ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263587209

Lab assessments in undergraduate course in Compilers for students with no
prior knowledge in assembly

Conference Paper - May 2014

DOI: 10.1109/MIPR0.2014.6859663

CITATIONS READS
0 277
4 authors:
Vesna Kirandziska Mile Jovanov
Ss. Cyril and Methodius University in Skopje \ ;ﬂ‘ Ss. Cyril and Methodius University in Skopje
28 PUBLICATIONS 120 CITATIONS 63 PUBLICATIONS 158 CITATIONS
SEE PROFILE SEE PROFILE
Marija Mihova Marjan Gusev
p Ss. Cyril and Methodius University in Skopje b Ss. Cyril and Methodius University in Skopje
66 PUBLICATIONS 164 CITATIONS 487 PUBLICATIONS 2,081 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Parallel Implementation of Random Walk Simulations with Different Movement Algorithms View project

Project ECGalert View project

All content following this page was uploaded by Marija Mihova on 07 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/263587209_Lab_assessments_in_undergraduate_course_in_Compilers_for_students_with_no_prior_knowledge_in_assembly?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/263587209_Lab_assessments_in_undergraduate_course_in_Compilers_for_students_with_no_prior_knowledge_in_assembly?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Parallel-Implementation-of-Random-Walk-Simulations-with-Different-Movement-Algorithms?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ECGalert?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesna-Kirandziska-2?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesna-Kirandziska-2?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vesna-Kirandziska-2?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mile-Jovanov?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mile-Jovanov?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mile-Jovanov?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Mihova?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Mihova?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Mihova?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Gusev?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Gusev?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Gusev?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marija-Mihova?enrichId=rgreq-a3200fcca8736f72fd80e5749fadb98b-XXX&enrichSource=Y292ZXJQYWdlOzI2MzU4NzIwOTtBUzoxNjEwMDUwOTUxMDQ1MTJAMTQxNTM5ODAxNDIwOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Lab assessments 1in undergraduate course 1n
Compilers for students with no prior knowledge in
assembly

Vesna Kirandziska, Mile Jovanov, Marija Mihova, Marjan Gusev
Faculty of Computer Science and Engineering
Ss. ”Cyril and Methodious University” in Skopje
{vesna.kirandziska, mile.jovanov, marija.mihova, marjan.gushev }@finki.ukim.mk

Abstract—Compilers is an important course in the curricula
of Computer Science Faculties. A problem that we have faced
while organizing the course at our institution was lack of prior
knowledge of some students in the area of assembly programming
and microprocessors. Due to the fact that the number of classes
for the course was limited, we were not able to teach the necessary
material on assembly programming. In this paper we present
our idea for the lab project to be done by students through the
course, that should enable them to grasp all necessary concepts in
Compilers without a need of assembly programming. The idea
was tested a few of years in a row, and most of the students
managed to finish the project, and achieved better results in the
final exams.

Index Terms—compilers, learning

I. INTRODUCTION AND RELATED APPROACHES

By definition, a compiler is a computer program by which a
high-level programming language is converted into low-level
programming language that can be acted upon by a computer.
Hence, for someone to be able to make a compiler, she needs
to know the high-level programming language, and also to
have a great understanding of the low-level language.

The course Compilers or similar courses named Compiler
construction, Compiler and interpreter, Compiler Practicum,
Programming languages and Translators are all in the com-
puter science program at many Universities. At our Faculty
of Computer Science and Engineering in Skopje this course is
elective course in the sixth semester, by the proposed program.
It is a compulsory course for students enrolled in some of the
modules like ’Computer science’ and ’Software engineering’.
Each year we have around 40-70 students enrolled in this
course. It is of a significant importance how this course is
taught to the students and whether they can achieve the course
goals.

There are different experiences worldwide. At the Uni-
versity of Virginia [1] a big accent in the curriculum is
given to code generation. The course project consists of two
programming assignment. The first is building a compiler
for COOL (the classroom object-oriented language which
is a high-level programming language) and the second is
optimizing it. COOL has the essential features of a realistic
programming language, but is small and simple enough so
that its compiler can be implemented in a few thousand lines

856

of code. The course Compilers [2] held at Stanford University
also uses the COOL language as an example for building parts
of a compiler through five different programming assignments.
Even more, an optional course project is to write a complete
compiler for COOL in C++ or Java.

Other universities use part of Java programming language as
the high level-language that has to be translated. For example,
at the University of Texas[3] as a student assignment, each
student writes a compiler for Pascal and code is generated
for a real processor and run on hardware. Beside heavy pro-
gramming skills, hardware knowledge is crucial for creating
a program written in a low-level language. One of the four
distinct assignments in the project at this university involves
code generation. A major part of the course held at the
University of Waterloo [4] consists of an implementation of
a compiler for a simplified Java-like language called Joos1W.
The course project represents 75% of the student grade.

At all mentioned universities the project assignment repre-
sents the great deal of the student evaluation. Building their
own compiler enables students to get more deeply involved in
the crucial parts of a compiler and it enables understanding it
better through all challenges that came up while working on
their programming assignment.

Other thing in common for all Compiler courses lectured at
different universities is that the compiler built usually trans-
lates in some version of an assembly programming language.
At Stanford [2] the MIPS (Microprocessor without Interlocked
Pipeline Stages) assembly is used, while at the University of
Waterloo[4] use the Netwide Assembler dialect that runs on
he Intel x86 architecture. So, for building a translator into
low-level language the knowledge of assembly language is
essential.

All programs for Compilers at other universities discussed
above require knowledge form Data Structures, Algorithms,
Programming, Microprocessors and Formal Languages.

At the Faculty of Computer Science and Engineering
in Skopje Structural and Object Oriented Programming are
courses taught in the first student year (by the proposed
schedule), Data structures, Algorithms and Formal Languages
are in the second student year, but the course Microprocessors
is an elective course in the third or forth student year. The

MIPRO 2014/CE

curriculum of Microprocessors includes assembly language
and programming 8086 microprocessor. As a result, usually
students enrolled in the Compiler course, had not been enrolled
on the course Microprocessors previously. This was a problem
that had to be considered.

In this paper we are going to present our solution on how
to teach students Compiler with no previous microprocessor
and more precisely assembly knowledge.

In the next sections our idea for organizing the Compilers
classes as well as the rules for student evaluation are presented.
Afterward, our approach for presenting code generation to
our students is explained in more details. Next, the results
taken from our four year experience in teaching Compilers
are presented. At the end a conclusion is given.

II. COURSE CURRICULUM

The topics of this course follows the book “Compiler Con-
struction: A Practical Approach” [5] and its main objectives
are students to get familiar with a compiler and also to learn
how a compiler is build. Here the Inger language is defined
and used as an example language for which the compiler is
built.

’Compilers’ weights 6 ECTS credits and is organized with
5 classes a week: 2 classes for lectures, 1 for auditorium exer-
cises and 2 for laboratory exercises. The lectures continuously
cover each part of a compiler construction. In the curriculum
of the Compiler course all parts of a compiler are considered
in details.

The language for which a compiler is made can be repre-
sented through syntax diagrams, Backus-Naur Form or Ex-
tended Backus-Naur form. These approaches for language
representation are contained in the first lectures.

Following these lectures lexical analysis is introduced to
students. The part of the compiler which perform lexical
analysis consists of a lexer implemented as a finite automaton
and a parser implemented as a push-down automaton. Beside
checking if one program is lexically correctly written, a
compiler could detect and report the type of error that is found
in a program and even where the error is found. This is also
included in the curriculum.

Next, the part of the compiler concerned with checking the
semantics of the programed code is presented. Between many
different kinds of semantic errors that can be found, most of
them involve variables or symbol names. A symbol table is
usually used as a tool in semantic analysis and is included in
the course.

The last part of the lectures is about the code generation
module of a compiler. This is actually what we are concerned
about in this paper. The classes dedicated to this part of the
compiler are given in two lectures. The dedicated time does
not allow the professor to teach about this part of a compiler,
and additionally to show the basics of an assembly language
since our students usually do not have any background knowl-
edge in microprocessors. Consequently, we used our approach
presented in this paper to teach students about this part of a
compiler.

MIPRO 2014/CE

While during the lectures we cover the topics and we use
auditorium exercises for more practical examples, at the labo-
ratory exercises students work on the practical lab assignments
given. In the next subsection the student evaluation for this
course is presented.

A. Students’ grading

Students are graded by the midterm exam(20%), final exam
(25%), homework(15%) and by the grade for the final project
assignment (40%). Exams cover the theoretical knowledge in
the Compiler construction. Homework is different in different
years, and for 2 years we have included an original on-line
collaborative activity named “Ontology” also developed at our
insitution [6].

Here we present the work on the project which was con-
structing a compiler. The whole project consists of several
separated tasks:

o Task 1: Make a syntax diagram for the language A

o Task 2: Program a lexical analyzer (lexer) for the pro-

gramming language A
o Task 3: Program a parser for the programming language

A

o Task 4: Make a complete syntax analyzer with error
detection

o Task 5: Make a complete semantics analyzer with error
detection

e Task 6: Generate code in language B from the program
in language A

e Task 7: Test the compiler

Divided in teams with 3-5 students in each group, students
should do the assigned tasks needed to do the final project.
Their involvement in the project should be on weekly basis,
by upgrading the compiler with the newly learned module
introduced on the lectures. The laboratory exercises are con-
sultation exercises in which students ask question about their
project and advance to its construction on regular bases.

Working in teams allows some students to work more then
others and be more involved in the project, while others
can be not involved at all. This arises the problem of how
to grade students. One solution was giving the students a
chance to grade by them selves their activity in the project.
After grading the project itself, the students should all get
the appropriate part of the points based on their involvement.
Another approach is the teacher to grade each student in the
group from an oral presentation about his/hers involvement in
the project. Both approaches were used in the Compiler course
in different years.

Because different students have different possibilities, back-
ground knowledge and ambitions, several variations of the
final project were given. The hardest project scored 100 points,
while the easiest one 65 points. In this way the projects
ware leveled to the student knowledge. Students were given
a possibility to choose the project level they think that suits
them. Afterward, teams were formed out of the survey results.

In the next section the project assignment is defined in more
details.

857

Q

Q
THE COMPILER

program
inA

program
inB

Programming
language A

Programming
language B

idea
Macedonian
language

High-level programming
language

Language
A

Low-level programming
language

Fig. 1. A schematic view of languages A and B

B. Project Assignment

The project was stated as follows: Make a compiler for
one given programming language A and translate it to another
assembly-like programming language B.

The languages A an B are new languages that were intro-
duced in our course. They are created just for this specific
purpose. In all years the course was held, new (similar
but different) languages A and B were introduced. On 1
a schematic view of these languages compared to existing
programming languages is shown. As shown on the figure the
programming language A is based on the procedural high-
level programming languages like C, Basic or Pascal. A is
not an object-oriented language. It includes the three most
basic statements and other basic features. The key words in
the language A are written in Macedonian language and so it
differs form all other languages.

The inspiration for this language comes from turtle-based
programming languages used for beginners in programming
languages. Indeed, the elementary statements of the languages
are actually commands for the movement of the specific turtle-
object like a frog, robot, bird and so on. We have used all
these objects in our course. The interesting content of the
language and its statements made the project more interesting
to students. As an example, a robot’s program should move
him in a specified environment and it must be careful not
to hit the walls. Another example is a frog’s program. This
program should enable a frog to jump form one field to another
considering water in the sense it should not step on it. Using
these languages as introductory languages for young students
that show interest in informatics, gives great results and we
have included them in the strategy for education in informatics
in our country [7].

As stated, these programs should be executed in a specific
environment. A language for environment definition was used
to define the environment. But, program execution is not in
the scope of the course Compilers because here an interpreter
of the language is needed.

The programming language B as explained on Fig. 1 is

858

a5 Robo world

[E=1 EEE =5

Enviroment Robol Program Help

npoueaypa om_x_dexopw (Bpoj x)
MOYETOK
nosTopyBaj ¥ Mam:

!

Okonmna (5,5} ~
Swoosu

MoueTok =
1-5 0 !
23 o
1-5 !
15 kpaj
15 - |npouenypa {)

noueToK
‘ 0_x_ueropu (4)

cepmlecHo
om_x_uexopu(2)
Crapr &-O-~ 0 @ _["

Result from compile

Fig. 2. A shell application for the compiler

based on assembly, but has only the most basic statements
needed for the translation to be possible. All hardware knowl-
edge for the execution of a program written in this language
is excluded.

In the rest of the paper we are going to explain in details
only one of the project assignments (given in 2009). The
language A defined was called RoboL (extension - rl) and
was specialized for moving a robot in its environment. For the
project assignment the students were given a shell application.
It is shown on Fig. 2. This is just the interface of the
compiler students should do. In this application a compiler
for the language should be build in. The application is build
in Microsoft Visual Studio. In the lower left corner a picture
for the robot environment is given. Bold lines represent walls.
On the right side a program written in RoboL is shown and on
the left side a program for environment definition is given. The
menu of this application should be implemented by students.

In the example project RoboL was translated into RIMAL
(Robo Imaginary Meta Assembly Language). More about
these languages will be explained in the next sections. The
result from the compilation is the program translated in the
RIMAL language (extension - rml) if the program is correct.
But if the program is not correct, students should output
messages for all errors found in the program code. These
messages should be displayed in the lower right part of the
application window.

III. THE LANGUAGES FOR THE PROJECT
Next, the languages used for building a compiler are intro-
duced.
A. The high-level language

RoboL poses the three simple, hierarchical program flow
structures: sequence, selection, and repetition. There are 3
basic statements which are direct commands for the robot
movement: go straight (one step), turn left or turn right.

MIPRO 2014/CE

npoyeaypa ()
NOYeTOoK
npomMeHnnea k.6op

=4 cepTnfecHo
6n=0 noeTopysaj Ao (6p==0): l | 1
P | S
aKo o3Haka
| o o
E aKo o3Haka |
| 6p=1 | s|-@
NOBTOPYBAj K NaTH: . Op=6p-1 2
| !
o 1
oau ! . —#
aKko osHaka kpaj
!
Bp=6p+1
!
1 example.rl
Fig. 3. An example program in RoboL and an environment in which it

should be executed

Selection structure is realized trough the if-like statements.
While-like repetition is not implemented, but a variant of do-
while statements and for-statements is present in the language.
There are five different variants of repetition (loop) statements.

In the language only integer and a kind of character types
can be declared. The character variables are specific variables
that can be considered as an enumeration. Indeed, these
variables contain information about the direction of the robot
position that can be South-S, North-N, West-W and East-E.
As a result, arithmetic operators have no meaning with these
character variables. Integer variables can be only positive.
Arithmetic operators for addition, subtraction and multiplica-
tion can be used with integer variables and constant values.
For logical expressions relational operators for comparison
are used. These can be used as conditions in selection and
repetition statements.

Other conditions used in these statements address the en-
vironment in which the robot is. The robot environment has
walls (red lines) and marks (blue lines). In each moment a
robot is in one point that is an intersection of one vertical
and one horizontal line. Also the robot heads in one of the
four directions (S,N,W,E). Considering this, other conditions
implemented in the language are based on:

o Wall: If the robot is exactly in front of a wall the
expression will be true
o Mark: If the robot is on a mark the expression will be
true.
o Some direction (S,N,W or E): If the robot is pointed in
the stated direction the expression will be true
RoboL supports the concept for procedures. Functions and
return statements are not supported.
The definition of the language was given to the students
with a written tutorial. Example programs in this language
were also available.

B. The low-level language

As stated in the Introduction, because our students in
general have no knowledge in assembly as low-level language
we made an artificial language RIMAL simulating a real
assembly.

MIPRO 2014/CE

Robo Imaginary Meta Assembly Language (RIMAL) is a
simulation of a simple assembly. The idea of this language is
not to be used for program execution but to be used for educat-
ing students. The code written in this assembly-like language
can not be executed by some hardware. This language has the
most basic features of an assembly. Indeed, the language has
similar instructions as the assembly language. But, some of
the instructions are omitted from this language and some are
added to it. The final product of student project beside giving
error messages for the syntax and semantic errors, is the code
generated in RIMAL. By making this code students learn and
practice how code generation is implemented in a compiler.

As in assembly 8086, in RIMAL registers, variables and
stack can be used for storing data. Because in the high-level
language RoboL arrays are not implemented other memory
are not used in RIMAL. 3 registers can be used:

o regN - for storing integer data

o regD - for storing character data

« regC - for constant values

As shown, all registers have a specific usage and should
be used for the appropriate data. Note, that although logically
there are registers in the language, there are no actual registers.
Other important similarity to assembly language is the usage of
labels to label code lines. In RIMAL also, any string different
then the key words can be labels. After the label : (colon)
should be written.

Instruction type Instructions | Assembly
Move instructions move modified
Arithmetic instructions inc v
add
sub
mul
Function instructions call, ret X
Comparator instructions cmp v
Robot movement instructions | 1l (go left) X
rr (go right)
20 (g0)
Jump instructions je, jne v
jl, jle
jm, jme
Stack instructions push, pop modified
TABLE I

RIMAL INSTRUCTION SET

In Table I the instruction set of the newly defined language
is represented. For each instruction type the instructions are
given. Also, a comparison with the assembly language is
roughly given. For example, move instructions which are used
for coping data from one location to another is modified
with respect to the mov instruction in assembly. Beside the
instruction name, the operands can only be: variables and
registers. Similarly, the stack instructions are modified so that
the instruction *push’ pushes the value in the register regN on
the stack.

Arithmetic, comparison and jump instructions are similar
with the instructions in assembly language. There is a differ-
ence only in the operand values in these instructions.

859

odi_do_x_oznaki: move regh,D
data x start:

mov regN,x 8o

start: cmp reC,SM
go jne next
cmpreC,5M push

jne next move regN, br
sub regh, 1 add regh, 1
next: move br, reg
cmpregN,0 pop

jne next:

ret cmp reghl, k
main: jne

data k r

data br call

move k, 4 odi_do_x oznaki(br)
move br, 0 ret
cmpreC,5M

jne next

move br, 1

next:

Fig. 4. An example program translated in RIMAL

Call instructions are different then in assembly language.
The call instruction has one operand which is the label
where the function is written in the code. But in assembly
the operand is the address where the first instruction in the
function is written. When calling a function in assembly the
IP (Instruction pointer) register is pushed on the stack and the
address of the new instruction is put in the IP. But, here the
knowledge for the instruction pointer and also the instruction
stack is omitted. In in RIMAL the function definition ends with
the key word ret. After the code in the function is executed
the program continues after the function call. This approach
allows does not allow recursion functions.

The RIMAL language is enriched with three robot move-
ment instructions. Because in the RoboL language there are
instructions for moving the robot straight ahead, left or right by
one step, RIMAL also has some version of these instructions.
These are the instructions go, left and right, accordingly.

As a conclusion RIMAL has a very similar syntax with
assembly. The valuable feature of RIMAL is that students are
not concerned with the semantic of its instructions and their
execution. This help students to see this language just like
another (non high-level) programming language. Computer
hardware on which the low-level language should be executed
is not known. This makes the problem of understanding the
language easier, but also gives students a little sense of what
an assembly language looks like.

In Fig. 4 an example code translated in RIMAL is given.

IV. RESULTS FROM THE LAB PROJECT ASSIGNMENT IN
THE COMPILER COURSE

With the laboratory project given, successful student project
included more then 5000 lines of programming code for build-
ing a compiler. By doing the project students went through the

860

100.00%

90.00% -

B0.00%

70.00% -

60.00% -
50.00% - B Completed project (%)
4000% B Completed exam (%)
30.00% -
20000%

10.00%

0.00% -

2009

2010 2011 2012 2013

Fig. 5. The percentage of students with completed projects compared to the
percentage of students with completed exam

whole process of making a compiler by which they practically
learned what a compiler is and how does it work.

Students worked in groups with 2-5 students in each group.
In the laboratory exercises all team members could consult
with their lab demonstrator or teacher about the project. In
each exercise students were given a specific task towards
creating the compiler which was the end objective in their
project. As a result the compiler was built step-by-step on
weekly bases. Each class students were given a chance to ask
some questions about the task from the previous week. This
approach gave students many opportunities to learn more about
their project and to improve on their teamwork skills.

Also this approach yield great results in completion of
the student projects. On Fig. 5 a graph for the percentage
of students that completed the project is given. The results
presented are since 2009 until today. Only around 10% of the
students do not complete the project at the end every year. In
2010 only 4% of the students did not make a compiler enough
for passing the exam. Even more in 2012 15 out of 17 given
projects, which is more then 88%, were completed.

The percentage of completed projects is a promising result.
There may be several reasons and some of them are given
here.

First, working in groups is a challenging, but motivating task
in which students make a great effort to do the assignments
given. Groups may have different profiles of students and due
to their difference they could not only get better results, but
also learn from their teammates.

Another explanation is that students choose their project
from more project variants with different difficulty levels.
Because students are usually aware of their skills, knowledge
and ambitions they choose a project with appropriate difficulty
and in most cases manage to complete the project. As a
result, suitable projects are available for each student. The
most difficult project that can be chosen includes visualization
module with which a program in RoboL is interpreted. This is
the most interesting project for students, and each year more
and more students are interested in taking the most difficult,

MIPRO 2014/CE

100%

90%

B0%

70%

60% -

50% - M Avarage project (%)

40% M Average exam|%)
30% -
20%

10%

0% -
2009

2010

2011 2012 2013

Fig. 6. Comparison of student project assignment and student exam
percentage in 2009-2013

but most interesting project.

The last explanation for the high percentage of project
completion is due to the organization of the laboratory ex-
ercise. Step-by-step tasks given to students enable students to
complete most part of the projects during the classes. The help
from demonstrators on the laboratory exercises also improves
the project accomplishment result.

In Fig. 5 the percentage of students that completed their
project is compared to the percentage of students that have
completed or passed the exam. Because the project covers all
the material from the lectures it is expected that the project
would improve the percentage of students who completed the
exam. Every year, more than 50%, and up to 70% of the
students were able to pass the exam.

In all years from 2009 to 2013 the percentage of students
that completed the project is higher then those who completed
the exam. This is expected because the project assignment is
much more attractive and interesting because of, among other
previously stated features of the project, teamwork included.

The project in general helps students learn the course
material and pass the exam. Indeed, through students activity
in the project, students are stimulated to learn the theoretical
part of the exam, even though it is hard and rather “boring”
for most students.

The final course grade depends on the project assignment
grade as well as from the final exam. Fig. 6 shows that students
got higher results on the project then on the exam. The exam
validates student’s theoretical knowledge for compilers, while
the project checks the practical understandings of compil-
ers and its implementation in some programming language.
Students could choose from Java and C++ as programming
languages for implementation.

The average project grade given in percentage in the last
2013 was something above 60%. Best results are noticed in
2010 where the average student score was around 80%. The
average exam grade in 2010 was little below 40%.

The difference between the the project and exam grade (%)
is notable decreasing from 2011 until today. In the future more
close average grades for the project and exam are expected.

MIPRO 2014/CE

Students should be motivated to work more on the project.
One possibility is to assign roles for each student. Also, a
group manager could be assigned. The manager should give
an evaluation for the effort and activities of each student in
his/hers group. The fact stated that working on the project
helps students learn the theoretical material is our assurance
for future improvement.

The last accomplishment of our approach presented here is
that most part of the students managed to learn the RIMAL
language without previous knowledge of microprocessors.
Truly, completing a project means that students also did the
code generator part of the compiler where RIMAL language
was used for translation. Even though they did not have any
knowledge in assembly, they could understand this language
and use it in the project.

V. CONCLUSION

In this paper we discussed the organization of the course
Compilers at our Faculty of Computer Science and Engineer-
ing. We presented our original method of teaching compiler
production trough a practical project in the conditions where
students does not necessary have prior knowledge of an
assembly language and in the field of microprocessors.

The presented results from 5 years teaching the course
confirm that this approach is efficient, and it can be used
by others when similar conditions occur. This was the main
intention of the authors when writing the paper. We plan to
continue our work in the following years, making adjustments
with every following generation of students.

ACKNOWLEDGEMENT

The research presented in this paper is partly supported by
the Faculty of Computer Science and Engineering in Skopje.

REFERENCES

[1] “The university of virginia engineering: Compilers practicum,” 2014.
[Online]. Available: http://www.cs.virginia.edu/

[2] A. Aiken, “Compilers,” 2014. [Online]. Available: https://www.coursera.
org/course/compilers

[3] G. S. NovakJr., “Compiler construction,” 2014. [Online]. Available:
http://www.cs.utexas.edu/~novak/cs375.html

[4] “University of waterloo: Compilers,” 2014. [Online]. Available: http:
/luwaterloo.ca/

[5] F. Benders, J.-W. Haaringm, T. Janssen, D. Meert, and A. van Oostenrijk,
Compiler Construction: A Practical Approach, 2003.

[6] M. Jovanov, M. Gusev, and D. Martinovikj, “A new model of on-line
collaborative activity for building ontology in e-learning,” in Proc. of the
IEEE Region 8 Conference EUROCON 2013), 2013, pp. 25-31.

[7] M. Jovanov, B. Kostadinov, E. Stankov, M. Mihova, and M. Gusev,
“State competitions in informatics and the supporting online learning
and contest management system with collaboration and personalization
features mendo.” Olympiads in Informatics, vol. 7, 2013.

861

https://www.researchgate.net/publication/263587209

