	 examples	 include	 smart	 grid	
management,	medical	 systems,	 autonomous	 driving	 systems,	 and	 unmanned	 aerial	 vehicles	
(UAVs).	 The	 requirements	 for	 low	 latency	 computation,	 make	 serverless	 an	 option	 in	 the	
development	of	such	applications,	which	is	also	confirmed	by	Gan	et	al.	[92],	who	describe	an	
application	 for	 coordinating	 swarms	 of	 UAVs	 during	 their	 execution	 of	 a	 specific	 action.	
Following	the	omnipresent	dilemma	of	where	to	draw	the	line	between	a	decentralized	and	a	
centralized	system,	two	implementations	are	discussed.	In	the	first	one,	the	centralized	one,	the	
drones	 stream	 the	 data	 to	 the	 centralized	 platform	 which	 then	 analyzes	 it	 and	 extracts	
meaningful	information,	while	in	the	second	one,	the	computation	is	performed	by	the	drones	
themselves,	 using	 their	 on-board	processing	power,	 resulting	 in	 a	deviceless	 edge	 scenario,	
where	end-devices	themselves	execute	the	workload.	The	main	problem	with	the	centralized	
solution	 is	 network	 congestion	 when	 there	 is	 a	 large	 number	 of	 drones	 that	 need	 to	 be	
coordinated,	 as	 well	 as	 the	 high	 round-trip	 latency.	 On	 the	 other	 hand,	 by	 using	 the	
decentralized	 approach,	 the	 devices	 are	 depleting	 their	 battery	 faster,	 reducing	 their	 flying	
time,	 and	 in	 some	 cases	 even	 becoming	 non-responsive,	 unable	 to	 do	 essential	 processing	
required	 for	 the	execution	of	 the	 flight,	because	of	 the	high	utilization	 incurred	by	 the	data	
processing	tasks.	A	potential	solution	to	these	problems	is	to	come	up	with	a	middle	ground	
approach,	where	simple	 tasks	 that	do	not	generate	high	compute	 loads	are	executed	on	 the	
devices	 themselves,	 thus	 drastically	 reducing	 the	 round-trip	 latency.	 In	 contrast,	 high-load	
functions	are	executed	in	the	cloud,	since	any	latency	benefits	are	eliminated	as	a	result	of	the	
large	processing	times	and	faster	battery	depletion	when	executing	them	on	the	edge	devices.	
This	 middle	 ground	 between	 these	 two	 approaches,	 decentralized	 and	 centralized,	 is	 an	
important	aspect,	not	relevant	only	to	cyber-physical	systems,	but	to	all	IoT	in	general.		
	
The	reduced	latency	that	processing	at	the	network	edge	offers	can	be	mission	critical	in	certain	
scenarios	and	can	decide	whether	a	disaster	will	be	averted	or	not.	The	authors	of	[97]	describe	
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a	smart	oil	field	implementation	which	leverages	serverless	edge	computing	to	analyze	in	real-
time	data	generated	from	oil	extraction	sensors.	In	such	unconventional	environments,	satellite	
communication	 is	often	 the	only	way	 in	which	 internet	connectivity	can	be	established,	and	
using	this	approach	allows	all	of	the	drawbacks	associated	with	it	to	be	alleviated,	such	as	the	
cost,	unreliability	and	high	round-trip	time.	
	
Finally,	Zhang	et	al.	also	present	another	implementation	of	a	serverless	application	[93]	for	
atypical	scenarios,	with	components	running	both	at	the	edge	and	in	the	cloud,	whose	purpose	
is	to	be	used	in	emergency	situations,	where	access	to	utilities	might	be	limited.	What	is	notable	
about	this	example	is	the	fact	that	the	whole	solution,	across	all	levels,	ranging	from	the	data	
acquisition,	 through	 its	 analysis	 and	 storage,	 to	 its	 presentation	 on	 a	 static	 web	 site,	 is	
implemented	 using	 the	 serverless	 approach,	 combining	 the	 FaaS	 and	 BaaS	 offerings	 of	 a	
commercial	provider	-	AWS.	
	
Smart	City	
While	the	line	between	cyber-physical	systems	and	smart	city	applications	can	sometimes	be	
bleak,	serverless	solutions	have	recently	gained	popularity	in	this	area	as	well.	The	main	goal	
of	 such	 applications	 is	 to	 simplify	 everyday	 lives	 and	 save	 costs	 by	 introducing	 smart	 IoT	
devices	 in	 these	urban	environments,	which	are	 in	 turn	 capable	of	monitoring	and	 in	 some	
instances	 even	automatically	 adjusting	various	aspects,	 such	as:	 garbage	usage	 [52],	 energy	
usage	[94],	[95],	or	access	to	transportation	services	[53].		
	
Smart	recycling	is	just	one	example	where	the	cost	efficiency	of	the	serverless	paradigm	can	
provide	great	scalability	at	low	cost,	as	a	result	of	sporadic	usage,	and	low	data	volume	sent	per	
device,	 albeit	 with	 a	 high	 number	 of	 devices	 in	 total.	 The	 authors	 of	 \cite{al-
masri_recycleio_2018}	present	such	a	solution,	capable	of	monitoring	garbage	bins,	detecting	
classification	violations	and	reporting	remaining	capacity.	The	data	is	first	processed	on	local	
edge	devices	using	a	commercial	serverless	edge	platform	-	Azure	IoT	Hub,	before	being	sent	
to	the	cloud	for	more	in-depth	analysis	and	long-term	storage.		
	
Another	solution	which	can	directly	benefit	the	everyday	lives	of	citizens	by	reducing	traffic	
congestion	 and	 by	 optimizing	 public	 transportation	 routes	 is	 presented	 in	 [53].	 Through	 a	
combination	 of	 commercial	 FaaS	 and	BaaS	 products	 an	 intelligent	 transportation	 system	 is	
introduced,	 which	 can	 identify	 rush	 hours	 and	 popular	 routes	 through	 the	 monitoring	 of	
ubiquitous	Bluetooth	equipped	devices	such	as	smartphones.	The	gathered	data	by	the	edge	
devices	 is	 sent	 to	 a	 BaaS	 database	 every	 5	 minutes,	 thus	 exploiting	 the	 scale-to-zero	 cost	
efficiency	of	the	serverless	approach.	Various	other	smart	city	applications	based	on	serverless	
functions	 executed	 at	 the	 network	 edge	 are	 also	 present	 in	 literature,	 such	 as	 the	 one	 for	
checking	mask	wearing	compliance	discussed	in	[64].	
	
Scenarios	 requiring	many	more	distributed	edge	devices	have	been	shown	 to	be	 feasible	as	
well,	 with	 particular	 interest	 for	 the	 energy	 sector.	 Both	 [94]	 and	 [95]	 describe	 intelligent	
applications	 for	monitoring	 energy	management	 systems,	 utilizing	 edge	 and	 cloud	 devices,	
exploiting	an	edge-cloud	continuum.	Albayati	et	al.	[95]	envision	an	implementation	of	such	a	
system	at	the	country	level,	modernizing	the	currently	used	metering	infrastructure.		Authors	
of	[94]	extend	this	approach	and	implement	Toci,	an	anomaly	detection	system	for	power	grids,	
by	 using	 a	 commercial	 solution	 for	 deploying	 and	 management	 of	 edge	 devices	 (AWS	
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Greengrass)	 on	 top	 of	which	 serverleses	 function	 can	 be	 executed,	 as	well	 as	 a	 cloud	 FaaS	
counterpart	(AWS	Lambda),	for	additional	analysis.	The	mutual	compatibility	of	the	Greengrass	
and	Lambda	solutions	allows	functions	to	be	seamlessly	reused	between	the	edge	and	the	cloud,	
without	any	modifications.	Toci	follows	the	same	trend	as	[93]	where	the	complete	solution,	
together	with	the	presentation	of	the	data,	is	implemented	using	a	serverless	architecture.	
	
Augmented	Reality	and	Virtual	Reality	
AR	and	VR	systems	are	distinct	from	the	previously	described	categories	since	end-users	have	
a	direct	interaction	with	them	and	the	perceived	latency	plays	a	significant	role	in	customer	
satisfaction.	Furthermore,	the	nature	of	the	workload	requires	specialized	computing	hardware	
such	as	graphics	processing	units	(GPUs)	that	can	accelerate	the	completion	of	the	submitted	
tasks	significantly,	compared	to	a	software	implemented	alternative,	executed	directly	by	the	
central	processing	units	(CPUs).	
	
To	this	effect,	Salehe	et	al.	 [27]	aim	to	exploit	 the	 fact	 that	each	household	has	a	number	of	
devices	that	are	left	idling	for	large	periods	of	time	during	the	day.	By	designing	a	JavaScript	
runtime	capable	of	executing	serverless	functions	on	these	performance	constrained	devices,	a	
platform	is	developed,	where	each	device	can	provide	computing	capacity	for	various	purposes,	
for	example	AR/VR	image	analysis	and	processing.	These	home	devices	can	be	seen	as	edge	
device	instances,	and	while	they	might	not	have	great	computing	capacity,	their	strength	lies	in	
their	numbers,	and	the	extent	to	which	the	given	workload	can	be	granularly	partitioned	to	run	
across	them.	A	similar	solution	is	provided	for	better	equipped	devices	as	well,	where	multiple	
concurrent	executions	can	be	supported	by	containerizing	the	developed	runtime,	instead	of	
executing	them	natively.		
	
The	 idea	of	utilizing	serverless	computing	for	AR/VR	tasks	 is	also	presented	by	Baresi	et	al.	
[83],	 but	 in	 this	 case	 a	 multi-access	 edge	 computing	 architecture	 is	 described,	 co-locating	
computing	infrastructure	with	mobile	base	stations.	This	is	perhaps	one	of	the	first	instances	
where	MEC	and	serverless	have	been	joined	together.	The	mobile	base	station	is	responsible	of	
routing	 the	 request	 for	 the	 serverless	 function	 to	 the	 nearest	 edge	 server	 that	 satisfies	 the	
requirements	 for	 its	 execution.	 The	 reference	 implementation,	 done	 using	 the	 open-source	
OpenWhisk	platform,	 is	 compared	 to	a	 cloud	one,	where	AWS	Lambda	 is	utilized.	The	edge	
implementation	shows	significant	benefits	when	compared	to	the	cloud	one	in	terms	of	latency,	
and	comparable	performance	in	scenarios	with	high	concurrency	of	task	execution.	
	
In	 conclusion,	 the	 fact	 that	 there	 are	 already	 existing	 application	 implementations	 utilizing	
serverless	 in	 an	 IoT	 context	 is	 very	 encouraging	and	 serve	 to	 further	 refine	 this	 computing	
paradigm.	 One	 of	 the	 outstanding	 issues,	 especially	 for	 more	 complex	 AR/VR	 scenarios	 is	
providing	 hardware	 acceleration	 features	 such	 as	 access	 to	 dedicated	 GPUs	 for	 running	
serverless	functions.	None	of	the	commercial	platforms	currently	support	such	a	use	case,	but	
it	is	an	area	under	active	research,	as	showcased	in	[45].	
	
Serverless	Migration	Guidelines	and	Benefits	
Even	though	serverless	offerings	have	been	available	for	a	number	of	years,	the	idea	of	using	
this	 computing	paradigm	at	 the	edge	 for	 serving	 IoT	workloads	 is	more	 recent.	Taking	 into	
account	the	vast	number	of	IoT	applications,	and	their	different	requirements	in	terms	of	cost,	
execution	 performance,	 and	 latency,	 specific	 guidelines	 are	 needed,	 elaborating	 the	 various	



	
	

	
	

20	

Vol.	9,	Issue	5,	October-2021	Transactions	on	Networks	and	Communications	(TNC)	

Services	for	Science	and	Education	–	United	Kingdom	

computing	approaches	that	can	be	utilized,	especially	 in	resource	constrained	environments	
such	 as	 the	 edge.	 Pfandzelter	 et	 al.	 [86]	 present	 a	 decision	 framework,	 outlining	 what	
computing	 paradigm	 to	 use	 for	 applications	 dealing	 with	 either	 event	 processing	 or	 data	
analytics	 workloads.	 When	 it	 comes	 to	 event	 processing,	 their	 recommendation	 is	 to	 use	
infrastructure	as	 close	 to	 the	data	 source	as	possible,	 arguing	 that	 serverless	 is	 a	preferred	
platform	for	such	scenarios,	as	long	as	there	is	no	complex	shared	state	involved.	By	performing	
the	event	processing	as	close	to	the	edge	as	possible,	the	latency	is	kept	to	a	minimum,	without	
incurring	higher	 execution	 times	due	 to	 the	 slower	hardware,	 since	 the	 events	 are	 simpler.	
However,	when	 it	 comes	 to	more	 complex	data	 streams,	 it	 is	 recommended	 to	move	 to	 the	
cloud,	since	the	faster	execution	times	outweigh	the	latency	advantages	as	a	result	of	the	closer	
proximity.		
	
Further	 benefits	 and	 challenges	 for	 IoT	 serverless	 computing,	with	 a	 focus	 on	 the	 edge	 are	
provided	by	Aslanpour	et	al.	[9],	agreeing	that	event	driven	applications,	especially	those	with	
stateless	 lifecycles,	are	perhaps	the	best	 fit	 for	serverless	edge	computing.	The	scale-to-zero	
feature	 further	 increases	 its	attractiveness	 in	scenarios	where	events	are	sporadic,	allowing	
greater	 cost	 efficiency	 compared	 to	 the	 alternative	 approaches	which	 keep	 the	 application	
instances	warm	at	all	times,	incurring	costs.	
	
Finally,	while	the	benefits	of	adopting	serverless	are	enticing,	the	question	of	how	to	migrate	
existing	 workloads	 to	 a	 serverless	 architecture,	 remains.	 Authors	 of	 [23]	 propose	 such	
migration	guidelines	of	existing	applications,	hoping	to	increase	the	serverless	adoption,	while	
Grossman	et	al.	in	[87]	describe	the	migration	process	that	they	have	undertaken	to	convert	an	
existing	application	to	a	serverless	architecture.	The	main	goal	is	to	avoid	a	full	rewrite	of	the	
existing	 solution,	 and	 instead	 reuse	 as	much	 of	 the	 existing	 codebase	 as	 possible,	 focusing	
instead	on	 the	required	optimization	aspects.	One	such	aspect	 is	 the	resulting	 function	size,	
since	 traditional	 applications	 tend	 to	 use	 many	 libraries,	 all	 contributing	 to	 the	 total	 data	
volume.	In	order	to	reduce	the	critical	start-up	time	of	serverless	function,	as	well	as	reduce	
storage	costs,	Christidis	et	al.	in	[23]	propose	a	function	minimization	technique,	where	existing	
programming	 libraries	 are	 slimmed	 down	 by	 including	 only	 the	 code	 that	 is	 absolutely	
necessary	for	the	application's	execution,	removing	any	unused	functionality.	This	is	possible	
by	analyzing	the	function's	access	patterns	to	the	library	files	and	removing	those	which	are	
unused.	An	alternative,	which	has	the	same	goal	of	reduced	function	size	is	given	in	[24],	where	
the	authors	present	a	way	in	which	multiple	functions	and	their	libraries	can	be	aggregated	into	
efficient	 FaaS	 platform	 artifacts	 by	 grouping	 them	 together.	 Elgamal	 et	 al.	 [25]	 have	
implemented	 a	 similar	 approach,	 combining	multiple	 serverless	 functions	 into	 a	 single	 one	
running	on	AWS	Lambda,	with	the	aim	of	reducing	costs	by	avoiding	extra	charges	resulting	
from	transitions	from	one	function	to	another,	in	cases	where	function	chaining	is	performed.		
Even	though	many	papers	are	dedicated	to	outlining	the	benefits	of	serverless	computing	and	
various	platforms	exist	with	comprehensive	documentation,	developers	still	experience	issues	
when	converting	existing	and	creating	new	serverless	applications,	as	can	be	seen	by	the	types	
and	volumes	of	questions	asked	on	popular	developer	 forums	 like	StackOverflow,	 a	 subject	
analyzed	by	Wen	et	al.	in	[88].	Results	show	that	the	majority	of	asked	questions	are	related	to	
application	implementation	and	low-code	development,	with	only	7.9%	accounting	for	general	
questions	regarding	the	serverless	concepts.	While	this	shows	that	there	is	enough	information	
available	for	users	to	educate	themselves	about	the	basic	concepts,	more	formal	guidelines	for	
adopting	serverless	computing	and	relevant	programming	patterns	are	required.	
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Benchmarking	
The	large	amount	of	different	serverless	options	available,	targeted	directly	at	the	edge	for	IoT	
scenarios	or	designed	 for	more	resourceful	environments	such	as	 the	cloud,	warrants	some	
performance	comparison	to	ease	the	decision-making	process	when	choosing	a	new	solution.	
However,	 such	 benchmarks	 must	 take	 into	 account	 platform	 specifics	 as	 well,	 such	 as	 the	
manner	 in	 which	 the	 computing	 resources	 are	 allocated,	 the	 runtime	 environment	 of	 the	
executing	functions,	the	underlying	hardware,	as	well	as	the	type	of	workload	being	executed.		
Table	6	categorizes	the	relevant	benchmarking	research	depending	on	the	type	of	platforms	
that	 it	 is	 aimed	at.	Many	papers	 that	discuss	platform	 implementations	or	novel	 scheduling	
algorithms	also	offer	benchmarking	results,	comparing	their	performance	to	alternatives.	We	
have	purposefully	 excluded	 these	 from	 the	 table	 below	where	we	 focus	 exclusively	 on	 full-
fledged	benchmarking	suites.	However,	they	are	listed	in	the	figure	in	section	0,	visualizing	the	
relationships	between	the	different	primary	categories.	
	
Table	6.	Overview	of	Research	Topics	and	Related	Papers	from	a	Benchmarking	Perspective	

Topic	 Papers	 Total	
Public	Infrastructure	 [92],	[96],	[98],	[99]	 4	
Private	Infrastructure	 [92],	[98],	[100]	 3	

	
Benchmarking	Suites	for	Commercial	and	Open-Source	Serverless	Platforms	
Palade	et	al.	[100]	evaluate	open-source	serverless	platforms	that	can	be	deployed	on	modest	
edge	 infrastructure,	 where	 latency	 plays	 a	 key	 role.	 By	 simulating	 a	 resource	 constrained	
environment	 using	 only	 two	 nodes	 on	 top	 of	 which	 the	 popular	 container	 orchestrator	
Kubernetes	is	installed,	the	response	time	and	the	success	rate	of	functions	instantiated	by	the	
Kubeless,	OpenWhisk,	OpenFaaS,	and	Knative	serverless	platforms	is	evaluated.	Using	a	JMeter	
benchmarking	scenario	a	simulation	is	done	where	IoT	devices	continuously	push	measured	
data	to	a	serverless	 function	running	on	one	Kubernetes	node,	placed	within	the	same	 local	
network.	Results	show	that	Kubeless	provides	the	shortest	response	time,	comparable	number	
of	transactions	per	second	with	the	other	tested	platforms,	and	high	function	success	rates	even	
in	cases	with	high	concurrency.	
	
Das	et	al.	[98]	tackle	the	same	issue	of	serverless	platforms	performance	analysis,	but	from	a	
different	 perspective,	 focusing	 instead	 on	 commercial	 offerings.	 Performance	 of	 function	
execution	at	the	edge	is	evaluated	by	testing	the	AWS	Greengrass	and	Azure	IoT	Hub	products,	
which	 allow	 the	 respective	 runtimes	 to	 be	 installed	 on	 a	 customer	 owned	 equipment,	 thus	
enabling	the	same	functions	that	can	be	instantiated	on	the	respective	cloud	services,	to	run	
natively	on	the	devices.	These	results	are	then	cross-referenced	with	measurements	obtained	
by	 applying	 the	 same	 testing	 scenarios	 to	 the	 cloud-based	 services,	 confirming	 the	 latency	
advantages	 of	 the	 edge	 solutions.	 The	 initial	 set	 of	 developed	 benchmarks	 is	 open-sourced	
[101]	and	 is	divided	 into	 three	distinctive	categories:	 i)	 speech-to-text	generation;	 ii)	 image	
recognition;	iii)	sensor	emulation	using	a	scalar	value	generator.	Unfortunately,	the	persistent	
vendor	lock-in	problem	and	the	lack	of	standardized	APIs,	means	that	support	for	any	other	
platforms,	besides	AWS	and	Azure	is	 lacking,	 leaving	it	up	to	the	open-source	community	to	
pursue	this	effort.	
	
Kim	et	al.	[96]	take	a	similar	approach	to	Das	et	al.	and	develop	4	benchmark	types	that	can	be	
executed	exclusively	on	cloud-based	commercial	serverless	platforms.	These	categories	apart	
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from	 simulating	 real-world	workloads	 such	 as	machine	 learning	model	manipulations,	 and	
application	execution	performance,	also	include	microbenchmarks,	executed	using	traditional	
command	 line	 tools	 like	 iperf	 and	 dd.	 The	 idea	 behind	 these	 tools	 is	 to	 test	 raw	 hardware	
performance,	such	as	network	throughput,	input-output	operations	per	second	supported	by	
the	storage,	and	number	of	executed	instructions.	Even	though	no	edge	scenarios	are	currently	
supported,	neither	open-sourced	nor	commercial,	the	source	code	is	publicly	available	[102],	
providing	means	for	further	extension	to	different	providers,	or	execution	locations.	Authors	of	
[92]	also	try	to	offer	an	alternative	to	microbenchmarks,	one	that	better	represents	real-world	
workloads.	For	this	reason,	they	develop	an	open-source	benchmarking	suite	[103]	consisting	
of	five	applications	which	can	be	used	for	performance	measurements	of	serverless	platforms.	
The	 applications	 encompass	 scenarios	 such	 as	 payment	 systems,	 e-commerce,	 social	
networking,	 and	 UAV	 swarm	 coordination,	 providing	 workloads	 representative	 of	 the	 real	
world.	
	
This	idea	of	creating	a	set	of	reproducible,	cross-platform	benchmarks	for	evaluating	different	
serverless	implementations	is	also	discussed	by	Gorlatova	et	al.	[99],	at	an	even	larger	scale,	
across	6	different	 locations.	The	 selected	 infrastructures	 include	 local	devices	 and	a	 server,	
simulating	the	network	edge,	as	well	as	both	conventional	and	serverless	cloud	services	from	
multiple	service	providers.	 Interestingly,	 to	better	 illustrate	 the	real-world	network	 latency,	
measurements	are	performed	from	different	physical	 locations,	and	surrounding	conditions.	
Results	show	that	the	previously	described	cold	start	problem	plays	a	significant	role	 in	the	
overall	function	execution	delay,	leading	to	increases	of	over	40	times	in	the	most	extreme	case.	
	
Migration	Guidelines	&	Benefits	
Through	the	analysis	of	the	selected	papers,	we	have	identified	a	significant	number	of	entries	
that	provide	 implementation	results	and	outline	 the	benefits	of	 the	new	 implementation	by	
comparing	it	to	existing	alternatives.	This	is	of	course,	highly	beneficial,	and	contributes	to	the	
body	 of	 knowledge	 regarding	 performance	 characteristics	 of	 the	 various	 available	 options.	
However,	one	major	issue	is	still	present	in	this	area,	and	that	is	the	portability	of	the	devised	
benchmarking	 suites.	Without	 any	 uniform	API	 for	 function	 deployment	 and	 connection	 to	
supporting	services,	researchers	have	to	manually	adapt	their	implementations	to	the	different	
offerings,	 in	 most	 cases	 prioritizing	 popular	 and	 well-established	 services,	 hindering	 the	
adoption	of	newer	and	perhaps	more	efficient	alternatives.	This	issue	also	makes	it	difficult	and	
very	 time	consuming	 to	directly	compare	commercial	and	open-source	serverless	solutions,	
because	 of	 their	 different	 APIs.	 The	 best	 solution	 to	 this	 problem	 would	 of	 course	 be	 the	
adoption	of	a	standardized	abstraction	layer,	which	would	allow	cross-platform	portability	of	
functions.	
	
Serverless	Security,	Integrity,	and	Policy	
Even	though	the	serverless	paradigm	aims	to	simplify	feature	development	and	provide	a	more	
agile	workflow	without	 burdening	 the	 user	with	 infrastructure	management,	 there	 are	 still	
security	concerns	that	must	be	considered,	both	by	the	developers	themselves,	as	well	as	the	
platform	providers.	This	is	especially	true	for	multi-tenant	environments	where	different	users	
might	share	the	same	underlying	infrastructure,	such	as	at	the	network	edge.	Current	research	
aims	not	only	to	mitigate	threats	from	other	functions	submitted	by	malicious	actors,	but	also	
from	 hostile	 platform	 operators	 as	 well.	 Unfortunately,	 there	 is	 no	 consensus	 on	 the	
recommended	security	and	data	integrity	features	implemented	by	different	platforms,	which	
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combined	with	 the	absence	of	a	uniform	API,	 leads	 to	 issues	when	searching	 for	alternative	
providers.	Table	7	provides	a	summary	of	the	relevant	topics	and	associated	papers	in	terms	
of	 serverless	 security,	 data	 integrity,	 and	 policy,	 before	 continuing	 with	 a	 more	 in-depth	
discussion	of	these	issues	below.	
	
Table	7.	Overview	of	Research	Topics	and	Related	Papers	from	a	Security,	Integrity,	and	Privacy	

Perspectives	
Topic	 Papers	 Total	
Vendor	Lock-In	 [16],	[24],	[50],	[89]	 4	
Trustworthiness	 [28],	[89],	[104],	[105]	 4	
Data	Repair	 [85]	 1	

	
The	Vendor	Lock-In	Problem	
One	of	the	top	problems	currently	facing	serverless	adoption	is	the	associated	vendor-lock	in	
resulting	 from	 the	 different	 provider	 implementations.	 This	 is	 especially	 true	 for	 IoT	
environments,	 where	 the	 diverse	 nature	 of	 devices	 with	 varying	 hardware	 configurations	
narrows	down	the	set	of	platforms	that	can	be	used,	resulting	in	scenarios	where	the	same	logic	
needs	to	be	implemented	multiple	times,	for	different	serverless	platforms,	or	even	different	
runtimes	and	programming	languages.	While	a	unified,	cross-platform	API	is	currently	lacking,	
there	are	efforts	to	independently	overcome	these	imposed	limitations.	Serveless.com	[106],	
[107]	 offers	 the	 ability	 to	 translate	 serverless	 functions	 and	deploy	 them	 to	different	 cloud	
providers	using	a	unified	client	utility.	Of	course,	this	does	not	equal	an	official	support	by	the	
end-providers,	making	exclusive	features	hard	to	support.	However,	by	relying	on	the	support	
of	the	open-source	community,	it	 is	possible	to	scale	the	effort	of	supporting	new	platforms,	
and	 in	 some	 cases	 this	 has	 led	 to	 the	 development	 of	 compatibility	 layers	 for	 open-source	
serverless	solutions	as	well	[108].		
	
The	latest	research	in	this	field	is	not	focused	only	on	providing	a	cross-platform	layer,	but	also	
of	 devising	 an	 intelligent	 way	 of	 scheduling	 the	 required	 functions	 across	 the	 different	
platforms,	 taking	 into	 account	 either	 programming	 environment	 restrictions,	 or	 user	
preferences.	Pelle	et	al.	 [24]	provide	an	abstraction	 layer	that	can	be	used	for	programming	
serverless	 functions,	 allowing	 such	 implementations	 to	 be	 later	 instantiated	 on	 commercial	
platforms,	 based	 on	 a	 scheduling	 logic.	 The	 authors	 of	 [50]	 also	 extend	 this	 idea	 by	
implementing	a	platform	providing	a	unified	API	capable	of	translating	the	published	functions	
to	 different	 platform	 implementations,	 establishing	 an	 edge-cloud	 continuum	 through	
intelligent	function	scheduling.		
	
There	 are	 also	 examples	 of	 platform	 implementations	 that	 natively	 support	 functions	
developed	for	popular	cloud	providers'	APIs,	thus	offering	easier	adoption	by	existing	users	of	
these	public	platforms.	One	such	example	is	CSPOT	[61],	[62],	which	supports	functions	written	
for	AWS	Lambda.	
	
Function	Marketplaces	
Having	a	unified	API	for	serverless	function	development,	would	not	only	avoid	any	vendor-
lock	in	and	allow	easier	migration	between	platforms,	but	would	also	promote	the	use	of	public	
function	marketplaces,	where	developers	can	share	their	functions	with	others.	Combining	this	
approach	 with	 the	 mash-up	 development	 paradigm	 would	 lead	 to	 decreased	 development	
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times,	 and	 arguably	 better	 code	 quality,	 since	 developers	 can	 collaborate	 on	 a	 common	
implementation	of	a	function,	used	by	many	people,	instead	of	devising	their	own	solutions.	Of	
course,	such	function	sharing	does	not	imply	that	it	will	solely	be	done	on	a	free-of-charge	basis,	
developers	should	be	able	to	opt	to	monetize	their	code.	This	might	lead	to	even	new	business	
models,	where	developers	not	only	charge	a	one-time	fee	for	the	function	code	itself,	but	rather	
per	invocation	of	the	code,	further	blurring	the	lines	between	the	various	*	as	a	service	offerings.	
The	first	function	marketplaces	are	already	available	[109],	but	unfortunately	they	are	platform	
exclusive,	lacking	a	standardized	API.	
	
Isolation	&	Security	
In	any	code	sharing	scenario,	one	of	the	first	issues	that	arises	is	the	question	of	security.	It	is	
not	 hard	 to	 envision	 malicious	 functions	 posted	 on	 the	 previously	 described	 function	
marketplaces,	aiming	 to	compromise	either	 the	underlying	 infrastructure	where	 the	code	 is	
run,	 or	 the	 processed	 data	 itself.	 Datta	 et	 al.	 [104]	 propose	 a	 solution	 to	 this	 problem	 by	
introducing	Valve,	a	security	framework	for	serverless	functions	that	is	capable	of	establishing	
a	 security	 baseline,	 and	 enforcing	 policies	 based	 on	 this	 baseline.	 The	 concepts	 of	 security	
baselining	and	policy	definition	is	well	known	from	other	areas	and	is	the	way	in	which	the	
popular	 SELinux	 framework	 is	 implemented.	 In	 this	 manner,	 data	 exfiltration	 and	
infrastructure	 abuse	 can	 be	 averted,	 albeit	 with	 a	 performance	 hit	 to	 the	 execution	
performance,	because	of	the	real-time	policy	enforcement.	Function	size	is	also	increased,	as	a	
consequence	of	the	introduced	sidecar	applications,	responsible	for	monitoring	the	function's	
behavior	and	intercepting	any	file	or	network	access.	Another	approach	discussed	in	literature	
[28],	 [105]	 is	 the	 use	 of	 secure	 enclaves,	 such	 as	 Intel	 Software	 Guard	 Extensions	 (SGX),	
protecting	 the	 runtime	 environment	 of	 the	 functions	 and	 allowing	 execution	 on	 untrusted	
infrastructures,	by	relying	on	the	on-the-fly	memory	encryption	and	decryption	capabilities	of	
the	CPU.	The	authors	of	[89]	review	further	serverless	security	issues	and	evaluate	alternate	
ways	in	which	higher	levels	of	function	isolation	can	be	achieved,	such	as	the	the	modification	
of	existing	JavaScript	engines	to	ensure	separation.	
	
Data	Integrity	
The	FaaS	 serverless	paradigm	of	 chaining	multiple	 simple	 functions	 together	 to	 complete	 a	
more	complex	task	leads	to	the	question	of	data	integrity	as	it	is	passed	between	the	various	
intermediary	processing	steps.	One	area	in	which	this	issue	is	present	is	IoT,	where	the	real-
time	nature	of	the	output	data	makes	it	hard	to	repeat	any	computations	in	case	there	is	a	data	
corruption	leading	to	a	computational	error.	SANS-SOUCI	[85]	is	an	extension	to	the	previously	
mentioned	CSPOT	[61],	which	allows	data	repair	by	 implementing	an	append-only	 log	of	all	
data	 processed	 by	 functions.	 In	 this	 way,	 any	 errors	 can	 be	 mitigated	 by	 replaying	 the	
computation	after	the	necessary	changes	have	been	made	to	the	function	code,	or	without	any	
alternations,	but	simply	at	a	later	time.	This	concept	of	an	append-only	storage	also	allows	data	
gathered	in	the	past	to	be	replaced	with	more	precise	data	in	the	future,	or	to	process	real-time	
data	using	a	different	time	resolution.	
	
Open-Source	Solutions	
Many	 of	 the	 presented	 research	 papers	 focusing	 on	 development	 of	 new	 edge	 serverless	
solutions	used	an	existing	open-source	serverless	platform	and	by	extending	it,	adapted	it	to	
run	at	the	edge.		
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Table	8	outlines	these	papers,	as	well	as	categorizing	them	whether	they	have	used	an	open-
source	software	(OSS)	platform	or	have	in	turn	open-sourced	their	code.	
	

Table	8.	Overview	of	Research	Topics	and	Related	Papers	from	an	Open-Source	Software	
Perspective	

Topic	 Papers	 Total	
Based	 on	 an	 OSS	
Platform	

[16],	 [26],	 [28],	 [30],	 [38]–[41],	 [45],	 [46],	 [48],	 [49],	 [54],	 [55],	 [64],	
[72],	[74],	[83],	[85],	[87],	[89],	[100],	[104],	[105]	

24	

Published	as	OSS	 [8],	[20],	[22],	[26],	[46],	[47],	[58],	[61],	[64],	[72],	[76],	[85],	[87],	[92],	
[96],	[98]	

16	

	
To	 better	 understand	 the	 varying	 levels	 of	 popularity	 of	 the	 different	 platforms,	 we	 have	
classified	the	analyzed	papers	in	terms	of	which	platform	they	based	their	implementation	on.	
Figure	2	shows	the	popularity	distribution	of	each	mentioned	platform,	while		
Table	9	links	the	associated	papers	with	the	underlying	platform	of	their	choice.	OpenWhisk	is	
the	most	popular	base	platform,	chosen	by	9	papers	in	total.	This	is	not	surprising	since	even	
commercial	 offerings	 have	 contributed	 to	 the	 wide	 popularity	 that	 it	 currently	 enjoys	 by	
providing	compatible	solutions.	One	such	example	is	IBM	Cloud	Functions	[110].	Following	it	
is	OpenFaaS,	another	versatile	solution	with	a	wide	array	of	supported	programming	languages	
in	which	serverless	functions	can	developed,	as	well	as	offering	the	possibility	of	using	custom	
container	 images,	 allowing	 developers	 to	 specify	 the	 execution	 environment.	 Kubeless	 and	
Knative	 follow	 next	 in	 third	 and	 fourth	 place,	 respectively,	 both	 being	 Kubernetes	 centric	
solutions.	 In	 comparison,	 the	 other	 solutions	 have	 more	 versatile	 deployment	 options,	
supporting	other	container	orchestrators	as	well.	Finally,	Calvin,	FogFlow,	and	TinyFaaS	have	
only	 been	 utilized	 once,	 both	 representing	 platforms	 that	 have	 been	 presented	 in	 previous	
research,	and	later	adapted	to	execute	serverless	functions	at	the	edge.	
	

	

	
Figure	2.	Most	Popular	Open-Source	Serverless	Platforms	
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In	total,	40	of	the	67	analyzed	papers	have	directly	or	indirectly	contributed	to	the	open-source	
community,	 by	 either	 extending	 an	 existing	 open-source	 platform	 (24	 papers)	 or	 publicly	
publishing	the	source	code	for	their	implementation	(16	papers).	
	

Table	9.	Usage	Distribution	of	Open-Source	Serverless	Platforms	
Platform	Name	 Used	By	 Total	
OpenWhisk	 [26],	[28],	[38],	[40],	[46],	[48],	[55],	[83],	[100]	 9	
OpenFaaS	 [58],	[87],	[100],	[104]	 4	
Kubeless	 [41],	[45],	[100]	 3	
Knative	 [39],	[100]	 2	
Kubernetes	 [30],	[64]	 2	
Calvin	 [74]	 1	
FogFlow	 [54]	 1	
TinyFaaS	 [8]	 1	

	
Summary	of	Open	Issues	
Considering	the	complex	relationships	between	the	various	topics	discussed	in	the	analyzed	
papers,	Figure	3	provides	 a	 visual	 representation	 of	 the	 number	 of	 entries	 related	 to	 each	
identified	open	issue,	while	also	serving	as	a	reference	to	the	related	papers	that	discuss	it.	This	
figure	aims	to	extend	the	tables	present	in	the	previous	sections,	focusing	on	the	global	view	
instead	of	on	the	local	view	which	was	provided	within	the	sections	discussing	the	respective	
categories	above.	The	numbers	on	the	lines	connecting	the	open	issues	with	their	subtopics	are	
color-coded	 according	 to	 the	 color	 of	 the	 subtopic	 on	 the	 right-hand	 side	 and	 relate	 to	 the	
references	available	at	the	end	of	this	paper.	For	clarity,	review	papers	as	secondary	literature	
are	explicitly	listed	at	the	end.	
	

CONCLUSION	
By	searching	6	popular	research	databases,	we	have	analyzed	67	papers	related	to	the	novel	
trend	of	applying	serverless	computing	at	 the	network	edge.	Through	this	analysis	we	have	
derived	 a	 classification	 framework	 consisting	 of	 8	 distinct	 categories	 and	 30	 unique	
subcategories.	 Current	 research	 trends	 are	 focused	 on	 development	 of	 new	 serverless	
platforms	 deployable	 across	 the	 whole	 edge-fog-cloud	 continuum	 by	 using	 advanced	
scheduling	algorithms	and	optimizing	either	latency,	price,	or	bandwidth	utilization.		
	
Serverless	computing	has	also	recently	been	applied	 to	real-world	problems	at	 the	network	
edge	as	well,	primarily	aimed	at	event	based	IoT	applications.	However,	one	persistent	issue	
being	faced	is	the	runtime	efficiency	and	incurred	start	up	delays	when	presented	with	a	high	
frequency	of	 function	 invocations.	Recent	 efforts	made	using	WebAssembly	 and	 the	 idea	of	
adopting	unikernels	as	a	possible	more	lightweight	alternative	to	containers	is	promising,	but	
further	work	is	needed	on	increasing	the	number	of	supported	programming	languages	and	
tooling	 in	 terms	 of	 WebAssembly	 and	 concrete	 implementations	 for	 unikernels.	 Functions	
executing	complex	AI	algorithms	would	also	benefit	 from	specialized	hardware,	 support	 for	
which	is	currently	lacking	in	many	platforms	[90].	
	
In	the	coming	years,	with	the	increase	in	IoT	devices	utilized	by	customers	and	industry	alike,	
there	will	be	an	even	greater	focus	on	long-term	security	and	privacy	protecting	measures	that	
can	be	 implemented	 to	safeguard	critical	 information.	Strict	 function	 isolation	[91]	with	 the	
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help	of	novel	hardware	features,	along	with	sane	data	processing	policies	are	inevitable	in	this	
aspect.	One	of	the	prominent	advantages	of	edge	computing,	apart	from	the	reduced	latency	is	
exactly	 the	 benefit	 of	 reducing	 private	 information	 flow	 to	 third	 parties	 before	 it	 is	
preprocessed	and	anonymized.	
	

	
Figure	3.	Topics	and	Subtopics	Covered	by	each	Analyzed	Paper	

	
References	
[1]	Y.	Duan,	G.	Fu,	N.	Zhou,	X.	Sun,	N.	C.	Narendra,	and	B.	Hu,	‘Everything	as	a	Service	(XaaS)	on	the	Cloud:	Origins,	
Current	and	Future	Trends’,	in	2015	IEEE	8th	International	Conference	on	Cloud	Computing,	Jun.	2015,	pp.	621–
628.	doi:	10.1109/CLOUD.2015.88.	

[2]	S.	Eismann	et	al.,	‘Serverless	Applications:	Why,	When,	and	How?’,	IEEE	Software,	vol.	38,	no.	1,	pp.	32–39,	Jan.	
2021,	doi:	10.1109/MS.2020.3023302.	

[3]	‘AWS	Lambda	–	Serverless	Compute	-	Amazon	Web	Services’,	Amazon	Web	Services,	Inc.	
https://aws.amazon.com/lambda/	(accessed	Apr.	26,	2021).	

[4]	‘AWS	IoT	Greengrass	-	Amazon	Web	Services’,	Amazon	Web	Services,	Inc.	
https://aws.amazon.com/greengrass/	(accessed	Apr.	26,	2021).	

[5]	‘IoT	Hub	|	Microsoft	Azure’.	https://azure.microsoft.com/en-us/services/iot-hub/	(accessed	Apr.	26,	2021).	

[6]	P.	Kravchenko,	kpavel/openwhisk-light.	2020.	Accessed:	May	09,	2021.	[Online].	Available:	
https://github.com/kpavel/openwhisk-light	

[7]	O.	Ltd,	‘Meet	faasd	-	portable	Serverless	without	the	complexity	of	Kubernetes’,	OpenFaaS	-	Serverless	
Functions	Made	Simple,	Apr.	17,	2020.	https://www.openfaas.com/blog/introducing-faasd/	(accessed	Sep.	06,	
2021).	



	
	

	
	

28	

Vol.	9,	Issue	5,	October-2021	Transactions	on	Networks	and	Communications	(TNC)	

Services	for	Science	and	Education	–	United	Kingdom	

[8]	T.	Pfandzelter	and	D.	Bermbach,	‘tinyFaaS:	A	Lightweight	FaaS	Platform	for	Edge	Environments’,	in	2020	IEEE	
International	Conference	on	Fog	Computing	(ICFC),	Sydney,	Australia,	Apr.	2020,	pp.	17–24.	doi:	
10.1109/ICFC49376.2020.00011.	

[9]	M.	S.	Aslanpour	et	al.,	‘Serverless	Edge	Computing:	Vision	and	Challenges’,	in	2021	Australasian	Computer	
Science	Week	Multiconference,	New	York,	NY,	USA,	Feb.	2021,	pp.	1–10.	doi:	10.1145/3437378.3444367.	

[10]	B.	Varghese	and	R.	Buyya,	‘Next	generation	cloud	computing:	New	trends	and	research	directions’,	Future	
Generation	Computer	Systems,	vol.	79,	pp.	849–861,	Feb.	2018,	doi:	10.1016/j.future.2017.09.020.	

[11]	R.	Buyya	et	al.,	‘A	Manifesto	for	Future	Generation	Cloud	Computing:	Research	Directions	for	the	Next	
Decade’,	ACM	Comput.	Surv.,	vol.	51,	no.	5,	pp.	1–38,	Jan.	2019,	doi:	10.1145/3241737.	

[12]	N.	Kratzke,	‘A	Brief	History	of	Cloud	Application	Architectures’,	Applied	Sciences,	vol.	8,	no.	8,	p.	1368,	Aug.	
2018,	doi:	10.3390/app8081368.	

[13]	H	Shafiei,	A	Khonsari,	and	P	Mousavi,	‘Serverless	Computing:	A	Survey	of	Opportunities,	Challenges	and	
Applications’,	2019,	doi:	10.13140/RG.2.2.32882.25286.	

[14]	S.	S.	Gill	et	al.,	‘Transformative	effects	of	IoT,	Blockchain	and	Artificial	Intelligence	on	cloud	computing:	
Evolution,	vision,	trends	and	open	challenges’,	Internet	of	Things,	vol.	8,	p.	100118,	Dec.	2019,	doi:	
10.1016/j.iot.2019.100118.	

[15]	I.	Baldini	et	al.,	‘Serverless	Computing:	Current	Trends	and	Open	Problems’,	in	Research	Advances	in	Cloud	
Computing,	S.	Chaudhary,	G.	Somani,	and	R.	Buyya,	Eds.	Singapore:	Springer,	2017,	pp.	1–20.	doi:	10.1007/978-
981-10-5026-8_1.	

[16]	N.	El	Ioini,	D.	Hästbacka,	C.	Pahl,	and	D.	Taibi,	‘Platforms	for	Serverless	at	the	Edge:	A	Review’,	in	Advances	in	
Service-Oriented	and	Cloud	Computing,	vol.	1360,	C.	Zirpins,	I.	Paraskakis,	V.	Andrikopoulos,	N.	Kratzke,	C.	Pahl,	N.	
El	Ioini,	A.	S.	Andreou,	G.	Feuerlicht,	W.	Lamersdorf,	G.	Ortiz,	W.-J.	Van	den	Heuvel,	J.	Soldani,	M.	Villari,	G.	Casale,	
and	P.	Plebani,	Eds.	Cham:	Springer	International	Publishing,	2021,	pp.	29–40.	Accessed:	Apr.	09,	2021.	[Online].	
Available:	http://link.springer.com/10.1007/978-3-030-71906-7_3	

[17]	L.	Bittencourt	et	al.,	‘The	Internet	of	Things,	Fog	and	Cloud	continuum:	Integration	and	challenges’,	Internet	
of	Things,	vol.	3–4,	pp.	134–155,	Oct.	2018,	doi:	10.1016/j.iot.2018.09.005.	

[18]	M.	Adhikari,	T.	Amgoth,	and	S.	N.	Srirama,	‘A	Survey	on	Scheduling	Strategies	for	Workflows	in	Cloud	
Environment	and	Emerging	Trends’,	ACM	Comput.	Surv.,	vol.	52,	no.	4,	pp.	1–36,	Sep.	2019,	doi:	
10.1145/3325097.	

[19]	V.	Kjorveziroski,	S.	Filiposka,	and	V.	Trajkovik,	‘IoT	Serverless	Computing	at	the	Edge:	A	Systematic	Mapping	
Review’,	Computers,	vol.	10,	no.	10,	Art.	no.	10,	Oct.	2021,	doi:	10.3390/computers10100130.	

[20]	P.	K.	Gadepalli,	S.	McBride,	G.	Peach,	L.	Cherkasova,	and	G.	Parmer,	‘Sledge:	a	Serverless-first,	Light-weight	
Wasm	Runtime	for	the	Edge’,	in	Proceedings	of	the	21st	International	Middleware	Conference,	New	York,	NY,	USA,	
Dec.	2020,	pp.	265–279.	doi:	10.1145/3423211.3425680.	

[21]	A.	Hall	and	U.	Ramachandran,	‘An	execution	model	for	serverless	functions	at	the	edge’,	in	Proceedings	of	the	
International	Conference	on	Internet	of	Things	Design	and	Implementation,	New	York,	NY,	USA,	Apr.	2019,	pp.	
225–236.	doi:	10.1145/3302505.3310084.	

[22]	P.	K.	Gadepalli,	G.	Peach,	L.	Cherkasova,	R.	Aitken,	and	G.	Parmer,	‘Challenges	and	Opportunities	for	Efficient	
Serverless	Computing	at	the	Edge’,	in	2019	38th	Symposium	on	Reliable	Distributed	Systems	(SRDS),	Oct.	2019,	pp.	
261–2615.	doi:	10.1109/SRDS47363.2019.00036.	

[23]	A.	Christidis,	R.	Davies,	and	S.	Moschoyiannis,	‘Serving	Machine	Learning	Workloads	in	Resource	
Constrained	Environments:	a	Serverless	Deployment	Example’,	in	2019	IEEE	12th	Conference	on	Service-Oriented	
Computing	and	Applications	(SOCA),	Kaohsiung,	Taiwan,	Nov.	2019,	pp.	55–63.	doi:	10.1109/SOCA.2019.00016.	

[24]	I.	Pelle,	J.	Czentye,	J.	Doka,	A.	Kern,	B.	P.	Gero,	and	B.	Sonkoly,	‘Operating	Latency	Sensitive	Applications	on	
Public	Serverless	Edge	Cloud	Platforms’,	IEEE	Internet	Things	J.,	pp.	1–1,	2020,	doi:	10.1109/JIOT.2020.3042428.	



	
	

	
	

29	

Kjorveziroski, V., Canto, C. B., Roig, P J., Gilly, K., Mishev, A., Trajkovik, V., Filiposka, S. (2021). IoT Serverless Computing at the Edge: Open Issues 
and Research Direction. Transactions on Networks and Communicaitons, 9(5). 1-33. 

URL:	http://dx.doi.org/10.14738/tnc.95.11231	
	

[25]	T.	Elgamal,	‘Costless:	Optimizing	Cost	of	Serverless	Computing	through	Function	Fusion	and	Placement’,	in	
2018	IEEE/ACM	Symposium	on	Edge	Computing	(SEC),	Seattle,	WA,	USA,	Oct.	2018,	pp.	300–312.	doi:	
10.1109/SEC.2018.00029.	

[26]	B.	Wang,	A.	Ali-Eldin,	and	P.	Shenoy,	‘LaSS:	Running	Latency	Sensitive	Serverless	Computations	at	the	Edge’,	
in	Proceedings	of	the	30th	International	Symposium	on	High-Performance	Parallel	and	Distributed	Computing,	New	
York,	NY,	USA:	Association	for	Computing	Machinery,	2020,	pp.	239–251.	Accessed:	Sep.	02,	2021.	[Online].	
Available:	https://doi.org/10.1145/3431379.3460646	

[27]	M.	Salehe,	Z.	Hu,	S.	H.	Mortazavi,	I.	Mohomed,	and	T.	Capes,	‘VideoPipe:	Building	Video	Stream	Processing	
Pipelines	at	the	Edge’,	in	Proceedings	of	the	20th	International	Middleware	Conference	Industrial	Track,	Davis	CA	
USA,	Dec.	2019,	pp.	43–49.	doi:	10.1145/3366626.3368131.	

[28]	B.	Trach,	O.	Oleksenko,	F.	Gregor,	P.	Bhatotia,	and	C.	Fetzer,	‘Clemmys:	towards	secure	remote	execution	in	
FaaS’,	in	Proceedings	of	the	12th	ACM	International	Conference	on	Systems	and	Storage,	New	York,	NY,	USA,	May	
2019,	pp.	44–54.	doi:	10.1145/3319647.3325835.	

[29]	I.	Pelle,	F.	Paolucci,	B.	Sonkoly,	and	F.	Cugini,	‘Latency-Sensitive	Edge/Cloud	Serverless	Dynamic	Deployment	
Over	Telemetry-Based	Packet-Optical	Network’,	IEEE	Journal	on	Selected	Areas	in	Communications,	vol.	39,	no.	9,	
pp.	2849–2863,	Sep.	2021,	doi:	10.1109/JSAC.2021.3064655.	

[30]	W.	Ling,	L.	Ma,	C.	Tian,	and	Z.	Hu,	‘Pigeon:	A	Dynamic	and	Efficient	Serverless	and	FaaS	Framework	for	
Private	Cloud’,	in	2019	International	Conference	on	Computational	Science	and	Computational	Intelligence	(CSCI),	
Las	Vegas,	NV,	USA,	Dec.	2019,	pp.	1416–1421.	doi:	10.1109/CSCI49370.2019.00265.	

[31]	gwsystems/sledge-serverless-framework.	The	Embedded	and	Operating	Systems	group	at	GWU,	2021.	
Accessed:	Apr.	27,	2021.	[Online].	Available:	https://github.com/gwsystems/sledge-serverless-framework	

[32]	gwsystems/aWsm.	The	Embedded	and	Operating	Systems	group	at	GWU,	2021.	Accessed:	Apr.	27,	2021.	
[Online].	Available:	https://github.com/gwsystems/aWsm	

[33]	‘Nuclio’,	nuclio.	https://nuclio.io/	(accessed	Apr.	27,	2021).	

[34]	‘Firecracker	–	Lightweight	Virtualization	for	Serverless	Computing’,	Amazon	Web	Services,	Nov.	26,	2018.	
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/	(accessed	
Apr.	27,	2021).	

[35]	‘Firecracker	–	Secure	and	fast	microVMs	for	serverless	computing’.	https://firecracker-microvm.github.io/	
(accessed	Apr.	27,	2021).	

[36]	F.	Manco	et	al.,	‘My	VM	is	Lighter	(and	Safer)	than	your	Container’,	in	Proceedings	of	the	26th	Symposium	on	
Operating	Systems	Principles,	New	York,	NY,	USA,	Oct.	2017,	pp.	218–233.	doi:	10.1145/3132747.3132763.	

[37]	‘Projects	|	Unikernels’.	http://unikernel.org/projects/	(accessed	Apr.	27,	2021).	

[38]	C.	Cicconetti,	M.	Conti,	and	A.	Passarella,	‘A	Decentralized	Framework	for	Serverless	Edge	Computing	in	the	
Internet	of	Things’,	IEEE	Transactions	on	Network	and	Service	Management,	pp.	1–1,	2020,	doi:	
10.1109/TNSM.2020.3023305.	

[39]	I.	Wang,	E.	Liri,	and	K.	K.	Ramakrishnan,	‘Supporting	IoT	Applications	with	Serverless	Edge	Clouds’,	in	2020	
IEEE	9th	International	Conference	on	Cloud	Networking	(CloudNet),	Nov.	2020,	pp.	1–4.	doi:	
10.1109/CloudNet51028.2020.9335805.	

[40]	C.	Cicconetti,	M.	Conti,	and	A.	Passarella,	‘Low-latency	Distributed	Computation	Offloading	for	Pervasive	
Environments’,	in	2019	IEEE	International	Conference	on	Pervasive	Computing	and	Communications	(PerCom,	
Kyoto,	Japan,	Mar.	2019,	pp.	1–10.	doi:	10.1109/PERCOM.2019.8767419.	

[41]	S.	Agarwal,	M.	A.	Rodriguez,	and	R.	Buyya,	‘A	Reinforcement	Learning	Approach	to	Reduce	Serverless	
Function	Cold	Start	Frequency’,	in	2021	IEEE/ACM	21st	International	Symposium	on	Cluster,	Cloud	and	Internet	
Computing	(CCGrid),	May	2021,	pp.	797–803.	doi:	10.1109/CCGrid51090.2021.00097.	

[42]	J.	Patman,	D.	Chemodanov,	P.	Calyam,	K.	Palaniappan,	C.	Sterle,	and	M.	Boccia,	‘Predictive	Cyber	Foraging	for	
Visual	Cloud	Computing	in	Large-Scale	IoT	Systems’,	IEEE	Transactions	on	Network	and	Service	Management,	vol.	
17,	no.	4,	pp.	2380–2395,	Dec.	2020,	doi:	10.1109/TNSM.2020.3010497.	



	
	

	
	

30	

Vol.	9,	Issue	5,	October-2021	Transactions	on	Networks	and	Communications	(TNC)	

Services	for	Science	and	Education	–	United	Kingdom	

[43]	C.	Cho,	S.	Shin,	H.	Jeon,	and	S.	Yoon,	‘QoS-Aware	Workload	Distribution	in	Hierarchical	Edge	Clouds:	A	
Reinforcement	Learning	Approach’,	IEEE	Access,	vol.	8,	pp.	193297–193313,	2020,	doi:	
10.1109/ACCESS.2020.3033421.	

[44]	P.	Karhula,	J.	Janak,	and	H.	Schulzrinne,	‘Checkpointing	and	Migration	of	IoT	Edge	Functions’,	in	Proceedings	
of	the	2nd	International	Workshop	on	Edge	Systems,	Analytics	and	Networking,	New	York,	NY,	USA,	Mar.	2019,	pp.	
60–65.	doi:	10.1145/3301418.3313947.	

[45]	M.	Zhang,	C.	Krintz,	and	R.	Wolski,	‘STOIC:	Serverless	Teleoperable	Hybrid	Cloud	for	Machine	Learning	
Applications	on	Edge	Device’,	in	2020	IEEE	International	Conference	on	Pervasive	Computing	and	Communications	
Workshops	(PerCom	Workshops),	Austin,	TX,	USA,	Mar.	2020,	pp.	1–6.	doi:	
10.1109/PerComWorkshops48775.2020.9156239.	

[46]	L.	Baresi,	D.	F.	Mendonça,	M.	Garriga,	S.	Guinea,	and	G.	Quattrocchi,	‘A	Unified	Model	for	the	Mobile-Edge-
Cloud	Continuum’,	ACM	Trans.	Internet	Technol.,	vol.	19,	no.	2,	pp.	1–21,	Apr.	2019,	doi:	10.1145/3226644.	

[47]	C.	Avasalcai,	C.	Tsigkanos,	and	S.	Dustdar,	‘Resource	Management	for	Latency-Sensitive	IoT	Applications	
with	Satisfiability’,	IEEE	Transactions	on	Services	Computing,	pp.	1–1,	2021,	doi:	10.1109/TSC.2021.3074188.	

[48]	S.	Yang,	K.	Xu,	L.	Cui,	Z.	Ming,	Z.	Chen,	and	Z.	Ming,	‘EBI-PAI:	Towards	An	Efficient	Edge-Based	IoT	Platform	
for	Artificial	Intelligence’,	IEEE	Internet	Things	J.,	pp.	1–1,	2020,	doi:	10.1109/JIOT.2020.3019008.	

[49]	T.	Rausch,	W.	Hummer,	V.	Muthusamy,	A.	Rashed,	and	S.	Dustdar,	‘Towards	a	Serverless	Platform	for	Edge	
{AI}’,	presented	at	the	2nd	{USENIX}	Workshop	on	Hot	Topics	in	Edge	Computing	(HotEdge	19),	2019.	Accessed:	
Mar.	23,	2021.	[Online].	Available:	https://www.usenix.org/conference/hotedge19/presentation/rausch	

[50]	Z.	Huang,	Z.	Mi,	and	Z.	Hua,	‘HCloud:	A	trusted	JointCloud	serverless	platform	for	IoT	systems	with	
blockchain’,	China	Communications,	vol.	17,	no.	9,	pp.	1–10,	Sep.	2020,	doi:	10.23919/JCC.2020.09.001.	

[51]	M.	Zhang,	F.	Wang,	Y.	Zhu,	J.	Liu,	and	Z.	Wang,	‘Towards	cloud-edge	collaborative	online	video	analytics	with	
fine-grained	serverless	pipelines’,	in	Proceedings	of	the	12th	ACM	Multimedia	Systems	Conference,	New	York,	NY,	
USA:	Association	for	Computing	Machinery,	2021,	pp.	80–93.	Accessed:	Sep.	02,	2021.	[Online].	Available:	
https://doi.org/10.1145/3458305.3463377	

[52]	E.	Al-Masri,	I.	Diabate,	R.	Jain,	M.	H.	Lam,	and	S.	Reddy	Nathala,	‘Recycle.io:	An	IoT-Enabled	Framework	for	
Urban	Waste	Management’,	in	2018	IEEE	International	Conference	on	Big	Data	(Big	Data),	Seattle,	WA,	USA,	Dec.	
2018,	pp.	5285–5287.	doi:	10.1109/BigData.2018.8622117.	

[53]	L.	F.	Herrera-Quintero,	J.	C.	Vega-Alfonso,	K.	B.	A.	Banse,	and	E.	C.	Zambrano,	‘Smart	ITS	Sensor	for	the	
Transportation	Planning	Based	on	IoT	Approaches	Using	Serverless	and	Microservices	Architecture’,	IEEE	
Intelligent	Transportation	Systems	Magazine,	vol.	10,	no.	2,	pp.	17–27,	Summer	2018,	doi:	
10.1109/MITS.2018.2806620.	

[54]	B.	Cheng,	J.	Fuerst,	G.	Solmaz,	and	T.	Sanada,	‘Fog	Function:	Serverless	Fog	Computing	for	Data	Intensive	IoT	
Services’,	in	2019	IEEE	International	Conference	on	Services	Computing	(SCC),	Jul.	2019,	pp.	28–35.	doi:	
10.1109/SCC.2019.00018.	

[55]	L.	Baresi	and	D.	Filgueira	Mendonca,	‘Towards	a	Serverless	Platform	for	Edge	Computing’,	in	2019	IEEE	
International	Conference	on	Fog	Computing	(ICFC),	Prague,	Czech	Republic,	Jun.	2019,	pp.	1–10.	doi:	
10.1109/ICFC.2019.00008.	

[56]	C.	Cicconetti,	ccicconetti/serverlessonedge.	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/ccicconetti/serverlessonedge	

[57]	M.	Zhang,	Heronalps/STOIC.	2020.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/Heronalps/STOIC	

[58]	D.	Pinto,	J.	P.	Dias,	and	H.	S.	Ferreira,	‘Dynamic	Allocation	of	Serverless	Functions	in	IoT	Environments’,	in	
2018	IEEE	16th	International	Conference	on	Embedded	and	Ubiquitous	Computing	(EUC),	Oct.	2018,	pp.	1–8.	doi:	
10.1109/EUC.2018.00008.	

[59]	D.	Pinto,	duartepinto/serverless-iot.	2018.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/duartepinto/serverless-iot	



	
	

	
	

31	

Kjorveziroski, V., Canto, C. B., Roig, P J., Gilly, K., Mishev, A., Trajkovik, V., Filiposka, S. (2021). IoT Serverless Computing at the Edge: Open Issues 
and Research Direction. Transactions on Networks and Communicaitons, 9(5). 1-33. 

URL:	http://dx.doi.org/10.14738/tnc.95.11231	
	

[60]	smartfog,	smartfog/fogflow.	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/smartfog/fogflow	

[61]	R.	Wolski,	C.	Krintz,	F.	Bakir,	G.	George,	and	W.-T.	Lin,	‘CSPOT:	portable,	multi-scale	functions-as-a-service	
for	IoT’,	in	Proceedings	of	the	4th	ACM/IEEE	Symposium	on	Edge	Computing,	Arlington	Virginia,	Nov.	2019,	pp.	
236–249.	doi:	10.1145/3318216.3363314.	

[62]	MAYHEM-Lab/cspot.	MAYHEM-Lab,	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/MAYHEM-Lab/cspot	

[63]	‘deib-polimi/A3-E’,	GitHub.	https://github.com/deib-polimi	(accessed	Apr.	27,	2021).	

[64]	S.	Risco,	G.	Moltó,	D.	M.	Naranjo,	and	I.	Blanquer,	‘Serverless	Workflows	for	Containerised	Applications	in	the	
Cloud	Continuum’,	J	Grid	Computing,	vol.	19,	no.	3,	p.	30,	Jul.	2021,	doi:	10.1007/s10723-021-09570-2.	

[65]	SCAR	-	Serverless	Container-aware	ARchitectures.	GRyCAP,	2021.	Accessed:	Sep.	04,	2021.	[Online].	Available:	
https://github.com/grycap/scar	

[66]	OSCAR	-	Open	Source	Serverless	Computing	for	Data-Processing	Applications.	GRyCAP,	2021.	Accessed:	Sep.	
04,	2021.	[Online].	Available:	https://github.com/grycap/oscar	

[67]	‘scar/examples/mask-detector-workflow	at	master	·	grycap/scar’,	GitHub.	https://github.com/grycap/scar	
(accessed	Sep.	04,	2021).	

[68]	cavasalcai,	Decentralized	Resource	Management	for	Latency-Sensitive	IoT	Applications	with	Satisfiability.	
2021.	Accessed:	Sep.	04,	2021.	[Online].	Available:	https://github.com/cavasalcai/Decentralized-Resource-
Management	

[69]	T.	Quang	and	Y.	Peng,	‘Device-driven	On-demand	Deployment	of	Serverless	Computing	Functions’,	in	2020	
IEEE	International	Conference	on	Pervasive	Computing	and	Communications	Workshops	(PerCom	Workshops),	
Mar.	2020,	pp.	1–6.	doi:	10.1109/PerComWorkshops48775.2020.9156140.	

[70]	S.	Nastic	et	al.,	‘A	Serverless	Real-Time	Data	Analytics	Platform	for	Edge	Computing’,	IEEE	Internet	
Computing,	vol.	21,	no.	4,	pp.	64–71,	2017,	doi:	10.1109/MIC.2017.2911430.	

[71]	OpenFogStack/tinyFaaS.	OpenFogStack,	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/OpenFogStack/tinyFaaS	

[72]	G.	Tricomi,	Z.	Benomar,	F.	Aragona,	G.	Merlino,	F.	Longo,	and	A.	Puliafito,	‘A	NodeRED-based	dashboard	to	
deploy	pipelines	on	top	of	IoT	infrastructure’,	in	2020	IEEE	International	Conference	on	Smart	Computing	
(SMARTCOMP),	Bologna,	Italy,	Sep.	2020,	pp.	122–129.	doi:	10.1109/SMARTCOMP50058.2020.00036.	

[73]	MDSLab/stack4things.	MDSLab,	2019.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/MDSLab/stack4things	

[74]	P.	Persson	and	O.	Angelsmark,	‘Kappa:	serverless	IoT	deployment’,	in	Proceedings	of	the	2nd	International	
Workshop	on	Serverless	Computing,	New	York,	NY,	USA,	Dec.	2017,	pp.	16–21.	doi:	10.1145/3154847.3154853.	

[75]	Sched-Sim.	Accessed:	Apr.	27,	2021.	[Online].	Available:	https://git.dsg.tuwien.ac.at/serverless-edge-
ai/sched-sim	

[76]	C.	Cicconetti,	M.	Conti,	A.	Passarella,	and	D.	Sabella,	‘Toward	Distributed	Computing	Environments	with	
Serverless	Solutions	in	Edge	Systems’,	IEEE	Commun.	Mag.,	vol.	58,	no.	3,	pp.	40–46,	Mar.	2020,	doi:	
10.1109/MCOM.001.1900498.	

[77]	C.	Cicconetti,	ccicconetti/etsimec.	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/ccicconetti/etsimec	

[78]	‘Qinling	-	OpenStack’.	https://wiki.openstack.org/wiki/Qinling	(accessed	Apr.	27,	2021).	

[79]	‘K3s:	Lightweight	Kubernetes’.	https://k3s.io/	(accessed	Sep.	05,	2021).	

[80]	‘MicroK8s	-	Zero-ops	Kubernetes	for	developers,	edge	and	IoT	|	MicroK8s’,	microk8s.io.	http://microk8s.io	
(accessed	Sep.	05,	2021).	



	
	

	
	

32	

Vol.	9,	Issue	5,	October-2021	Transactions	on	Networks	and	Communications	(TNC)	

Services	for	Science	and	Education	–	United	Kingdom	

[81]	EricssonResearch/calvin-base.	Ericsson	Research,	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/EricssonResearch/calvin-base	

[82]	S.	Dahmen-Lhuissier,	‘ETSI	-	Multi-access	Edge	Computing	-	Standards	for	MEC’,	ETSI.	
https://www.etsi.org/technologies/multi-access-edge-computing	(accessed	Apr.	27,	2021).	

[83]	L.	Baresi,	D.	Filgueira	Mendonça,	and	M.	Garriga,	‘Empowering	Low-Latency	Applications	Through	a	
Serverless	Edge	Computing	Architecture’,	in	Service-Oriented	and	Cloud	Computing,	Cham,	2017,	pp.	196–210.	
doi:	10.1007/978-3-319-67262-5_15.	

[84]	A.	Luckow,	K.	Rattan,	and	S.	Jha,	‘Pilot-Edge:	Distributed	Resource	Management	Along	the	Edge-to-Cloud	
Continuum’,	in	2021	IEEE	International	Parallel	and	Distributed	Processing	Symposium	Workshops	(IPDPSW),	Jun.	
2021,	pp.	874–878.	doi:	10.1109/IPDPSW52791.2021.00130.	

[85]	W.-T.	Lin,	F.	Bakir,	C.	Krintz,	R.	Wolski,	and	M.	Mock,	‘Data	Repair	for	Distributed,	Event-based	IoT	
Applications’,	in	Proceedings	of	the	13th	ACM	International	Conference	on	Distributed	and	Event-based	Systems,	
Darmstadt	Germany,	Jun.	2019,	pp.	139–150.	doi:	10.1145/3328905.3329511.	

[86]	T.	Pfandzelter	and	D.	Bermbach,	‘IoT	Data	Processing	in	the	Fog:	Functions,	Streams,	or	Batch	Processing?’,	
in	2019	IEEE	International	Conference	on	Fog	Computing	(ICFC),	Prague,	Czech	Republic,	Jun.	2019,	pp.	201–206.	
doi:	10.1109/ICFC.2019.00033.	

[87]	M.	Großmann,	C.	Ioannidis,	and	D.	T.	Le,	‘Applicability	of	Serverless	Computing	in	Fog	Computing	
Environments	for	IoT	Scenarios’,	in	Proceedings	of	the	12th	IEEE/ACM	International	Conference	on	Utility	and	
Cloud	Computing	Companion,	New	York,	NY,	USA,	Dec.	2019,	pp.	29–34.	doi:	10.1145/3368235.3368834.	

[88]	J.	Wen	et	al.,	‘An	empirical	study	on	challenges	of	application	development	in	serverless	computing’,	in	
Proceedings	of	the	29th	ACM	Joint	Meeting	on	European	Software	Engineering	Conference	and	Symposium	on	the	
Foundations	of	Software	Engineering,	New	York,	NY,	USA,	Aug.	2021,	pp.	416–428.	doi:	
10.1145/3468264.3468558.	

[89]	A.	Bocci,	S.	Forti,	G.-L.	Ferrari,	and	A.	Brogi,	‘Secure	FaaS	orchestration	in	the	fog:	how	far	are	we?’,	
Computing,	vol.	103,	no.	5,	pp.	1025–1056,	May	2021,	doi:	10.1007/s00607-021-00924-y.	

[90]	J.	M.	Hellerstein	et	al.,	‘Serverless	Computing:	One	Step	Forward,	Two	Steps	Back’,	presented	at	the	
Conference	on	Innovative	Data	Systems	Research,	Monterey,	CA,	Dec.	2018.	Accessed:	Apr.	09,	2021.	[Online].	
Available:	http://arxiv.org/abs/1812.03651	

[91]	H.	B.	Hassan,	S.	A.	Barakat,	and	Q.	I.	Sarhan,	‘Survey	on	serverless	computing’,	J	Cloud	Comp,	vol.	10,	no.	1,	p.	
39,	Dec.	2021,	doi:	10.1186/s13677-021-00253-7.	

[92]	Y.	Gan	et	al.,	‘An	Open-Source	Benchmark	Suite	for	Microservices	and	Their	Hardware-Software	
Implications	for	Cloud	&amp;	Edge	Systems’,	in	Proceedings	of	the	Twenty-Fourth	International	Conference	on	
Architectural	Support	for	Programming	Languages	and	Operating	Systems,	New	York,	NY,	USA,	Apr.	2019,	pp.	3–
18.	doi:	10.1145/3297858.3304013.	

[93]	S.	Zhang,	X.	Luo,	and	E.	Litvinov,	‘Serverless	computing	for	cloud-based	power	grid	emergency	generation	
dispatch’,	International	Journal	of	Electrical	Power	&	Energy	Systems,	vol.	124,	p.	106366,	Jan.	2021,	doi:	
10.1016/j.ijepes.2020.106366.	

[94]	F.	Huber	and	M.	Mock,	‘Toci:	Computational	Intelligence	in	an	Energy	Management	System’,	in	2020	IEEE	
Symposium	Series	on	Computational	Intelligence	(SSCI),	Canberra,	ACT,	Australia,	Dec.	2020,	pp.	1287–1296.	doi:	
10.1109/SSCI47803.2020.9308324.	

[95]	A.	Albayati,	N.	F.	Abdullah,	A.	Abu-Samah,	A.	H.	Mutlag,	and	R.	Nordin,	‘A	Serverless	Advanced	Metering	
Infrastructure	Based	on	Fog-Edge	Computing	for	a	Smart	Grid:	A	Comparison	Study	for	Energy	Sector	in	Iraq’,	
Energies,	vol.	13,	no.	20,	p.	5460,	Oct.	2020,	doi:	10.3390/en13205460.	

[96]	J.	Kim	and	K.	Lee,	‘FunctionBench:	A	Suite	of	Workloads	for	Serverless	Cloud	Function	Service’,	in	2019	IEEE	
12th	International	Conference	on	Cloud	Computing	(CLOUD),	Milan,	Italy,	Jul.	2019,	pp.	502–504.	doi:	
10.1109/CLOUD.2019.00091.	



	
	

	
	

33	

Kjorveziroski, V., Canto, C. B., Roig, P J., Gilly, K., Mishev, A., Trajkovik, V., Filiposka, S. (2021). IoT Serverless Computing at the Edge: Open Issues 
and Research Direction. Transactions on Networks and Communicaitons, 9(5). 1-33. 

URL:	http://dx.doi.org/10.14738/tnc.95.11231	
	

[97]	R.	F.	Hussain,	M.	A.	Salehi,	and	O.	Semiari,	‘Serverless	Edge	Computing	for	Green	Oil	and	Gas	Industry’,	in	
2019	IEEE	Green	Technologies	Conference(GreenTech),	Apr.	2019,	pp.	1–4.	doi:	
10.1109/GreenTech.2019.8767119.	

[98]	A.	Das,	S.	Patterson,	and	M.	Wittie,	‘EdgeBench:	Benchmarking	Edge	Computing	Platforms’,	in	2018	
IEEE/ACM	International	Conference	on	Utility	and	Cloud	Computing	Companion	(UCC	Companion),	Zurich,	Dec.	
2018,	pp.	175–180.	doi:	10.1109/UCC-Companion.2018.00053.	

[99]	M.	Gorlatova,	H.	Inaltekin,	and	M.	Chiang,	‘Characterizing	task	completion	latencies	in	multi-point	multi-
quality	fog	computing	systems’,	Computer	Networks,	vol.	181,	p.	107526,	Nov.	2020,	doi:	
10.1016/j.comnet.2020.107526.	

[100]	A.	Palade,	A.	Kazmi,	and	S.	Clarke,	‘An	Evaluation	of	Open	Source	Serverless	Computing	Frameworks	
Support	at	the	Edge’,	in	2019	IEEE	World	Congress	on	Services	(SERVICES),	Jul.	2019,	vol.	2642–939X,	pp.	206–
211.	doi:	10.1109/SERVICES.2019.00057.	

[101]	A.	Das,	akaanirban/edgebench.	2020.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/akaanirban/edgebench	

[102]	kmu-bigdata/serverless-faas-workbench.	BigData	Lab.	in	KMU,	2021.	Accessed:	Apr.	27,	2021.	[Online].	
Available:	https://github.com/kmu-bigdata/serverless-faas-workbench	

[103]	‘DeathStarBench:	An	Open-Source	End-to-End	Microservices	Benchmark	Suite’.	
http://microservices.ece.cornell.edu/	(accessed	Oct.	03,	2021).	

[104]	P.	Datta,	P.	Kumar,	T.	Morris,	M.	Grace,	A.	Rahmati,	and	A.	Bates,	‘Valve:	Securing	Function	Workflows	on	
Serverless	Computing	Platforms’,	in	Proceedings	of	The	Web	Conference	2020,	Taipei	Taiwan,	Apr.	2020,	pp.	939–
950.	doi:	10.1145/3366423.3380173.	

[105]	S.	Brenner	and	R.	Kapitza,	‘Trust	more,	serverless’,	in	Proceedings	of	the	12th	ACM	International	Conference	
on	Systems	and	Storage,	New	York,	NY,	USA,	May	2019,	pp.	33–43.	doi:	10.1145/3319647.3325825.	

[106]	‘The	Serverless	Application	Framework	|	Serverless.com’,	serverless.	https://serverless.com/	(accessed	
Apr.	27,	2021).	

[107]	serverless/serverless	on	GitHub.	Serverless,	2021.	Accessed:	Apr.	27,	2021.	[Online].	Available:	
https://github.com/serverless/serverless	

[108]	Kubeless	Serverless	Plugin.	Serverless,	2021.	Accessed:	Nov.	10,	2021.	[Online].	Available:	
https://github.com/serverless/serverless-kubeless	

[109]	‘AWS	Serverless	Application	Repository	-	Amazon	Web	Services’,	Amazon	Web	Services,	Inc.	
https://aws.amazon.com/serverless/serverlessrepo/	(accessed	Apr.	27,	2021).	

[110]	‘IBM	Cloud	Functions	-	Overview’,	Feb.	11,	2021.	https://www.ibm.com/cloud/functions	(accessed	Apr.	
26,	2021).	

	

	
	
	
	
	


