
Implementing Multi-Access Edge Computing with
Kubernetes

Vojdan Kjorveziroski1*[0000-0003-0419-4300], Cristina Bernad Canto2[0000-0001-9537-415X], Katja
Gilly2[0000-0002-8985-0639], and Sonja Filiposka1[0000-0003-0034-2855]

1 Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University (Skopje),
Skopje, North Macedonia

{vojdan.kjorveziroski,sonja.filiposka}@finki.ukim.mk
2 Department of Computer Engineering, Miguel Hernández University (Elche), Alicante, Spain

{cbernad,katya}@umh.es

Abstract. The introduction of novel telecommunication standards such as 5G
and beyond, which offer increased throughput and more efficient network
communication, serve as enablers for new technologies. One of these technolo-
gies is Multi-Access Edge Computing (MEC), with the potential to revolution-
ize existing computing architectures and their feature set as we know them to-
day. By collocating compute nodes with mobile networking equipment, cus-
tomers are offered reduced latency and increased privacy, compared to alterna-
tive scenarios where the traffic is indiscriminately routed to the cloud. Howev-
er, the distributed nature of the mobile landscape, coupled with the huge num-
ber of involved parties, requires careful consideration and standardization be-
fore any rollout. A number of reference documents have been published in re-
cent years with the aim of standardizing the communication interfaces of MEC.
We discuss these standardization efforts and provide a description of a MEC ar-
chitecture centered around the Kubernetes container orchestrator, replacing the
concept of virtualized MEC applications with containerized instances which can
be deployed as serverless functions. We also offer a use-case scenario leverag-
ing the described component mapping, showcasing the scalability and load-
balancing features of the proposed architecture.

Keywords: Multi-Access Edge Computing, Architecture Mapping, Kubernetes,
Serverless Computing, 5G.

1 Introduction

Since the introduction of the cloud computing paradigm [1], this new concept of cen-
tralized and virtually unlimited computing capacity has had a major impact across the
industry, as well as in people’s everyday lives. Its initial success has served as an
enabler for the development of new technologies, such as machine learning, augment-
ed reality, virtual reality, and sensor networks [2]. However, the meteoric rise in the
number of both industrial and personal internet of things (IoT) devices [3], combined
with the increasing desire for latency sensitive and bandwidth intensive applications

2

by end-users, has introduced challenges to this architecture. One solution aimed at
overcoming the network latency constraints stemming from the geographically dis-
tributed nature of the cloud is to introduce data preprocessing closer to the source
devices – at the edge of the network [4]. This would not only reduce communication
delays but would also decrease the traffic volume to the cloud, thus easing network
congestion. With the introduction of such a multi-layer approach to computing, global
cloud capacity would be utilized for high-performance computations and data archiv-
al, while leveraging the more resource constrained edge for simpler, yet more sensi-
tive computation in terms of response time and privacy.

Even though edge computing has attracted a noticeable research interest, it is still a
broad term and the question of where exactly to place the computing infrastructure
remains. A number of commercial entities have developed edge sites, dedicated data
centers in areas with large numbers of users [5]–[7]. Other strategies include the de-
ployment of resource limited, general purpose devices which can process data from
nearby sensors either independently or as a part of a cluster [8]. However, one of the
more prominent initiatives today is the introduction of multi-access edge computing
(MEC), previously known as mobile edge computing [9]. The main idea is to collo-
cate compute infrastructure at mobile network sites together with the communications
equipment, thus potentially solving both the network connectivity and data processing
issues at the same time. The introduction of improved and faster communication pro-
tocols under the 3GPP umbrella, such as 5G and the resulting packetization of mobile
networks, only contribute to the popularity of this approach.

In an effort to alleviate the fragmentation surrounding all new and emerging tech-
nologies, such as MEC itself, the European Telecommunications Standards Institute
(ETSI) has published a reference MEC framework, which has been further supported
by a reference architecture as well [10]. The goal of this paper is to map this reference
architecture, which is primarily focused on virtualization, to a container based one,
centered around the Kubernetes container orchestrator, while also offering an option
to use serverless functions as the runtime environment for the deployed MEC applica-
tions. The main contributions of this work are: 1) Evaluation of containers and server-
less functions as feasible runtime environments for MEC applications; 2) Mapping the
components of the Kubernetes container orchestrator, along with help of additional
software extensions to the reference ETSI MEC architecture, describing options for
the deployment of serverless MEC applications. 3) Overview of current initiatives
within the Kubernetes community to tackle the edge of the network as a new compu-
ting frontier.

The rest of this paper is organized as follows: in section 2 we outline recently pub-
lished work relevant to the topic of multi-access edge computing and the application
of containers at the network edge. We then continue with section 3, where we first
give a description of Kubernetes extensions for the network edge, before discussing
the mapping of the entities presented in the reference ETSI architecture to the various
components of the Kubernetes orchestrator. In section 4 we discuss the implications
of the presented choices, as well as offer a reference use-case leveraging the architec-
ture presented in the previous section. We conclude the paper with section 5, outlining
open issues and directions for future research.

3

2 Related Work

The standardization effort in the multi-access edge computing landscape is done by
the ETSI MEC industry specification group (ISG). A number of documents have been
published so far, encompassing different aspects, ranging from use-case descriptions
to technical API specifications. [11] presents a list of required and optional features
that a MEC platform should support, augmented with a list of use-cases which make
use of them. To aid real-world implementations and ensure cross-compatibility, [12]
offers a technical API specification which should be implemented by the various enti-
ties present in the reference architecture.

Even though the initial focus of the initiative has been around virtualization and the
use of virtual machines as runtime environments for MEC applications, the ISG has
also published a document [13] exploring other options, many of which are more
lightweight in terms of resource consumption and initial start up time. Several alter-
natives have been proposed, such as the use of unikernels [2] or Kata containers
which provide better workload isolation using a hardware virtualization technology
[9], [14], [15]. The serverless paradigm has also been identified as a potentially viable
solution for MEC [16], with the first implementations already being available [17],
[18].

Efforts to reuse existing products also need to be noted. [19] extends the concept of
a MEC application to a Kubernetes environment, describing ways for easy deploy-
ment, ensuring cross-compatibility and easy sharing of already developed applica-
tions. The authors of [20] have also identified the Kubernetes orchestrator as a viable
option for MEC and develop federated scheduling algorithms that can take into ac-
count individual application requirements and existing network conditions. While it is
true that we also focus on Kubernetes, the goal of this paper is to map the existing and
readily available Kubernetes components and extensions to the MEC reference archi-
tecture, without introducing any custom modifications.

Finally, taking into account the large number of ongoing initiatives, it is important
to ensure efficient load-balancing even across disparate compliant infrastructures.
[21] explores different mechanisms for request routing, many of which are centered
around the use of the domain name system (DNS) protocol. The same strategy of
achieving location transparency in a distributed edge infrastructure is also described
in [17] and [22].

3 Architecture Mapping

The published MEC architecture by the ETSI ISG describes a hierarchical system
comprised of two levels – the System Level and the Host Level. Even though an addi-
tional third level is present in the reference framework – Network, it is not described
in the architecture. When it comes to Kubernetes, there are multiple ways in which its
components can be deployed in an edge environment, with various implications to
performance, network latency, and scalability. In order to reflect the reference archi-
tecture as closely as possible, we have chosen to use a hierarchy of federated Kuber-

4

netes clusters [20] at the edge, controlled by a central control plane using the Ku-
beFed [23] solution. Alternative approaches include the use of a single flat cluster
with distributed nodes, where an overlay network would be deployed on top of the
existing telecom infrastructure to support inter-node communication. However, this
would not only increase deployment complexity, but would also negatively impact the
network performance, due to a lack of hierarchy and the need for continuous commu-
nication with the control nodes. The KubeEdge initiative [24] is yet another option,
albeit it is currently focused on dealing directly with end-devices and acquiring data
from their sensors, instead of general purpose MEC applications. It is the most light-
weight approach of the three, but the lack of hierarchy and the limited number of
workloads deployable on the edge nodes restrict its usage in a native MEC environ-
ment.

In the sections that follow we map the Kubernetes components to the entities pre-
sent in the two levels of the reference architecture, beginning with the System Level.
Closely following this discussion, Fig. 1 presents a visual representation of the rela-
tionship between the components and mapped entities.

Fig. 1. Proposed mapping of software components to the reference MEC architecture

3.1 Multi-Access Edge Computing System Level

The MEC System Level is comprised of 5 entities. 4 of these are discussed below,
while the Device App, representing client applications on end-user devices has been
omitted due to it not being relevant to the Kubernetes architecture.

Multi-Access Edge Orchestrator (MEO). The MEO is the core component at the
MEC System Level. It is represented by a central, highly available Kubernetes cluster
which is hosted on dedicated infrastructure and has connectivity to all edge locations.
Using the Mm3 reference point, it functions as a coordinator of the KubeFed federat-
ed remote clusters. The MEO, through its central role, maintains an overall view of
the MEC system, including the current status of the remote clusters, deployed applica-

5

tions, services, overall topology, and available resources. Since it has direct control
over the remote clusters, it can also take part in the on-boarding of new applications,
set rules on where they should be deployed, the number of replicas that should be
created across different locations, and any additional requirements that must be ful-
filled in terms of available hardware or performance. The built-in KubeFed scheduler
can schedule applications in a number of ways [25]: a) Equally distributing the repli-
cas across all available federated clusters; b) Ratio-based scheduling, where a given
percentage of replicas is located on one remote cluster, with the remainder on another;
c) Label-based scheduling, taking into account remote cluster characteristics, for ex-
ample availability of specific hardware, geographical location, or current conditions;
d) Relocation between nodes, in cases of limited capacity – an application migration
can be automatically triggered if lack of resources is detected in the existing environ-
ment. The migration can reschedule the pod either on a different node at the same
edge location (within the same Kubernetes cluster) or on another Kubernetes cluster
part of the federation that has enough resources available.

It should be noted that the MEO does not take part in the running of the applica-
tions, instead it sets global application scaling preferences, and it is up to the individ-
ual MEC platform managers (federated Kubernetes clusters) to fulfill these requests
according to the available resources on their end.

Customer Facing Service (CFS) Portal. The customer facing portal should facilitate
easy MEC application deployment by end-users. One major advantage of adopting
Kubernetes in a MEC environment is the large number of existing integrations, some
of which are in the form of application marketplaces, allowing seamless deployment
of new applications through interactions with the Kubernetes API. Examples include
the NMaaS project [26] which allows easy deployment of network monitoring appli-
cations on top of a Kubernetes cluster using a web front-end resembling an app store,
or Kubeapps [27], which compared to NMaaS, provides lower levels of abstraction. In
the serverless camp, the need for serverless function marketplaces has been identified
from the start, and a number of initiatives have been created as a result [28], [29]. All
of these existing solutions can easily be made compliant to the Mx1 reference point,
allowing users not only to consume, but also share MEC application either packaged
as serverless functions, long-running containers or any other runtime environment
managed by the Kubernetes API [30].

User App Lifecycle Management (LCM) Proxy. The LCM proxy is an optional
component which facilitates relocation of MEC applications between the MEC sys-
tem and external infrastructures. Kubernetes or its extensions currently do not offer a
way of seamless application transfer to third-party infrastructures not part of the fed-
eration, but research targeting other platforms is available. For example, VideoPipe
[31] allows the use of nearby devices to create flexible video processing pipelines by
using cross-platform JavaScript serverless runtimes. Adapting such a solution to a
Kubernetes environment would potentially unlock the option of flexible application
instance transfer from third party equipment, even end-user devices, to the more per-

6

formant MEC infrastructure. Another responsibility of the LCM Proxy is the authori-
zation of requests from device applications. To support this, an API gateway or a
centralized Ingress can be deployed, routing requests based on additional information,
for example one present in the headers, and then leveraging the Mm8 reference point,
handing-off these requests to the serverless platform controller co-located in the Op-
erations Support System. In cases where a Kubernetes service mesh is used or an in-
cluster Ingress controller, the centralized control plane of the MEO can control their
behavior using the Mm9 reference point.

Operations Support System (OSS). The OSS is tightly integrated with the other
functionality offered by the telecom provider, including subscriber and mobility in-
formation, which can drive the deployment and scheduling decisions of the MEO.
When a serverless platform is used, the OSS can include a serverless gateway compo-
nent which would intercept requests with the aim of optimizing the required number
of replicas or pre-warming containers and passing this information to the MEO via the
Mm1 reference point.

3.2 Multi-Access Edge Computing Host Level

The MEC Host Level is represented by federated Kubernetes clusters deployed on the
network operators’ edge infrastructure. Each Kubernetes cluster is comprised of a
separate control plane (MEC Platform Manager) represented by Kubernetes master
nodes responsible for coordinating the multiple worker nodes taking the role of MEC
hosts. Additional details about the three main entities from this level are discussed in
the subsections below.

Multi-Access Edge Computing Platform Manager. The Platform Manager is repre-
sented by the control-plane of the separate Kubernetes clusters deployed at each edge
location which are then federated with the MEO. In this context, the MEO represents
the global control plane of the whole MEC infrastructure, while each Platform Man-
ager acts as a localized control plane which has the nearby MEC hosts under its con-
trol. The master nodes of the edge clusters sync information with the master nodes in
the MEO using the Mm3 reference point which in this case is represented by the Ku-
beFed API.

Taking into account the potentially resource constrained nature of the edge infra-
structure, different Kubernetes distributions can be used, depending on the require-
ments. Work has already been done to offer lightweight Kubernetes distributions
specifically aimed at the network edge, such as MicroK8s, or K3s, which can be used
in this context. No matter the chosen Kubernetes flavor, the application instantiation
behavior is abstracted away, as they all support the same image format and are com-
pliant with the original Kubernetes API. Using such a hierarchical approach with both
a central control plane in the form of MEO and a localized control plane, it is possible
to realize the requirements of application and environment configuration, together
with performance information gathering to support the scheduling tasks of the MEO.

7

Combining the native Horizontal Pod Autoscaler (HPA) [32] built into Kubernetes
with the workload relocation due to lack of resources supported by KubeFed would
allow adaptive horizontal scaling as a result of current resource usage among different
edge locations.

Virtualization Infrastructure Manager (VIM). The VIM can be best represented by
the container runtime present on each Kubernetes node at the edge. While Kubernetes
does support different container runtimes, it is common for all of them to be able to
allocate, manage, and release system resources in coordination with the kernel of the
underlying operating system. Furthermore, pulling, verifying, and instantiating con-
tainers from container images, no matter whether they represent traditional long-
living applications or elastic serverless functions, is also the role of this component.

When it comes to performance measurements, for each container running locally
on the nodes, metrics can be natively exposed, such as consumed memory, processing
time, and network bandwidth. Additional application level or platform level infor-
mation such as number of successful requests can be implemented using third-party
components, such as the popular Prometheus monitoring system [33], which can also
be integrated with the aforementioned Kubernetes HPA. On-the-fly checkpointing
and migration of running serverless functions can be realized using container tech-
niques such as the one presented in [34], thus optimizing compute time during long
running blocking operations, or in cases when resources are exhausted on a given
node. It needs to be noted though that such workload migration is an optional feature,
as per the reference architecture.

Internal network access, within the same edge cluster, as well as external, to other
federated clusters including the internet, is provided by the Calico container network
interface (CNI) plugin. This is made possible by the calico-node agent, running on
every edge host as a container, supported by the VIM.

Multi-Access Edge Computing Platform. The MEC platform is part of the MEC
host entity present in the MEC host level. It is represented by Kubernetes worker
nodes which are part of the local edge clusters and are controlled by the MEC Plat-
form Manager (Kubernetes control plane). Using native Kubernetes functionality,
coupled with additional addons, the MEC Platform is responsible for implementing
traffic rules, handling DNS queries, as well as service exposure and service registra-
tion. Leveraging the calico-node agents running on each node, together with kube-
proxy, it is possible for the MEC platform to implement specific traffic rules received
from the platform manager. These rules instruct the local data plane how to forward
traffic and how to expose services. In cases where Calico is used as the container
network interface (CNI) plugin, it is also possible to apply rules across multiple clus-
ters, using federated networking policies, a feature supported by the plugin.

Whereas CoreDNS is the recommended DNS resolver in Kubernetes clusters, in a
MEC environment it can also be repurposed to serve as a recursive resolver for mo-
bile network users which are connected to the network segment where the particular
MEC host is placed. As previously, the initial configuration itself, as well as the vari-

8

ous zones are managed by the responsible MEC Platform Manager in their entirety.
Optionally, global rules can be defined in coordination with the MEO. This approach
can act as one part of a DNS-based load-balancing strategy for access to the deployed
MEC applications, explained in more details below. In terms of accessing the MEC
applications, services are used for their exposure, accepting incoming traffic, and
routing it to the appropriate instance. Kubernetes has multiple service publishing op-
tions, depending on whether access should be allowed only from within the cluster or
from external sources as well. This behavior can further be augmented by additional
load-balancing plugins such as MetalLB or PureLB [35], aiding the service publishing
process.

In terms of persistent storage volumes which are required by stateful MEC applica-
tions, a number of container storage interface (CSI) plugins [36] are supported by
Kubernetes, allowing integration with local or even remote storage solutions where
the communication would be facilitated by the CSI plugin. These storage volumes,
once provisioned, can be offered to the respective applications via the Mp1 reference
point. It must be noted though that the implementation of a comprehensive storage
strategy is out of scope of the MEC reference architecture.

In summary, by using the Calico overlay network and its local components on each
node, it is possible to facilitate inter-cluster communication. In this way, MEC appli-
cations can be published via services, but can also in turn act themselves as consum-
ers of different MEC applications hosted both in the same cluster or on some other
cluster part of the federation.

Finally, the question of how to efficiently route requests when the user is moving
from one location to another is something that is widely researched. The idea is to
offer seamless mobility, while keeping the latency to the currently consumed MEC
application as low as possible. For this purpose, a varied strategy can be used: 1) use
split DNS with response policy zone and leverage the CoreDNS instance at each edge
site as a recursive resolver that will prioritize access to locally deployed instances of
the MEC applications. This is also one of the strategies explored by the MEC ISG
[21], and is already implemented in existing MEC solutions. However, in our case,
this approach does not solve the problem in cases when the nearest cluster is over-
loaded, and requests need to be dynamically balanced across different clusters; 2) To
offer inter-cluster balancing, a distributed service discovery solution can be devised
which can take into account additional properties, such as network load and physical
distance to the infrastructure where the application is hosted. While Kubernetes does
offer native service discovery, it is not sufficient for such advanced cases, and an
additional service discovery component needs to be integrated. For example, Consul
[37] or a similar tool can be deployed to augment the service discovery efforts. Using
a federated Consul deployment with a global view of the available MEC services, the
stored metadata about each service can be leveraged while routing the requests, issu-
ing temporary redirects to the best candidate fulfilling the requirements.

9

3.3 Multi-Access Edge Computing Applications

The MEC applications themselves can be represented in a variety of ways, such as
virtual machines, long-living containers, or serverless functions. When it comes to a
serverless deployment, the functions can either be deployed independently or in
groups, making use of the container runtime available on each of the worker nodes for
instantiating the functions. By leveraging the Kubernetes API and the underlying
components of the federated clusters, the functions themselves can interact with the
MEC platform. In this manner, they can indicate their availability, current load, or
expose any other application-level metrics relevant for their lifecycle and for the
scheduling of new instances. Each MEC application, can also indicate the required
resources for its uninterrupted execution, and when not explicitly stated, these can be
set to default values [38].

4 Discussion

Repurposing existing components and leveraging the Kubernetes container orchestra-
tor as a centerpiece of a distributed MEC strategy, backed by additional well-
established addons, offers easy implementation and the possibility of integration with
third-party systems. The architecture mapping discussed previously, as well as the
various other components that have been included can be better described by a use-
case scenario.

Using the customer facing portal, users are presented with an application catalog
from which they can choose their desired application to be instantiated in the form of
serverless functions across the MEC infrastructure. In some instances, depending on
policy, this catalog can also include other types of applications, for example backed
by long-running containers or virtual machines. This request is then forwarded to the
Operations Support System via the Mx1 reference point, and the OSS can either ac-
cept it or deny it, depending on customer information available in other telecom pro-
vider’s systems. If accepted, the request is passed onto the MEC Orchestrator via the
Mm1 reference point, which in turn triggers the application instantiation on the edge
by instructing the MEC Platform Managers how to proceed with the deployment via
Mm3. Once the application request is received by the Kubernetes control plane at
edge location, it schedules the required pods according to the rules specified by the
Platform Manager, in accordance to locally available resources. At this point, the
worker nodes which have been selected fetch the required container images, and with
the use of the local container runtime start the pods, registering the service endpoint in
the service registry, before exposing it. The DNS zone is also updated, allowing the
DNS resolver to include the new service address in the DNS responses for the particu-
lar application. Should the MEC application become viral, additional replicas can be
automatically added using Kubernetes HPA policies based on CPU, memory usage, or
any other metric interpreted by a third-party component, such as requests per second.
Since all network users are using the nearest CoreDNS server as their recursive re-
solver, requests for the application are automatically load-balanced between the appli-
cation replicas present within the MEC hosts. However, in cases where the resources

10

of the given cluster are exhausted, new replicas can be further instantiated on other
nearby clusters that have spare capacity. In such cases, the request routing component
with the help of the service registry and the associated metadata with each service can
route the request to some other cluster part of the federation that conforms to the set
routing strategy. Since the issued redirects are temporary in nature, the possibility to
dynamically change the destinations remains.

Should an application migration system such as the one described in [31] is im-
plemented, then the User App Lifecycle Management Proxy can moderate requests
for on-boarding applications which are currently executed on external infrastructures,
or offloading applications which are running at some MEC Host within the federation,
in a containerized runtime environment.

5 Conclusion

Using a set of existing software components, we have mapped the reference multi-
access edge computing architecture introduced by the ETSI MEC ISG to an architec-
ture comprised of federated Kubernetes clusters. Utilizing the official federation solu-
tion for this container orchestrator, KubeFed, a hierarchy of clusters can be provi-
sioned, conforming to the requirements set out in the published reference documents.
Alternative cluster federation solutions exist today [39], [40], but KubeFed has al-
lowed us to achieve our goal of only reusing existing and well-established software
components, without any additional custom extensions. In this way a scalable MEC
architecture can be built, which should be immediately familiar to anyone with con-
tainer orchestration experience, thus minimizing the adoption effort for telecom pro-
viders.

We have also provided a reference use-case which outlines the functionality of the
included software components and their role within the wider MEC architecture.
Through the description of scaling and request routing methods, we have also tackled
the reference communication points, such as those connecting to external entities
(Mx), facilitating the MEC platform functionality (Mp), and allowing component
management (Mm).

In the future, it would be interesting to see how the promising KubeEdge project
progresses, allowing severely resource constrained nodes to extend the cluster to re-
mote edge locations. In fact, a number of MEC initiatives and special interest groups
related to popular infrastructure software have emerged in recent years [41], attracting
a sizeable interest. To better map these different initiatives, the ETSI MEC ISG has
published a matrix of existing implementations [42], along with a description of
which entities and reference points are implemented by each of them.

Even though mobile-edge computing is a rather new concept and development
continues driven primarily by enabling technologies such as 5G, it is encouraging that
standardization efforts continue. These standardization efforts are essential in avoid-
ing further walled gardens without any cross-platform interoperability, as is the case
with many popular initiatives which have unfortunately outpaced their standardization
efforts.

11

Acknowledgement. The work presented in this paper has received funding from the
Faculty of Computer Science and Engineering under the “SCAP” project.

References

[1] M. Armbrust et al., ‘Above the Clouds: A Berkeley View of Cloud Computing’,
2009, Accessed: May 22, 2022. [Online]. Available:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

[2] N. Kratzke, ‘A Brief History of Cloud Application Architectures’, Applied Sci-
ences, vol. 8, no. 8, p. 1368, Aug. 2018, doi: 10.3390/app8081368.

[3] ‘Global IoT and non-IoT connections 2010-2025’, Statista.
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-
worldwide/ (accessed Jan. 14, 2022).

[4] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, ‘Edge computing: current
trends, research challenges and future directions’, Computing, vol. 103, no. 5, pp.
993–1023, May 2021, doi: 10.1007/s00607-020-00896-5.

[5] ‘The Cloudflare Global Network | Data Center Locations’, Cloudflare.
https://www.cloudflare.com/network/ (accessed May 21, 2022).

[6] ‘Key Features of a Content Delivery Network| Performance, Security | Amazon
CloudFront’, Amazon Web Services, Inc.
https://aws.amazon.com/cloudfront/features/ (accessed May 21, 2022).

[7] ‘Azure Front Door edge locations by abbreviation’.
https://docs.microsoft.com/en-us/azure/frontdoor/edge-locations-by-abbreviation
(accessed Jan. 14, 2022).

[8] M. Gusev and S. Dustdar, ‘Going Back to the Roots—The Evolution of Edge
Computing, An IoT Perspective’, IEEE Internet Computing, vol. 22, no. 2, pp. 5–
15, Mar. 2018, doi: 10.1109/MIC.2018.022021657.

[9] G. Nencioni, R. G. Garroppo, and R. F. Olimid, ‘5G Multi-access Edge Compu-
ting: Security, Dependability, and Performance’, arXiv:2107.13374 [cs], Jul.
2021, Accessed: May 20, 2022. [Online]. Available:
http://arxiv.org/abs/2107.13374

[10] ‘Multi-access Edge Computing (MEC); Framework and Reference Architecture’.
ETSI MEC ISG. Accessed: May 19, 2022. [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_MEC00
3v020201p.pdf

[11] ‘Multi-access Edge Computing (MEC): Use Cases and Requirements’. ETSI
MEC ISG. Accessed: May 19, 2022. [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC00
2v020101p.pdf

[12] ‘Multi-access Edge Computing (MEC); MEC Management: Application lifecy-
cle, rules and requirements management’. ETSI MEC ISG. Accessed: May 19,
2022. [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/01002/02.01.01_60/gs_mec0
1002v020101p.pdf

12

[13] ‘Multi-access Edge Computing (MEC): Study on MEC support for alternative
virtualization technologies’. ETSI MEC ISG. Accessed: May 20, 2022. [Online].
Available:
https://www.etsi.org/deliver/etsi_gr/MEC/001_099/027/02.01.01_60/gr_MEC02
7v020101p.pdf

[14] V. Aggarwal and B. Thangaraju, ‘Performance Analysis of Virtualisation Tech-
nologies in NFV and Edge Deployments’, in 2020 IEEE International Confer-
ence on Electronics, Computing and Communication Technologies (CONECCT),
Jul. 2020, pp. 1–5. doi: 10.1109/CONECCT50063.2020.9198367.

[15] R. Perez et al., ‘A Performance Comparison of Virtualization Techniques to
Deploy a 5G Monitoring Platform’, in 2021 Joint European Conference on Net-
works and Communications 6G Summit (EuCNC/6G Summit), Jun. 2021, pp.
472–477. doi: 10.1109/EuCNC/6GSummit51104.2021.9482570.

[16] V. Kjorveziroski, S. Filiposka, and V. Trajkovik, ‘IoT Serverless Computing at
the Edge: A Systematic Mapping Review’, Computers, vol. 10, no. 10, Art. no.
10, Oct. 2021, doi: 10.3390/computers10100130.

[17] S. Yang, K. Xu, L. Cui, Z. Ming, Z. Chen, and Z. Ming, ‘EBI-PAI: Towards An
Efficient Edge-Based IoT Platform for Artificial Intelligence’, IEEE Internet
Things J., pp. 1–1, 2020, doi: 10.1109/JIOT.2020.3019008.

[18] C. Cicconetti, M. Conti, A. Passarella, and D. Sabella, ‘Toward Distributed
Computing Environments with Serverless Solutions in Edge Systems’, IEEE
Commun. Mag., vol. 58, no. 3, pp. 40–46, Mar. 2020, doi:
10.1109/MCOM.001.1900498.

[19] I. D. Martínez-Casanueva, L. Bellido, C. M. Lentisco, and D. Fernández, ‘An
Initial Approach to a Multi-access Edge Computing Reference Architecture Im-
plementation Using Kubernetes’, in Broadband Communications, Networks, and
Systems, Cham, 2021, pp. 185–193. doi: 10.1007/978-3-030-68737-3_13.

[20] D. K. Bainbridge and C. Corporation, ‘Implementing Multi-layer Infrastructure
Management for Multi-Access Edge Computing (MEC) Services Using Kuber-
netes’, p. 23, 2021.

[21] M. Suzuki, T. Miyasaka, D. Purkayastha, Y. Fang, Q. Huang, and J. Zhu, ‘En-
hanced DNS Support towards Distributed MEC Environment’. [Online]. Availa-
ble: https://www.etsi.org/images/files/ETSIWhitePapers/etsi-wp39-Enhanced-
DNS-Support-towards-Distributed-MEC-Environment.pdf

[22] L. Baresi, D. Filgueira Mendonça, and M. Garriga, ‘Empowering Low-Latency
Applications Through a Serverless Edge Computing Architecture’, in Service-
Oriented and Cloud Computing, Cham, 2017, pp. 196–210. doi: 10.1007/978-3-
319-67262-5_15.

[23] Kubernetes Cluster Federation. Kubernetes SIGs, 2022. Accessed: May 22,
2022. [Online]. Available: https://github.com/kubernetes-sigs/kubefed

[24] KubeEdge, ‘KubeEdge’, KubeEdge. https://kubeedge.io/en/ (accessed May 22,
2022).

[25] Kubernetes Cluster Federation - ReplicaSchedulingPreference. Kubernetes
SIGs, 2022. Accessed: May 23, 2022. [Online]. Available:
https://github.com/kubernetes-

13

sigs/kubefed/blob/c26fab53cffd7fee991cff2c6660297a9a9f93f1/docs/userguide.
md

[26] ‘NMaaS Home - GÉANT’.
https://www.geant.org:443/Services/Connectivity_and_network/NMaaS (ac-
cessed May 23, 2022).

[27] ‘Kubeapps, deploy your applications in Kubernetes’. https://kubeapps.com/ (ac-
cessed May 23, 2022).

[28] ‘AWS Serverless Application Repository - Amazon Web Services’, Amazon Web
Services, Inc. https://aws.amazon.com/serverless/serverlessrepo/ (accessed May
22, 2021).

[29] OpenFaaS Function Store. OpenFaaS, 2021. Accessed: May 22, 2022. [Online].
Available: https://github.com/openfaas/store

[30] ‘KubeVirt.io’, KubeVirt.io. https://kubevirt.io// (accessed May 20, 2022).
[31] M. Salehe, Z. Hu, S. H. Mortazavi, I. Mohomed, and T. Capes, ‘VideoPipe:

Building Video Stream Processing Pipelines at the Edge’, in Proceedings of the
20th International Middleware Conference Industrial Track, Davis CA USA,
Dec. 2019, pp. 43–49. doi: 10.1145/3366626.3368131.

[32] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, ‘Horizontal Pod
Autoscaling in Kubernetes for Elastic Container Orchestration’, Sensors, vol. 20,
no. 16, Art. no. 16, Jan. 2020, doi: 10.3390/s20164621.

[33] ‘Prometheus - Monitoring system & time series database’. https://prometheus.io/
(accessed May 22, 2021).

[34] P. Karhula, J. Janak, and H. Schulzrinne, ‘Checkpointing and Migration of IoT
Edge Functions’, in Proceedings of the 2nd International Workshop on Edge Sys-
tems, Analytics and Networking, New York, NY, USA, Mar. 2019, pp. 60–65.
doi: 10.1145/3301418.3313947.

[35] V. Kjorveziroski, A. Mishev, and S. Filiposka, ‘Evaluating IPv6 Support in Ku-
bernetes’, in 2021 29th Telecommunications Forum (TELFOR), Belgrade, Ser-
bia, Nov. 2021, pp. 1–4. doi: 10.1109/TELFOR52709.2021.9653276.

[36] ‘Container Storage Interface (CSI) for Kubernetes GA’, Kubernetes, Jan. 15,
2019. https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/ (ac-
cessed May 20, 2022).

[37] ‘Consul by HashiCorp’, Consul by HashiCorp. https://www.consul.io/docs/k8s
(accessed May 23, 2022).

[38] ‘Configure Default Memory Requests and Limits for a Namespace’, Kubernetes.
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-
default-namespace/ (accessed May 23, 2022).

[39] ‘Multi-Cluster Kubernetes. Simplified. | Admiralty’. https://admiralty.io/ (ac-
cessed May 22, 2022).

[40] ‘Pipeline · Banzai Cloud’. https://banzaicloud.com/products/pipeline/ (accessed
May 23, 2022).

[41] ‘KubeEdge@MEC: Combining the Kubernetes ecosystem with 5G’, Cloud Na-
tive Computing Foundation. https://www.cncf.io/blog/2021/07/20/kubeedgemec-
combining-the-kubernetes-ecosystem-with-5g/ (accessed May 22, 2022).

14

[42] ‘MEC Ecosystem - MECwiki’.
https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem (accessed May 22,
2022).

	1 Introduction
	2 Related Work
	3 Architecture Mapping
	3.1 Multi-Access Edge Computing System Level
	Multi-Access Edge Orchestrator (MEO). The MEO is the core component at the MEC System Level. It is represented by a central, highly available Kubernetes cluster which is hosted on dedicated infrastructure and has connectivity to all edge locations. Us...
	It should be noted that the MEO does not take part in the running of the applications, instead it sets global application scaling preferences, and it is up to the individual MEC platform managers (federated Kubernetes clusters) to fulfill these reques...
	Customer Facing Service (CFS) Portal. The customer facing portal should facilitate easy MEC application deployment by end-users. One major advantage of adopting Kubernetes in a MEC environment is the large number of existing integrations, some of whic...
	User App Lifecycle Management (LCM) Proxy. The LCM proxy is an optional component which facilitates relocation of MEC applications between the MEC system and external infrastructures. Kubernetes or its extensions currently do not offer a way of seamle...
	Operations Support System (OSS). The OSS is tightly integrated with the other functionality offered by the telecom provider, including subscriber and mobility information, which can drive the deployment and scheduling decisions of the MEO. When a serv...

	3.2 Multi-Access Edge Computing Host Level
	Multi-Access Edge Computing Platform Manager. The Platform Manager is represented by the control-plane of the separate Kubernetes clusters deployed at each edge location which are then federated with the MEO. In this context, the MEO represents the gl...
	Virtualization Infrastructure Manager (VIM). The VIM can be best represented by the container runtime present on each Kubernetes node at the edge. While Kubernetes does support different container runtimes, it is common for all of them to be able to a...
	When it comes to performance measurements, for each container running locally on the nodes, metrics can be natively exposed, such as consumed memory, processing time, and network bandwidth. Additional application level or platform level information su...
	Multi-Access Edge Computing Platform. The MEC platform is part of the MEC host entity present in the MEC host level. It is represented by Kubernetes worker nodes which are part of the local edge clusters and are controlled by the MEC Platform Manager ...

	3.3 Multi-Access Edge Computing Applications

	4 Discussion
	5 Conclusion
	References

