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Abstract 

Diatoms are ideal bio-indicators of water ecosystem health and can be classified into one of the trophic state indexes (TSI) 
according to the nutrient level. Thus, the diatoms can be used to indicate the relationship between the organisms and the 
environmental parameters. In order to find the correct diatom- indicator connection, we can use a certain classification algorithm 
directly from measure data. This process of diatom classification can be significantly improved using information technology, 
especially data mining tools. In this direction, this paper work present several classification models with the novel method called 
aggregation trees based on evenly sigmoid shaped membership function (MF). Earlier, numerous statistical approaches have been 
used for this purpose, which provide very useful data inside information, but they are limited to interpretation. Further 
improvement is made by using decision trees, which increases interpretability, but remains not resistant to over fitting and 
robustness on data change.  The proposed method in this paper synthesizes these advantages, in terms of interpretability, 
resistance of over-fitting and high classification accuracy compared with classical classification algorithms. This is confirmed by 
the experimental evaluation. Based on these evaluation results, one model for each TSI is presented and discussed. From 
ecological point of view, the described method improves the water quality and sustaining bio diversity understandings of this 
ecosystem. The method added new ecological knowledge about the ecological indicators for certain diatoms, which have been 
recently discovered. 
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1. Introduction 

Lake Ecosystem classification according to his eutrophication status is a very important issue in today fast 
growing world. Demands of clear water, not just for drinking, but also for the survival and maintaining the 
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organism’s habitat, becomes ever important. In this direction, it is vital to manage these resources as much 
intelligence as we can with advance methods of new information technologies.  

Focusing on this, the TSI classes define in the traditional way can be interpreted as a classification problem in the 
terms of data mining point of view. This property is used to discover the appropriate environment conditions for 
newly found diatom, which has been a subject of environmental informatics area of research very recently. 
Considering this, we deal with the typical classification problem, when we try to build a model that predicts 
(classifies) the correct diatom into TSI according to certain physico-chemical parameter. These objectives are 
usually very difficult to achieve by extracting knowledge directly from data without help from the information 
technologies. The eutrophication status measure is one of the key factors detecting the health of the ecosystem. 

In this domain, classical statistical approach, such as canonical correspondence analysis (CCA), detrended 
correspondence analysis (DCA) and principal component analysis (PCA), are most widely used as modelling 
techniques [1]. Although these techniques provide useful insights in the data, they are limited in terms of 
interpretability. Obvious progress in this research area in a direction of interpretability, have been made using data 
mining techniques, particularly decision trees. These data mining methods, improves the problem of interpretability 
and increases the prediction power of the model trees. First attempt to model diatom-environment relationship for 
Lake Prespa, have been made by [2,3]. Various settings were applied to the datasets and thus different models were 
obtained, which later have been discussed with the biological expert. Several of the model produced, knowledge 
about the newly discovered the diatom's relationships with the environment for the first time [3]. 

After successful modelling the Lake Prespa diatoms, new class of multi-target decision trees was used, in order to 
reveal the dynamic nature of the entire set of physical-chemical parameters of this lake ecosystem [4]. These 
methods were more precise and also have greater interpretability than the previous methods. Nevertheless, these 
methods were not robust on data change, because the structure of the algorithm implies that. This is important 
because the environmental condition inside of the lake changes over small periods of time. 

The robustness of data change and resistant to over-fitting of the fuzzy based concept is the main reason of 
extensive research on the fuzzy set based machine learning. Wang and Mendel [5] have presented an algorithm for 
generating fuzzy rules by learning from examples. Inspired by the classic decision tree induction by [6], there are 
substantial works on fuzzy decision trees. For example, [7] have proposed fuzzy decision trees induction using fuzzy 
entropy. [8] have presented different fuzzy decision tree inductions. [9,10] have presented optimizations of fuzzy 
decision trees. Most of the existing fuzzy rule induction methods including fuzzy decision trees [7] focus on 
searching for rules, which only use t-norm operators [11] such as the MIN and algebraic MIN. Research has been 
conducted to resolve this problem. [12] have proposed fuzzy signatures to model the complex structures of data 
points using different aggregation operators including MIN, MAX, and average, etc. [13] have investigated different 
aggregations in fuzzy signatures. [14] has presented evolutionary computation (EC) based multiple aggregator fuzzy 
decision trees. Recently, new method; pattern trees was introduced by [15], which satisfy the requirements stated 
above. The proposed method in this paper is very similar to the pattern trees method, but uses different membership 
functions and different similarity metrics.  

The main question is: why use aggregation trees (AT) in the process of diatom classification? They are several 
reasons for this, and this entire concept is proofed in this paper. First of all, the proposed method is robust to over 
fitting, which is not the case with the classical methods and decision trees. Secondly, they obtain a compact structure, 
which is essential in the process of representation of the knowledge gain from the biological data. This is vital 
because later, the rules produced from the tree can be easily evaluated easily by the biological expert. And third, 
these models can achieve high classification accuracy. One of the reasons, why this method is better compared with 
the previous ones, is the use of different fuzzy membership functions. 

The rest of the paper is organized as follows: Section II provides the definitions for similarity metrics and 
aggregation operators are presented. In Section III a novel evenly sigmoid membership functions are proposed. 
Section IV presents the diatom's abundance trophic state index classes, dataset description and the experimental 
setup. In section V present one prediction model for each TSI class in Lake Prespa. Section VI shows the prediction 
performance and experimental comparisons. Finally, Section VII concludes the paper and research direction is 
outlined. 
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2. Similarity metrics and fuzzy aggregation operators 

The aggregation tree method described in this section is induced by using different similarity measures and fuzzy 
aggregation operators. 

2.1. Similarity metrics 

Let assume that A and B are two fuzzy sets [8] which are defined on the universe of discourse U. The root mean 
square error (RMSE) of fuzzy sets A and B can be computed as: 

2
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n      (1) 
where xi, i = 1,…,n, are the crisp values discretized in the variable domain, and A(xi) and B=(xi) are the fuzzy 
membership values of xi for A and B. The RMSE based fuzzy set similarity can thus be defined as: 

( ; ) 1 ( ; )Sim A B RMSE A B      (2) 
The larger the value of Sim(A,B), the more similar A and B are. As A(xi), B(xi)  [0,1], 0  Sim(A;B)  1 holds 

according to (1) and (2). Note that the proposed method induction follows the same principle if alternative fuzzy set 
similarity definitions such as Jaccard are used [15]. In our experiments, we use only RMSE similarity metrics. 
Nevertheless other similarity metrics and membership functions are in focus for our further research. 

2.2. Fuzzy aggregation operators 

A fuzzy set operation is an operation in fuzzy sets. These operations are a generalization of crisp set operations. 
There are three sub-categories, namely t-norm, t-conorms, and averaging operators such as weighted averaging (WA) 
and ordered weighted averaging (OWA) [16]. In our experimental setup, we use the basic operators (Algebaric 
AND/OR) which operate on two fuzzy membership values a and b, where a, b  [0,1]. (See equations 3). No 
weighted approach is studied in this paper.  

MIN / MAX
T-Norm : Min{ , } =
T-Conorm : Max{ , }

a b a b
a b a b

      (3) 

Aggregation tree can be generated using different fuzzy aggregation operator sub-categories, which we plan to be 
a subject for our future research. 

2.3. Aggregation trees algorithm 

An aggregation tree is a tree which propagates fuzzy terms using different fuzzy aggregations, in this paper 
sigmoidal MF. Each aggregation tree represents a structure for an output class in the sense that how the fuzzy terms 
aggregate to predict such a class. 

The extension of the simple aggregation tree, the general aggregation tree's induction, considers aggregating not 
only fuzzy terms, but also other aggregation trees. Subject to the particular demands (comprehensibility or 
performance), simple aggregation trees and general aggregation trees provide a highly effective methodology for 
real world applications, in our case, extracting knowledge from diatoms dataset. In this paper, we induce simple and 
general aggregation trees, because we want to find more general knowledge that fits better for knowledge discovery 
of correct diatom-environment classification. To our knowledge this is for the first time, to use this classification 
algorithm for this purpose. 

3. Proposed membership function for diatoms classification 
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The straight line membership functions (triangular and trapezoidal) have the advantage of simplicity. They are 
simple, and in some case in the process of building aggregation trees gain relatively good precision power. Yet, 
many of the datasets, including the diatom-indicator relationship (see Fig. 1) have smoothed values and nonzero 
points. This conclusion applies to use more different membership functions for generate different fuzzy sets. Such 
functions are the Gaussian distribution curve: a simple Gaussian curve and signum membership function. 

 

 

Fig. 1. NROT diatom and pH relationship within the given diatom dataset under sigmoid distribution area. 

This relationship can be seen all over the diatom dataset between the biological aspect and the abiotic factors. For 
example, the relationship between the NROT diatom and the pH values in the diatom dataset can be covered with 
one of the several fuzzy sigmoid distributions were (a = -1) membership function for almost 99% of the data (see 
Fig. 1). It can be clearly seen that the red (doted) line covers (belong) the entire NROT (input fuzzy term) data 
within the given pH class (output class) range above 5 units. This is the main reason why we use the proposed fuzzy 
membership functions. We can make changes in order to fit more precisely into the given diatom range, the both 
proposed membership functions to increase the prediction power. All fuzzy sets have values from 0 to 1, because the 
A and B two fuzzy sets [8] are defined on the universe of discourse U [0, 1]. 

3.1. Evenly sigmoid distribution 

Because the relationship between the diatoms and the TSI classes in many cases has evenly distributed 
distribution, we have modified previous equation (4), so that interception between two sigmoid functions has equal 
area and fit to the property of the relationship. We also propose that the equation (4) to be modify, by taking only the 
mean values ( ) of the given data range into account. In this way, each fuzzy MF per attribute will fallow the 
increasing and decreasing of the diatom's abundance and reflect the very nature of the tested dataset. 

   *( )

1( ; ; ) , , 0
1 a x bf x a b a b

e
     (5) 

In equation 5, a and b parameters are positive constants. And finally when all this change is taken into account, 
the equation (5) mathematically represents the modified evenly sigmoid distributed membership function as: 

*( )

1( ; ; )
1 a xf x a

e
 ,     (6) 

where the parameter a will get two values {1 and -1}, which will be intensively studied in this paper. It is expected, 
that the evenly sigmoid distribution better fallow the diatom-indicator relationship. The result of the fuzzification 
process for the proposed membership function is presented with Table 1. 

Table 1. Fuzzy terms of the TOP10 diatoms after fuzzification 
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TOP10 Diatoms Fuzzy Term - BAD Fuzzy Term - 
WEAK 

Fuzzy Term – 
GOOD 

Fuzzy Term – 
VERY GOOD 

Fuzzy Term - 
EXCELLENT 

APED 0 3.25 6.5 9.75 13 

CJUR 0 6.75 13.5 20.25 27 

COCE 0 20.25 40.5 60.75 81 

CPLA 0 8.5 17 25.5 34 

CSCU 0 10.25 20.5 30.75 41 

DMAU 0 3 6 9 12 

NPRE 0 4.75 9.5 14.25 19 

NROT 0 6 12 18 24 

NSROT 0 5.75 11.5 17.25 23 

STPNN 0 5.25 10.5 15.75 21 
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4. Data description and experimental setup 

Lake Prespa is located at the border intersection of Macedonia, Albania and Greece (see Fig. 2). It covers an area 
of 301 km2 at 850 m above sea level. The whole region that surrounds the lake was recently proclaimed a 
transboundary park (Prespa Park). The Prespa Park is well known for its great biodiversity, natural beauty and 
populations of rare water birds. However, the ecological integrity of the region is threatened by the increasing 
exploitation of the natural resources (inappropriate water management, forest destruction leading to erosion, 
overgrazing), inappropriate land-use practices, ecologically unsound irrigation practices, water and soil 
contamination from uncontrolled use of pesticides, lake siltation and uncontrolled urban development.  

Monitoring of the state of Lake Prespa was performed during the EU project TRABOREMA. The measurements 
cover one and a half year period (from March 2005 to September 2006). Samples for analysis were taken from the 
surface water of the lake at 14 locations. The lake sampling locations are distributed in three countries (see Fig. 1) as 
follows: 8 in Macedonia, 3 in Albania and 3 in Greece. The selected sampling locations are representative for 
determining the eutrophication impact [17]. Through the lake measurements, a total of 218 water samples were 
collected. On these water samples, both physicochemical and biological analyses were performed.  

The following physicochemical properties of the water samples were measured: temperature, dissolved oxygen, 
Secchi depth, conductivity, alkalinity (pH), nitrogen compounds (NO2, NO3, NH4, inorganic nitrogen), sulphur 
oxide ions SO4, and Sodium (Na), Potassium (K), Magnesium (Mg), Copper (Cu), Manganese (Mn) and Zinc (Zn).  

The biological variables were the relative abundances of 116 different diatom taxa (for a complete list of diatom 
names and acronyms see [18]. Diatom cells were collected with a planktonic net or as attached growth on 
submerged objects (plants, rocks or sand and mud). This is the usual approach in studies for environmental 
monitoring and screening of diatom abundance. The sample, afterwards, is preserved and the cell content is cleaned. 
The sample is examined with a microscope, and the diatom taxa and abundance in the samples are obtained by 
counting 200 cells per sample. The specific taxon abundance is then given as the percent of the total diatom count 
per sampling site [18]. 

 

 

Fig. 2. Position of Lake Prespa (left) and the sampling locations (right). 

The datasets used in this paper, as experimental dataset consist from 12 input parameters representing the TOP10 
most abundant diatom taxa, with their abundance per sample, plus two trophic state indexes are according to 
concentration of Total Phosphorus and Secchi Disk. Nevertheless, any water quality or trophic state class could be 
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used as an input parameter defined by the need of the stake-holders and decision makers. The trophic stet index 
(eutrophication parameters) is calculated with Carlson's formula [19]. 

Table 2. Water Quality Classes for the Physical-chemical parameters 

Physical-chemical parameters Name of the WQC Parameter range 

Oligotrophic TP < 30 - 40 

Mesotrophic 40 – 50 

Eutrophic 50 – 70 

Trophic State Index – Total Phosphorus 
(TSI_TP) 

Hypereutrophic 70 - 100 

Oligotrophic SD >8m – 4m 

Mesotrophic 4m – 2m 

Eutrophic 2m - 0.5m 

Trophic State Index – Secchi Disk 
(TSI_SD) 

Hypereutrophic 0.5m – 0.25m 
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4.1. Experimental Setup 

We conducted three types of experiments, which are set up follows: 
1) A fuzzification method based the novel membership function presented in this paper for each input variable 

are used to transform the crisp values into fuzzy values and the same subset used as a train-train (Train);  
2) Two experiments are carried out. The first experiment (Exp2 – odd-even) is using odd; predecessor attributes 

counting from the first to the dataset, and even; follower attributes from the second attribute in the dataset as a test 
set. The second experiment (Exp3 – even-odd) is using even; counting from the first attribute in the dataset labeled 
data as training set an odd labeled data as a test set. This experimental setup is actually 2-fold cross validation 
analysis. (Train/Test) 

 3) Standard 10-fold cross validation is used for testing of the prediction performance accuracy of the algorithm 
with the classical classification algorithms (C4.5, kNN, SVM, NBTree, LADTree, etc.). (Test) 

For similarity definition, we use RMSE similarity and Alegbaric AND and OR for fuzzy aggregation metric. For 
evaluation purpose, we induce simple aggregation trees (SAT) and general aggregation trees (AT). The simple trees 
consist from 1 candidate tree, 0(zero) low levels and two different depths; 5-(SAT5) and 10-(SAT10). While general 
aggregation trees consist from 2 candidate tree, 3 low levels trees and two different depths; 5-(AT5) and 10-(AT10). 
In the section 5 general aggregation tree which consists from 2 candidate trees, 3 low level trees and depth = 3, are 
discussed, based on the highest similarity value for each TSI. 

5. Aggregation tree models for Lake Prespa 

Based on the performance results, in this section we give an interpretation of several model trees and their rules 
derived from them. We have built many classification model trees for each TSI class, but due to a large number of 
build trees (almost 60 different model trees) we present one model tree for some of the TSI classes. 

All the induced classification models have defined range of fuzzy terms, which later are commented. The number 
of MFs per attribute is m=5, according to Table 1. All the model trees were obtained using Experimental Setup 2 
(Train/Test). 

 

Fig. 3. Aggregation tree generated using proposed sigmoid (+1) MF for the mesotrophic class of the TSI_SD. 

The classification model represented as aggregation tree for mesotrophic class of the TSI_SD according to the 
model is in correlation with seven diatoms (see Fig. 3). Each condition branch of the tree contains a measure for 
similarity between the diatoms and the output class. The classification model shown in Fig. 3 can be converted into 
a rule which is stated with Rule1.  
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Rule1:  If TSI_SD class is mesotrophic THEN (Diploneis mauleri (DMAU) is Excellent Indicator AND 
Cyclotella juriljii (CJUR) is Excellent Indicator) OR Cyclotella ocellata COCE is Weak Indicator AND Navicula 
prespanense (NPRE) is Excellent Indicator. The rule has confidence of 61.76%. 

From Rule1, it can be easily noted that the DMAU, CJUR and NPRE are excellent indicators of mesotrophic 
waters according to the mode tree. The model recognizes the COCE diatom as a weak indicator, or this diatom 
hardly can be found in these waters. 
 

 

Figure 4. Aggregation tree generated using proposed sigmoid (-1) MF for the mesotrophic class of the TSI_SD. 
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Two more trees are presented in this section, one for the TSI_SD mesotrophic class with sigmoid (-1) MF and 
other one for TSI_TP – eutrophic class generated with sigmoid (-1) MF. The rule induced from the tree shown in 
Fig. 4 states: 

Rule2: If TSI_SD class is mesotrophic THEN (CJUR is Excellent Indicator OR Cocconeis placentula (CPLA) 
is Bad Indicator) OR Staurosirella pinnata (STPNN) is Bad Indicator OR Cavinula scutelloides (CSCU) is Good 
Indicator. The rule has confidence of 60.08%.  

This rule has a slight lower confidence factor than the Rule1. According to the classification model, CJUR is an 
excellent indicator of mesotrophic waters, which was conferred by the model tree given with Fig. 3. The model 
identifies the CSCU diatom as a good indicator of such waters. The rest of the four diatoms; STPNN and CPLA taxa 
cannot exist in such water, thus cannot be used as ecological indicators of mesotrophic waters. 

 

Fig. 5. Aggregation tree generated using proposed sigmoid (-1) MF for the eutrophic class of the TSI_TP.  

On Fig. 5 the last model for eutrophic TSI class is presented. This model was obtained using the proposed 
algorithm with sigmoid (-1) membership function. A simple rule is derived from the tree, stated below: 

Rule3: If TSI_TP class is eutrophic THEN ((CJUR is Bad Indicator OR STPNN is Good Indicator) OR 
(Amphora pediculus (APED) is Bad Indicator AND COCE is Good Indicator) AND CSCU is Excellent 
Indicator. The rule has confidence of 58.10%. The classification model identifies the COCE as a good indicator of 
eutrophic waters, while the CSCU diatom as an excellent indicator. Other diatoms such as CJUR, STPNN and 
APED diatoms are not eutrophic taxa according to the presented model. 

5.1. Verification of the model results 

Namely, out of the 10 top dominant diatoms in Lake Prespa, CJUR and NPRE are newly described taxa (diatom 
species) with no record for their ecological preferences in the literature. Also, DMAU, NROT and NSROT do not 
have any ecological reference in the literature. Based on this, the results from the models are the first known 
ecological reference for TSI classes. The ecological references are given according to latest diatom ecology 
publications [20] and databases (European Diatom Database - http://craticula.ncl.ac.uk/Eddi/jsp/index.jsp). Based on 
this, the APED is an eutrophic taxon tolerant to elevated N concentrations, CSCU is also eutrophic taxon-alkalibiont, 
CPLA is an eutrophic taxon with medium oxygen demand, COCE is a mesotrophic to eutrophic taxon, while 
STPNN is a hyper-eutrophic (oligo-eutrophic; indifferent) taxon frequently found on moist habitats [4,17,18,21]. 

If we compare the results from the classification models, we can make several remarks about the results from the 
models. According to the models, APED diatom is bad indicator of eutrophic waters, based on the TSI_TP, no other 
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relations have been found with the environment. The CSCU diatom is a good indicator of mesotrophic waters, and 
excellent indicator of eutrophic water. A CPLA diatom is not mesotrophic taxa, while COCE diatom is a good 
indicator of mesotrophic and eutrophic waters. This means that a COCE diatom is meso and eutrophic taxon, which 
is verified by the known ecological reference for this diatom. STPNN diatom according to the classification models 
presented with Fig. 5, it is a good indicator for eutrophic waters. It is important to notice that the classification 
models revealed that the CJUR diatom is an excellent indicator of mestrophic diatoms, but bad indicator of 
eutrophic indicator. DMAU and NPRE diatoms are also excellent indicators of mesotrophic waters. This statements 
should be tested with more models and data, before any conclusion is made for the newly discover taxa. 

According to the models, we have proven that using the proposed method it is possible to extract valuable 
knowledge from the dataset. We have added several ecological preferences of these TOP10 diatoms for some of the 
TSI classes. Although the prediction model should be further improved by prediction accuracy, the proposed method 
and ecological preference have been found to be relevant for such a task. The proposed method confirmed some of 
the diatoms ecological preference, some of them need more work, and for the unknown diatoms we have added 
some new ecological knowledge. 

Table 3. The average prediction accuracy (in %) per TSI for each fuzzy MF. 

TSI according  
Secchi Disk (TSI_SD) or 

total phosphorus 
concentration (TSI_TP) 

 Triangular Trapezoidal Gaussian Evenly Sigmoid 
(+1)  

Evenly Sigmoid 

(-1) 

TSI_SD Train 84.41 84.21 84.34 84.67 84.80 

TSI_SD Exp2 38.42 83.42 83.82 83.16 80.79 

TSI_SD Exp3 38.42 84.61 84.74 86.32 86.32 

TSI_TP Train 45.58 46.16 49.48 45.70 41.00 

TSI_TP Exp2 38.42 36.58 41.51 41.55 38.53 

TSI_TP Exp3 38.42 36.12 37.04 39.79 36.93 

 
 

6. Performance evaluation 

The proposed evenly sigmoid shaped MFs outperformed 2 of the 3 diatoms TSI classes compared with other MFs. 
In Table 3 we present the highest prediction accuracy of proposed method for extracting knowledge from diatom 
data over different combinations of training-test sets compared with the membership functions in [15]. The evenly 
distributed sigmoid (-1) membership function has obtained higher prediction accuracy than the other MF in train 
experiment and experiment 3. The evenly sigmoid (+1) and sigmoid (-1) MF vs. other MF in experiment 2 have 
achieved lower prediction accuracy for the TSI_SD. 

The evaluation performance's analysis in details for a different number of MF for the TSI_TP is given in Table 3. 
For experiments 2 and 3, the proposed method with evenly sigmoid membership function has achieved greater 
prediction accuracy. 

6.1. Comparison with crisp classifiers 

In order to improve the classification accuracy and maintaining the robustness of the data change which comes by 
using fuzzyfication of the input data, we use the aggregate trees to extract knowledge directly from the dataset. Most 
of the classic decision trees – classification algorithms, produce very strict interpretability of acquired knowledge 
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from the data. Also, these algorithms are not very robust on data change, which is not the case with the proposed 
method tree. 

The experimental results confirm these findings, by comparing the AT used for the diatom's dataset with other 
algorithms. The results are presented in Table 4. The results were obtained with a number of MF equal to 5. Using 
the different change of the parameter {1 and -1} we evaluate the performance compared with classical crisp 
classifiers for evenly distributed sigmoid membership function. The classification algorithm performance, were 
tested by building four variants of the proposed method. 

Table 4. 10-fold cross validation classification accuracy (in %) of crisp classification algorithms against proposed evenly distributed sigmoid 
function for L =2, M=3 and depth=3. 

TSI according  
Secchi Disk (TSI_SD) or  

total phosphorus concentration (TSI_TP) 

 C 4.5 kNN Bagging C4.5 REP Tree 

TSI_SD xVal-1 83.16 73.16 83.16 83.16 

  SAT5 SAT10 AT5 AT10 

TSI_SD Evenly sigmoid (+1) 83.60 83.60 83.07 83.07 

TSI_SD Evenly sigmoid (-1) 84.12 84.12 84.12 84.12

TSI_TP xVal-1 39.91 39.45 41.28 41.74 

  SAT5 SAT10 AT5 AT10 

TSI_TP Evenly sigmoid (+1) 39.68 39.72 38.72 41.08 

TSI_TP Evenly sigmoid (-1) 39.18 39.70 43.42 39.72 

 
Most of the cases we have 1% to 3% increase of prediction power, and the prediction accuracy of the aggregated 

trees increases for the both trophic state index classes. The proposed method has been proven to be excellent data 
mining technique for knowledge extraction for diatoms-indicator relationship with high classification accuracy. 

6.2. Over-fitting comparison with C4.5, KNN, SVM, Naive BayesNet, REPTRee, NB-Tree and LAD-Tree 

Over-fitting refers to the phenomena that a classifier may fit well to the training data but is not generalized 
enough to classify unseen data. The 10-fold cross validation based experiments fairly present the normal behavior of 
classifiers, but it does not reveal which classifiers are prone to over-fitting.  

In this section, the whole data (rather than the 10-fold cross validation data) are used to train and test all the 
classical classification algorithms and four variants of method using the same experimental setup. The results 
collectively are shown in Table 5.  

The classical classifiers (C4.5, kNN, SVM, NB, REPTree, NBTree, LADTree) obtained from the Weka machine 
learning toolkit [22] from a crisp classifier group. The default settings of each classifier in the toolkit are used. For 
example, the minimal number of instances per leaf is set to 2 for C4.5 and the number of neighbours to use is set to 
1 for KNN. In REP Trees number of Boosting Interaction are set to 15, while the LADTree the number of Boosting 
Interaction is set to 10. For each classifier, the root mean square error (RMSE) of the classification accuracy 
between the 10-fold cross-validation and whole data based is shown at the bottom of the table. 

Table 5. Whole data based classification accuracy (in %) of C4.5, kNN, SVM, NB, REPTRee, NBTree, LADTree and four variants of AT over 
six datasets. 
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Sigmoi
d 

(+1)/(-
1) 

 C4.5 kNN SVM NB REP Tree NB 

Tree 

LAD 
Tree 

SAT 5 SAT10 AT5 AT10 

(+1) TSI_S
D 

83.16 73.16 84.21 56.84 82.11 84.21 83.16 83.60 83.60 83.0
7 

83.07 

(+1) TSI_T
P 

39.91 39.45 40.37 28.90 41.74 33.49 41.74 36.08 35.58 37.4
0 

37.38 

(+1) RMSE 27.98 40.32 3.57 6.50 83.16 15.93 16.27 3.70 4.70 7.01 7.35 

(- 1) TSI_S
D 

83.16 73.16 84.21 56.84 82.11 84.21 83.16 84.12 84.12 83.0
7 

83.60 

(- 1) TSI_T
P 

39.91 39.45 40.37 28.90 41.74 33.49 41.74 39.13 38.70 40.0
4 

40.06 

(- 1) RMSE 27.98 40.32 3.57 6.50 83.16 15.93 16.27 2.82 2.80 1.19 4.45 

 
The RMSE reveals how much improvement one classifier can gain based on the whole data experiment 

comparing to the 10-fold cross validation one. It is assumed that the more gain for one classifier, the more likely that 
the classifier is prone to over-fitting. The results of this test revealed that SVM maintains the best generality 
compared with the classical approaches (with RMSE being 3.57) and four variants of aggregation trees perform 
slightly worse (with RMSE being 3.70, 4.70, 7.01 and 7.35 respectively for sigmoid (+1), while RMSE begins from 
1.19 to 4.45, gain much better performance for the sigmoid (-1) MF. Most important is the fact, that the four variants 
of aggregation trees have maintained the interpretability, which is the property of the C4.5 and also remain resistant 
to over-fitting, using sigmoid (-1) membership function. 

Other crisp classifiers perform worse than SVM and variants of proposed method, but better than C4.5. It is not 
surprising that KNN performs the worst as it is totally biased to the nearest neighbour in classification and makes no 
attempt to find a general model. Even complex aggregation trees do not suffer from over-fitting. 

7. Conclusion 

Classifying the lake ecosystem using diatoms, can be greatly improved with the proposed method, not just for 
Lake Prespa, but for any lake ecosystem. The current involvement of the information technology in solving Lake 
Prespa and its inflow rivers ecological problems through environmental management are low. Keeping this in mind, 
the proposed method in this paper, further improves the methods used for such environmental management and 
compared with the previous used have been several advantaged. Not just improving the interpretability of the gain 
models, to make easy interpretably for biological experts, but producing models, fast and more accurate results. 

The experiments on diatom dataset TSI dataset show that the two modified sigmoid MFs for aggregation trees 
outperformed previously used MFs in terms of prediction accuracy. This is very important for different types of 
datasets. In our case, the diatoms have very tight value range over the physical-chemical parameters, and if we want 
to define the abundance range of the diatoms, we have to increase the number of MFs per attribute. The mixed 
datasets odd-even and even-odd performed better, which means that the generalization of the proposed method is 
greater. 10-fold cross validation used to compare the performance of this algorithm with crisp algorithms, proof that 
we develop a membership function distribution which outperformed classical classification algorithms in terms of 
prediction power and maintained resistance of the over-fitting. 

More important is the interpretation of the proposed method, outperforms the classical statistical methods such as: 
PCA, CCA, DCA and other methods, used previously. The obtained models have clearly stated prediction in terms 
of finding correct diatom-indicator relationship. For example, model tree presented with Fig. 5 for eutrophic TSI_TP 
using proposed evenly sigmoid (-1) MF for the clearly states that the CSCU diatom can be an indicator of these 
waters. Nevertheless, many of the models produce rules that include relationship between several diatoms at once 
with the physical-chemical parameters. The experiments showed that machine learning tools can extract some 
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valuable knowledge in a relatively comprehensible form, even when the application area is so extremely complex 
also for humans and the data are far from being perfect. In order to produce a precise prediction model mainly 
depends from the selection of the relevant forecasting attributes, which is driven by training data. In case were we 
use method with fuzzy set theory, we have tried to decrease the chance of any incorrectness or irrelevance in the 
data can distort the results. 

From ecological point of view, it is very important that the proposed algorithm is resistant to data change, which 
in this case is true and we have also added several ecological references for the unknown diatoms. Data change is a 
property of any system due to the changeable environmental condition. We believe that studies like ours that 
combines the ecological, hydro-biological, together with information technologies, especially in the area of 
environmental informatics, are necessary to provide understanding of the physical, chemical and biological 
processes and their relationship to aquatic biota for predicting a certain effect. Using decision system support system 
with such implemented algorithms we can increase the chance to keep the ecosystem healthy and the organism 
survival at a high rate.  

Further research needs focus on developing more MF in a process of building aggregation trees is necessary. 
More similarity metrics may be more suitable for this diatom community dataset and can therefore, lead to higher 
accuracy. In future we plan to test more datasets with a greater number of input parameters and use of weighted 
approach on the classification problem of the diatom's community. 
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