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We introduce non-Markovian SIR epidemic spreading model inspired by the characteristics of the COVID-19, by
considering discrete- and continuous-time versions. The distributions of infection intensity and recovery period
may take an arbitrary form. By taking corresponding choice of these functions, it is shown that themodel reduces
to the classicalMarkovian case. The epidemic threshold is analytically determined for arbitrary functions of infec-
tivity and recovery and verified numerically. The relevance of the model is shown by modeling the first wave of
the epidemic in Italy, Spain and the UK, in the spring, 2020.
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1. Introduction

The ongoing pandemics of COVID-19, has claimedmillions of human
lives, caused stagnation of the global economyand excessive load on the
healthcare systems throughout the world and changed the normal life.
Mathematical models of epidemic spreading are important tools for
predicting the effects that the pandemics can have on each segment of
the society. They provide support for policy-makers to make adequate
decisions in order to partially mitigate the consequences by planning
various social distancing measures, preparation of healthcare facilities
and appropriate adaptation of the economy.

The spectrum of mathematical models applied for the COVID-19
pandemic ranges from the simplest SIR to rather complex SIDARTHE
[1–7], which are used for assessment of different aspects of the epi-
demics. Oneof themajor features of thesemodels is theirMarkovian na-
ture, which considers transitions from one state to another to be
independent on the past. As an example, when Markovian property is
assumed to hold, an individual that has just become infected can pro-
ceed to recovered state with the same probability as another one
which has been infected for longer period. This Markovian assumption,
encapsulated in constant transition probabilities, or rates, makes the
models easier to study analytically. The outcomes of these studies
with Markovian approach offer some, and in certain instances satisfac-
tory, assessment of the spreading dynamics. However, growing body
niversity, Faculty of Computer
93, 1000 Skopje, Macedonia.
snarkov).
of evidence, particularly for the COVID-19, suggests existence of latency
period and certain infectivity patterns, with possibility for spreading the
pathogen before onset of the symptoms, to which correspond functions
that are rather distinct from the exponential distribution which the
Markovianmodels rely on [8,9]. Although adding one ormore compart-
ments for the Exposed, Asymptomatic, Presymptomatic, or Quarantined
persons or considering various kinds of delay [10–12] address such ob-
servations to certain extent, they cannot systematically incorporate the
observed distributions of the latency period and the healing process.

The non-Markovian setting is inherent in the pioneering works in
the mathematical epidemiology by Ross [13,14], Kermack and
McKendrick [15], and in the related field of population dynamics by
Böckh [16] and Lotka [17]. However, the more special and mathemati-
callymore tractable, Markovian approach has largely dominated in sub-
sequent studies. In the recent time the non-Markovian framework has
started to gain more attention in various settings. In one of the pioneer-
ing works on the subject [18], Gillespie algorithm is proposed as an ad-
equate tool for numerical analysis of non-Markovian spreadingmodels.
The effects of the form of distribution of infection and curing (recovery)
times on SIS epidemic model occurring on complex networks in contin-
uous time has been analyzed in several studies [19–24]. With the intro-
duction of SI*V* model [25] it was suggested that non-Markovian
spreading models have capacity to be extended to cover a wide variety
of spreading sub-models and variants. Nontrivial distribution of infec-
tious period in an integro-differential SIR model was considered in
[26]. In a recent study, non-Markovian SISmodel on complex networks,
with arbitrary function for infectivity and recovery was proposed [27],
in which control theory was successfully applied for determination of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112286&domain=pdf
https://doi.org/10.1016/j.chaos.2022.112286
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epidemic threshold. Another, novel key contributions in the theory of
non-Markovian epidemic spreading models can be found in [28,29]. In
those works, with extensive theoretical work on models with integro-
differential equations were obtained analytical results about the equi-
libria and the basic reproduction numbers. Our study adds determina-
tion of the epidemic threshold on base on the stability analysis for
general distributions of infectivity and healing in a SIRmodel. By similar
approach as in [27] we show how these functions determine the epi-
demic threshold. The relevance of themodel, besides by numerical sim-
ulations, is verified by fitting to the observations of the first wave of the
epidemic in Italy, Spain and the UK, in the spring, 2020. The predictions
of the model are compared with those of the classical Markovian SIR
model.

The paper is organized as follows. After providing initial setting of
the model in Section 2, we introduce the discrete-time and
continuous-time models in Sections 3 and 4, respectively, where we
also derive the epidemic threshold relationships. The reduction to Mar-
kovian case of themodel is presented in Section 5, while numerical sim-
ulations and discussions are given in Section 6. The paper concludes
with Section 7.

2. Preliminaries

We consider SIR model that has three compartments: Susceptible -
S, Infected - I and Recovered - R, with the usual transition S→ I→ R. Ad-
equately, let the functions S(t), I(t) and R(t) denote the fractions of the
population that are in the state S, I and R, at time t correspondingly,
with S(t)+ I(t)+ R(t)= 1 being the conservation condition. The calcu-
lation of the fraction of infected individuals I(t), and the dynamics of S
(t), I(t) and R(t) will be given below, separately for the discrete and con-
tinuous time. To capture the nontrivial dependence of the healing pe-
riod and the different contagiousness of the infected individuals in
different stages of the disease we introduce two functions. The first
one, b(τ), captures the infectiousness intensity at which individuals
that became infected before time τ are spreading the disease to the sus-
ceptible ones. Thus, by simply taking b(τ) = 0 for τ < T0, one is able to
introduce latency period of the infectiousness with length T0. The
second function is the healing one, g(τ), that denotes the probability
that the healing takes period τ. To account for asymptomatic
transmitters and existence of certain time window when presence of
pathogen can be confirmed, one can introduce a reporting function r
(τ). It is associated to the probability that the presence of the
pathogen can be confirmed at moment τ after contraction with it.
The asymptomatic cases are conveniently handled by normalizing the
reporting function to value smaller than unity. In the literature, the
two functions b(τ) and g(τ) are usually combined in single infectivity
function. We pursue by considering discrete- and continuous-time
models separately, and provide more details about these functions.

3. Discrete-time version

In this section we consider evolution in discrete time t and denote
the fraction of individuals that have become infected within the
continuous-time interval [t – 1,t] with Id(t), where for simplicity the
length of the interval was taken to be 1. This can be relevant for
situations like those when newly infected cases are considered on
daily basis. In such scenario, we have discrete-time healing function g
(τ) and infection intensity one, b(τ), on which we put the constraint b
(0) = 0. The probability that the individual will heal within the first τ
time units is G(τ) = ∑ν=0

τ g(ν). We further assume finite duration T
of the disease, what implies G(T) = 1 and for practical reasons
introduce its complement G τð Þ ¼ 1 � G τð Þ, to denote the probability
that individual has not healed yet within the first τ time units. The
function g(τ) also has an interpretation as fraction of individuals that
have contracted the disease within the same unit time interval, to
2

become healed later within another unit time interval [τ – 1,τ]. Similar
reasoning can be applied for the cumulative functions G(τ) and G τð Þ
as well. On base on the classical SIR model, the proposed model of evo-
lution of the compartments is given with the system

S t þ 1ð Þ ¼ S tð Þ 1 � ∑
T � 1

τ¼0
b τð ÞG τð ÞId t � τð Þ

" #

Id t þ 1ð Þ ¼ S tð Þ ∑
T � 1

τ¼0
b τð ÞG τð ÞId t � τð Þ

R t þ 1ð Þ ¼ R tð Þ þ ∑
T � 1

τ¼0
g τð ÞId t þ 1 � τð Þ:

ð1Þ

One can note that the infected individuals that have contracted the
pathogen up to T periods before the current moment t, and which are
not healed yet, can contribute to spreading of the disease, with appro-
priate intensity captured in the function b(τ). We note that in order to
determine the fraction of all individuals that are in the infected com-
partment at given moment, I(t), one should sum over all that were in-
fected in the past, but did not heal up to the given moment

I tð Þ ¼ ∑
T � 1

τ¼0
Id t � τð ÞG τð Þ: ð2Þ

To make the problem completely defined one has to specify the ini-
tial conditions for Id(t). We assume that they are given for τ= T – 1, T –
2, …, 0. In general this model cannot be solved analytically and should
be studied by application of numerical routines.

To get insight into the conditions when epidemic can emerge, one
can determine the stability of the disease free state S⁎ = 1, I ∗ = Id

∗ =
R ∗ = 0, that is an equilibrium point of the system. Its local stability is
established by linearizing the dynamical equations (1) in its
neighborhood. By making the linearization in vicinity of S ∗ = 1, I ∗ =
R ∗ = 0, one can observe the dynamical evolution of the perturbations
δS = S − S ∗, δId = Id − Id

∗, δR = R − R ∗. Under linearization, the
perturbations are related with

δS t þ 1ð Þ ¼ δS tð Þ � ∑
T � 1

τ¼0
b τð ÞG τð ÞδId t � τð Þ,

δId t þ 1ð Þ ¼ ∑
T � 1

τ¼0
b τð ÞG τð ÞδId t � τð Þ,

δR t þ 1ð Þ ¼ δR tð Þ þ ∑
T � 1

τ¼0
g τð ÞδId t þ 1 � τð Þ:

ð3Þ

Let us focus on the infected fraction and make Z-transform on the
second equation in Eq. (3). To do so, multiply first both sides of that
equation by z−t and sum to obtain

∑
∞

t¼0
δId t þ 1ð Þz � t ¼ ∑

∞

t¼0
∑
T � 1

τ¼0
b τð ÞG τð ÞδId t � τð Þz � t : ð4Þ

By using the Z-transform of the fraction of the population that be-
come infected at unit interval Id(t), given as ℐ(z) = ∑t=0

∞ Id(t)z−t, the
left hand side of Eq. (4) will become

∑
∞

t¼0
δId t þ 1ð Þz � t ¼ z∑

∞

t¼0
δId t þ 1ð Þz � tþ1ð Þ

¼ z J zð Þ � δId 0ð Þ½ �:
ð5Þ

Accordingly, the right-hand side of Eq. (4) can be rearranged as

∑
∞

t¼0
∑
T � 1

τ¼0
b τð ÞG τð ÞδId t � τð Þz � t ¼

¼ ∑
T � 1

τ¼0
b τð ÞG τð Þz � τ ∑

∞

t¼0
δId t � τð Þz � t � τð Þ:

ð6Þ
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By using substitution ν = t − τ, the last sum for τ ≤ −1 can be
expressed as

X∞
ν¼−τ

δId νð Þz−ν ¼
X−1

ν¼−τ
δId νð Þz−ν þℐ zð Þ ¼ ℐ 0 τ; zð Þ þℐ zð Þ; ð7Þ

where we have introduced a function ℐ0(τ,z) that corresponds to the
initial conditions. Now, combining the relationships (5)–(7) one has

z ℐ zð Þ−δId 0ð Þ½ � ¼
XT−1

τ¼0

b τð ÞG τð Þ ℐ 0 τ; zð Þ þℐ zð Þ½ �z−τ : ð8Þ

To shorten the notation, one can introduce the following two com-
plex functions

ℰ zð Þ ¼
XT−1

τ¼0

b τð ÞG τð Þz−τ ;

ℰ0 zð Þ ¼
XT−1

τ¼0

b τð ÞG τð Þℐ 0 τ; zð Þz−τ :

ð9Þ

The first one is simply the Z-transform ℰ(z) of the infectivity
function E τð Þ ¼ b τð ÞG τð Þ, that is a combination of the infecting
intensity and healing functions because

∑T−1
τ¼0 bðτÞGðτÞz−τ ¼∑∞

τ¼0bðτÞGðτÞz−τ . The second complex function
ℰ0(z) is related to the initial conditions. Now, one has the following
relationship

z ℐ zð Þ−δId 0ð Þ½ � ¼ ℐ zð Þℰ zð Þ þℰ0 zð Þ; ð10Þ

from where

ℐ zð Þ ¼ zδId 0ð Þ þℰ0 zð Þ
z−ℰ zð Þ : ð11Þ

From a result in theory of discrete linear time-invariant systems, a
sequence (the impulse response of such system) is decaying if the
poles of its Z-transform are within the unit circle [30]. Thus, when the
poles of the function ℐ(z) of the complex function (11), or the roots of
the polynomial z − ℰ(z) lie within the unit circle, the perturbation
dies out at infinity. So, the epidemic threshold can be obtained by taking
z = 1 in the denominator in Eq. (11), that results in

∑
T � 1

τ¼0
b τð ÞG τð Þ ¼ 1, ð12Þ

which obviously depends on the functional forms of the healing and in-
fection intensity functions.

We should finally note that any initial infection would not shift back
the population to the disease-free state S = 1, I = R = 0, but to some
endemic Se

∗, Ie∗ = 0, Re∗ = 1 − S ∗. However, if the conditions are not
favoring epidemic both equilibria will be rather close Se

∗ ≈ 1.

4. Continuous-time version

We will pursue similarly to the discrete-time approach, where the
fractions of individuals within given compartment and the functions
modeling the infectivity and healing are defined for continuous time t
andwe again assume finite healing period T. The fraction of infected in-
dividuals is conveniently modeled with the rate of infection, or the frac-
tion of newly infected individuals Id(t) within the infinitesimal interval
(t – dt,t). The total fraction of infected persons is given with the integral

I tð Þ ¼
Z T

0
Id t � τð ÞG τð Þdτ, ð13Þ
3

which accounts for those that had become infected in the past and have
not healed yet. Now, the dynamical evolution of the respective fractions
is given with

S
:

¼ � S tð Þ
Z T

0
b τð ÞG τð ÞId t � τð Þdτ

Id tð Þ ¼ S tð Þ
Z T

0
b τð ÞG τð ÞId t � τð Þdτ

R
:

¼
Z T

0
g τð ÞId t � τð Þdτ:

ð14Þ

One should note that in their original approach, the general version
of the model by Kermack and McKendrick assumes dependence of the
infectivity on the age of infection just as the last relationships
(Eq. (14)) suggest [15,31]. In order to determinewhether the initial per-
turbationwill grow into epidemics, one could focus on the second equa-
tion in the vicinity of the disease-free state S ∗ = 1, R ∗ = I ∗ = 0. Then,
the perturbation of newly infected individuals will evolve as

δId tð Þ ¼
Z T

0
b τð ÞG τð ÞδId t � τð Þdτ, ð15Þ

where it is assumed that in vicinity of the disease-free state S(t) ≈ 1.
Now, make Laplace transform of the perturbation of the rate of infec-
tion, ℐ(s) = ∫0∞δId(t)e−stdt and use it in the last eq. (15). To do that, we
will follow the same approach as in the discrete-time version. Multiply
both sides with e−st and integrate. The left hand side will result in the
Laplace transform of δId(t), while the right hand one will be

A ¼
Z ∞

0

Z T

0
b τð ÞG τð ÞδId t � τð Þe � stdτdt

¼
Z T

0
b τð ÞG τð Þe � sτ

Z ∞

0
δId t � τð Þe � s t � τð Þdt

¼
Z T

0
b τð ÞG τð Þe � sτ

Z ∞

� τ
δId νð Þe � sνdν

ð16Þ

The last integral can be expressed with

Z ∞

−τ
Id νð Þe−sνdν ¼

Z 0

−τ
Id νð Þe−sνdν þℐ sð Þ

¼ ℐ 0 τ; sð Þ þℐ sð Þ:
ð17Þ

Now, one has

A ¼
Z T

0
b τð ÞG τð Þe−sτ ℐ 0 τ; sð Þ þℐ sð Þ½ �dτ: ð18Þ

Similarly to the discrete-time case we can introduce the Laplace
transform of the infectivity function E τð Þ ¼ b τð ÞG τð Þ and its initial con-
ditions contribution

ℰ sð Þ ¼
Z T

0
b τð ÞG τð Þe−sτdτ;

ℰ0 sð Þ ¼
Z T

0
b τð ÞG τð Þℐ 0 τ; sð Þe−sτdτ:

ð19Þ

Finally, one obtains

ℐ sð Þ ¼ ℐ sð Þℰ sð Þ þℰ0 sð Þ; ð20Þ

from where the Laplace transform of the perturbation of the infection
rate is

ℐ sð Þ ¼ ℰ0 sð Þ
1−ℰ sð Þ : ð21Þ
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From the results of control theory, a continuous-time linear time-
invariant system is stable if the poles of its transfer function, or Laplace
transform of its impulse response have negative real part [30]. Thus, the
perturbations δId(t) will decay if the poles of its Laplace transform ℐ(s)
(Eq. (21)), or eigenvalues of the system (14) lie within negative half-
plane Re{s} < 0. Then, the epidemic threshold can be obtained with
s = 0 which leads to

Z T

0
b τð ÞG τð Þdτ ¼ 1, ð22Þ

that represents the relationship,which corresponds to the discrete-time
case (12).

5. Markovian SIR model

In order to obtain the classical Markovian SIRmodel in discrete time,
from the non-Markovian case (1), one should consider taking T → ∞, b
(τ) = β and G(0) = 0, g(τ) = γ(1 − γ)τ−1 for τ ≥ 1, where β and γ
are constants. This further yields G(τ) = 1 – (1 − γ)τ and
G τð Þ ¼ 1 � γð Þτ ¼ G τ þ 1ð Þ=γ. First, one could observe that by using
constant infectivity b(τ) = β in the first relationship of the model (1)
and using Eq. (2) one will obtain the classical form for evolution of the
susceptible population

S t þ 1ð Þ ¼ S tð Þ 1 � βI tð Þ½ �: ð23Þ

Next, by implementing the condition G(0)= 0, and the relationship
G τð Þ ¼ G τ þ 1ð Þ=γ one can drop the first term in the sum in the recov-
ered population in Eq. (1), and further obtain

∑
T � 2

τ¼0
G τ þ 1ð ÞId t � τð Þ

¼ γ ∑
T � 1

τ¼0
G τð ÞId t � τð Þ � γG T � 1ð ÞId t � T þ 1ð Þ

¼ γI tð Þ � γ 1 � γð ÞT � 1Id t � T þ 1ð Þ,

ð24Þ

from where, for T → ∞, the recovered population evolves as

R t þ 1ð Þ ¼ R tð Þ þ γI tð Þ: ð25Þ

Finally, from the conservation relationship I(t) + S(t) + R(t) = 1,
one can find that the infected fraction is given as
Fig. 1. Comparison between the discrete classical SIR model and the classical SIR - equiv-
alentmodel obtained from the non-Markovian form, forβ=0.2,γ=0.03. It is used rather
large finite duration of the healing T = 150, as a proxy for T → ∞.

4

I t þ 1ð Þ ¼ βS tð ÞI tð Þ þ 1 � γð ÞI tð Þ: ð26Þ

The relationships (23), (25) and (26) represent the classical SIR
model in discrete time.

As an example, in Fig. 1 we make a comparison between numerical
solutions of the discrete classical SIR model given with Eqs. (23), (25)
and (26) and the non-Markovian form (1) that reduces to it for the in-
fectiousness intensity function β(τ) = β and the healing one γ(τ) =
γ(1 − γ)τ−1, with T → ∞. The matching confirms that the classical
model can be obtained as a special case of the more general non-
Markovian model.

Similarly to the discrete-time version, to verify that the proposed
continuous model is generalization of the classical, Markovian SIR
model, one should consider two characteristics of the latter: 1. The in-
fection rate is independent on the moment when the disease was
contracted b(τ)= β; and 2. the duration of infectivity is infinite and ex-
ponentially distributed which implies that the healing function is g
(τ) = γe−γτ. We note that the respective cumulative distribution is G
(τ) = 1 − e−γτ, and accordingly G τð Þ ¼ e � γτ . By using the functional
form of the healing function, the total infectious population will be

I tð Þ ¼
Z ∞

0
G τð ÞId t � τð Þdτ ¼

Z ∞

0
e � γτId t � τð Þdτ: ð27Þ

Similarly, by using b(τ)=β, for the dynamics of the susceptible frac-
tion one has

S
:

¼ � βS tð Þ
Z ∞

0
e � γτId t � τð Þdτ ¼ � βSI, ð28Þ

that represents the corresponding relationship in the classical SIR
model. Furthermore, by applying the functional form for the healing
function, the dynamics of the recovered population will be as follows

R
:

¼
Z ∞

0
γe � γτId t � τð Þdτ ¼ γI, ð29Þ

that is the respective relationship in the classical SIR model. Finally, by
using the conservation principle S(t) + I(t) + R(t) = 1, the total infec-
tious fraction will evolve as

I
:

¼ � S
:

� R
:

¼ βSI � γI, ð30Þ

that is the remaining familiar relationship from the classical case. As a
final note, we justmention that using respective forms for the infectivity
and recovery functions for the Markovian case in the epidemic thresh-
old relationships (12) and (22), one will obtain the familiar threshold
βth = γ.

6. Numerical experiments and discussion

Our numerical experimentswith the proposedmodel were based on
solution of the integro-differential equations for the continuous-time
case. We have used the Euler method with stepΔt=0.01. For the func-
tions for recovery and infection intensity were selected those that
match the observations as evidenced from the literature. As a proxy
for the infection intensity function we have used the incubation period
distribution, that quantifies the period from contracting the pathogen to
the onset of symptoms. It was observed that the infectivity starts nearly
the onset of symptoms [32], so themoment of appearance of symptoms
might be considered as start of the infectiousness. We did make this
choice since there are available estimates of the incubation period dis-
tribution in the literature. As suggested in [8] the incubation period
can be conveniently representedwithWeibull probability density func-
tionW(τ;α;λ)= αλ(τλ)α−1e−(τλ)α, with parameters α=2.04 and λ=
0.103. This function was further truncated to have support of 35 days
and was normalized. We have also assumed that once becoming
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infectious, the infectedperson has constant capability of transferring the
virus, and thus the distribution of the onset of infectiousness is exactly
the infection intensity function. The daily recovering probabilities
were modeled with log-normal probability density function

L τ; μ;σð Þ ¼ 1= τσ
ffiffiffiffiffiffi
2π

p� �
exp � ln τ � μð Þ2= 2σ2

� �� �
, with parame-

ters μ ¼ ln μ2
X=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
X þ σ2

X

q� �� �
, σ2 = ln (1 + σX

2/μX2) chosen to match

a mean value of μX = 21 and standard deviation σX = 6. The
distribution is then normalized to 61 days, and time-shifted for 4 days
in order to exclude immediate recovery. This results in the healing
function g(τ) with mean recovery time of 25 ± 6 days, in the following
fashion

g τð Þ ¼
L τ � 4; μ;σð ÞR 61
0 L τ; μ;σð Þdτ

, 4 ≤ τ ≤ 65,

0, otherwise:

0
B@ ð31Þ

This construct was based on the results from [33,34], assuming that:
1. Onset of symptoms (on average) occurs after four days (the time
shift); 2. It takes another 7–10 days from onset of symptoms to diagno-
sis confirmation and hospitalization; 3. Another 10–11 days, on average,
are needed from hospitalization to recovery. The period of T= 65 days
is considered in order to include evenmost extreme cases inwhich hos-
pitalization exceeded 40 days.

Furthermore, we have chosen to decompose the infectivity function
b(τ)= βB(τ) into scale parameter β and shape B(τ) that has the form of
the above mentionedWeibull distribution with the appropriate trunca-
tion. The threshold value of the parameter βth was obtained from
condition (22)

βth

Z T

0
B τð ÞG τð Þdτ ¼ 1: ð32Þ

To confirm the value of the epidemic threshold we have varied the
infectivity parameter β in vicinity of the critical value obtained from
Eq. (32) and run the continuous-time model for total time equal to
5000. The final values of the susceptible and recovered fraction are plot-
ted as function of the infectivity parameter in Fig. 2. As one can see, once
β is larger than its critical value, the epidemic emerges.

We have further tried to see what are the predictions of this model
for the COVID-19 pandemic by using a value of the infectivity parameter
β that nearly matches the growth patterns of the epidemic in the coun-
tries before countermeasures were applied. As was obtained in a de-
tailed study [35], the doubling time in the first epidemic wave across
different countries is approximately three days. For that reason, we
Fig. 2. Fractions of susceptible (red stars) and recovered (blue dots) individuals at the end
of the epidemic as a function of the scaling of the infectivity functionβ given in terms of its
threshold value βth.
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have opted to make an experiment with the value β = 4.85βth that
produces such growth. We have numerically verified that in the initial
stage of the epidemic, the newly confirmed daily cases and the total
number of infected individuals grow with the same rate, and have the
same doubling time of about three days. Then, by running the model
with β = 4.85βth for very long time, it was obtained that at the end
less than 1 % of the population will remain susceptible! This result
means that, if the doubling time is three days and free spreading of
the virus is allowed, then nearly everyone, unless vaccinated (this
refers to the original strain of the virus), would eventually contract the
disease. This is a particular challenge of the model that should be
addressed carefully. One approach is to make more appropriate choice
of the healing and infectivity functions and the related parameters.

We have finally attempted to check how well the proposed model
can explain the observed shape of the function of the reported cases.
To do so, we have used the COVID-19 data from Our World in Data,
for three European countries: Italy, Spain and the UK. Our focus was
set on the first wave of the pandemic, since in its beginning no preven-
tive measures were used and thus the model parameters could be
considered as constant. We have opted first to make more detailed
study of the epidemics in Italy, where the wave was the strongest. The
other two counties were chosen to verify that the approach has general
applicability.

There are three key dates for each country in this study: the start of
continuous report of new cases, the lockdown start and the day of the
peak of the reported cases. For each country these are summarized in
Table 1. We have used two different values of infectivity parameter β:
one for the period before the lockdown start, while another one, smaller
than the threshold βth, for the period that follows. The initial condition
was set to Id(0) = 10−7, that is one case in ten million inhabitants.
We have chosen to apply detection of the infected individuals based
on a function that has identical form as the infection intensity one, but
which is delayed for certain number of days. This corresponds to
situation that only those with symptoms are tested, and their
appearance is delayed few days after the contraction of the virus. Also,
there is certain delay that corresponds to the whole process from
onset of symptoms, to visit to hospital to obtaining positive result. We
note that this reporting, or testing function was normalized to 0.8 that
corresponds to assuming existence of 20 % asymptomatic cases [36].
To reach good fit to the observations, we had to take the start of the
simulation, as an assumed epidemic onset, to be De days before the
beginning of the period when we compare the predicted daily cases
with the actual data. Its exact value was tuned by fitting the
logarithms of the daily detected cases from the simulation to the
respective ones from the data. More precisely, we have looked for a
shift De, that will result in minimal squared error of the following sum

ϵ ¼ arg min
De , Tr ,β

1
Tc

∑
Tc

k¼1
ln Idatad kð Þ

� �
� ln Id kþ De � Trð Þð Þ

h i( )
, ð33Þ

In the last relationship Tc is the duration of the period of comparison
of the simulations with the observations, from the start of study
(column three in Table 1) to the epidemic peak (column five in
the same table). Tr is another free parameter that corresponds to
the average number of days from contraction of the disease to
reporting - reporting period. As can be seen, in the optimization
procedure we have also varied the infectivity parameter β given
Table 1
Key dates in 2020 for the first wave of the epidemic.

Country Population Start of study Lockdown Peak

Italy 60 million February 21 March 10 March 21
Spain 47 million February 25 March 14 March 25
UK 67 million February 25 March 23 April 7



Table 2
Parameters quantifying the epidemics. Top three rows - non-Markovian model; the mid-
dle ones - Markovian with detection of non-healed cases only; bottom three rows - Mar-
kovian with detection of all cases. The asymptomatic cases are not reported for all three
models.

Country β γ De Tr ϵ

Italy 3.9 – 54 3 2.97
Spain 6.5 – 31 3 7.51
UK 4.7 – 33 1 8.93
Italy 0.64 0.41 50 14 2.30
Spain 0.75 0.42 33 14 6.66
UK 0.59 0.35 42 17 7.68
Italy 1.07 0.86 17 6 3.35
Spain 0.78 0.46 7 6 7.99
UK 0.52 0.29 6 5 9.23
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in terms of its threshold value βth. Since the optimization procedure
is computationally demanding we have chosen the value for β for
the lockdown period as one that provides good fit for the whole first
wave by visual inspection. As evidenced in Fig. 3, the value β =
0.75βth is a good choice. We have used this value for the all three
countries as constant. The values for the other parameters obtained by
minimization of the squared error (Eq. (33)) for the three countries
are summarized in Table 2.

For comparison, we have also considered the classical SIR model
given by Eqs. (28), (29) and (30), to see its performance for capturing
the shape of the function of reported cases in thefirst wave. The number
of new daily infections was obtained by integrating the first term of the
right hand side of Eq. (30) as

ISIRi tð Þ ¼ β
Z t

t � 1
S νð ÞI νð Þdν, ð34Þ

for period of one day. The optimal parameters of this model were esti-
mated identically as for the non-Markovian case, so that they corre-
spond to minimal squared mismatch of the logarithms of the reported
andpredicted daily cases, as in the eq. (33). The epidemicwas initialized
in the same way with one in ten million individuals for all three coun-
tries.We have assumed again that only 80 % of the positive cases are de-
tected and after the start of the lockdown the infectivity parameter was
set as β = 0.95βth, since value 0.75 of the threshold one makes rather
fast decline of the new cases. The detection of the new cases was
considered to be delayed as in the non-Markovian model for certain
number of days Tr. Since, in the Markovian approach immediate
healing is possible, we have considered two scenarios. In the first one,
we have assumed that all new cases, except the asymptomatic ones
that account for 20 % are reported. In the second, that is more
appropriate for the Markovian model we have considered that only
those that have not healed yet are reported. Since the number of the
individuals that have not recovered decays exponentially, the number
of reported ones at day t was calculated as

ISIRr tð Þ ¼ ISIRi t � Trð Þe � γTr , ð35Þ

In Fig. 4 are presented the theoretical predictions of the proposed
non-Markovian and the Markovian models for the three countries,
while in Table 2 are given the optimal parameters with the squared
error ϵ as ameasure of the prediction accuracy. As one can see, theMar-
kovian model with delayed detection provides best match. However,
as one can notice that this is achieved with very long delay of the
Fig. 3. Daily confirmed cases in the first epidemic wave in Italy in spring 2020 (in blue
squares), compared to numerical simulations of the model. Confirmation function is de-
layed for five days, while the infectivity parameter in the lockdown period is: β = 0.5βth

(green circles), β = 0.75βth (red stars), and β = βth (magenta crosses).
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reporting, that largely exceeds the observed incubation period. Another
inconvenience is the fact thatmajority of the infected individuals would
not be detected, because they would be healed when the reporting is
delayed for so long time. The reports for COVID-19 do not support this
result.

Another peculiarity is the prediction of the peak of the reported
cases, which is known to appear more than ten days after lockdown is
introduced. For example, the peak of the theoretical curve for the non-
Markovian model appears three days before the observed peak in
Italy. The best-fit Markovian model misses the peak for one day only,
but it features a sudden drop of the number of new infections. To re-
mind, in thismodel the detection is delayed for twoweeks after the con-
traction of the pathogen. The other Markovian model misses the peak
for 11 days. Similar results are observed for the other two countries.
Markovian model can predict the peak better, but with unreasonably
long delay of detection.

Although providing natural framework for incorporation of ob-
served distributions of the infectiousness of the infected individuals
and the typical development of the disease, the proposed model has
drawbacks as well. First, before using it, one needs to specify the func-
tions modeling the infectiousness, healing and discovering the infected
individuals. Their determination is a far from trivial task and needs care-
ful analysis of epidemiological and medical data. As more complex one,
the tuning of themodel would need in general more data than the clas-
sical Markovian counterparts. Also, its full specification needs providing
initial conditions that represent a high-dimensional vector, or an inter-
val of values. How all these factors shape the outcome of themodel, and
howmuch is it robust to perturbations of any kind is unknown.We be-
lieve that their understanding could provide the epidemiologists with
valuable information for better understanding of the possible outcomes
of epidemics with pronounced non-Markovian nature.

7. Conclusions

The proposed general non-Markovian epidemic spreading model
captures the typical patterns of the disease in person infected with
SARS-CoV-2: delayed onset of symptoms and potential to infect the
others and impossibility of immediate cure of those that will become
sick. We have studied both discrete- and continuous-time versions
and derived analytically the relationships for determination of the epi-
demic threshold. The model reduces to the classical SIR model with
the corresponding choice of the functions of infection and healing. The
theoretical analysis was supported by numerical confirmation of the ep-
idemic threshold values. The goodfit of themodel to the real data shows
its promising potential for application for modeling the spread of other
infectious diseases. As compared to the classical SIR model this ap-
proach is able to reproduce the observations inmore naturalway. By in-
troducing other appropriate functions one could possibly generalize this
model to versions that include other compartments that correspond to
hospitalized, quarantined, or deceased persons.



Fig. 4.Daily cases of the three countries Italy (top panel), Spain (middle), and theUK (bot-
tom) in the first wave of the epidemic and the predictions of the non-Markovian and two
versions of the classicalMarkov SIRmodel. Themodel parameters are given in Table 2. The
meaning of the symbols is as follows: Blue squares - official data, red stars - non-Markov-
ian model, green circles - Markovian model without considering healing before detection,
magenta crosses - Markovian model with considering healing before detection.
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Although the epidemic threshold as key quantity was determined,
we did not calculated the basic reproduction number R0, that
represents another important quantity. Furthermore, the relationship
between the scaling of the infectivity function β/βth from one side and
R0 and the doubling time, from another should be explored as well.
With this regard, we think that it is even more important to
determine the herd immunity level needed to prevent the epidemic.
Finally, analysis of epidemic spreading by nontrivial contact patterns,
modeled with complex networks, and by incorporating the proposed
7

approach could provide further insight in the evolution of the
epidemics. These issues could provide better understanding of the
non-Markovian setting in modeling the epidemic spreading.
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