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Abstract: Nodes positioning has recently been of great interest in wireless networks owing to its
crucial role in many applications. In wireless sensor networks (WSNs), the task of localising sensor
nodes with unknown position is important for efficient network configuration and operation. This
challenge has stimulated research of various localisation algorithms. In this paper we propose robust
localisation algorithm for large scale three-dimensional (3D) WSNs based on multidimensional
scaling (MDS). Our approach has two main improvements over classical MDS algorithm. Firstly, it
uses heuristic approach for distance matrix calculation, and secondly, it applies Levenberg-Marquardt
(LM) method for absolute map refinement using received signal strength (RSS) measurements.
Furthermore, the performance of the proposed approach is compared to other 3D WSN localisation
techniques and it is shown that the proposed approach outperforms other techniques for 3D
localisation.
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1 Introduction

The advancement of wireless communication technologies
and micro-electro mechanical systems (MEMS) has fostered
the development of multi-functional and low-power wireless

sensor nodes, that are capable of data collection, information
processing and wireless communication. Wireless sensor
network (WSN) is a collection of these low-cost randomly
placed heterogeneous wireless sensor nodes that are
programmed to perform a specific task (Akyildiz et al., 2002).

Copyright © 20xx Inderscience Enterprises Ltd.
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WSN are generally self organising networks, where large
number of wireless sensor nodes are deployed. The purpose of
WSN is to collect and process the data from the sensor nodes
to obtain useful information.

WSNs bridge up the gap between the physical world and
the digital world, as they are widely used in many applications.
Together with the wireless technology expansion, new and
interesting problems are arising for WSNs. The typical
examples are ‘internet of things’ (IoT) and e-health with
wireless body area networks IEEE 802.15.6 (Bari et al.,
2013; Shabana et al., 2015). Some other common application
scenarios of WSNs include industrial, medical, household,
marine, military and environmental monitoring.

The fundamental problem for all of the above mentioned
WSN applications is that the collected information is useless
without knowing the accurate nodes locations. Therefore,
localisation of the nodes is one of the main concerns in
WSNs. Location in WSNs generally refers to determine the
geographical coordinates of every sensor node in the network
(Pal, 2010). One way to solve localisation problem is to equip
every sensor node with global positioning system (GPS), but
this is a costly solution. Although, GPS works well for outdoor
environment, it is useless for indoor localisation since GPS
signals are very weak (Bulusu et al., 2000). Therefore, efficient
and optimised localisation techniques needs to be developed
for WSNs for harsh and indoor environments.

Localisation of an unknown node is achieved using
distance or angle calculations between the nodes. The most
exploited ranging techniques are: received signal strength
(RSS), time of arrival (ToA), time difference of arrival (TDoA)
and angle of arrival (AOA). In RSS measurements, the distance
between two nodes is estimated from the received power
at receiving node (Youssef and Youssef, 2007). Generally,
propagation loss is computed and is converted into distance.
As the distance between two nodes increases, the received
power is getting weaker and vice versa. RSS technique is a very
cheap solution for ranging because it does not require any extra
hardware. However, its performance is not good comparing to
other ranging techniques owing to multipath, shadowing and
fading (Wang and Yang, 2011). In Elnahrawy et al. (2004), the
authors propose extra hardware to overcome these limitations
in RSS measurements. ToA measurement considers speed,
wavelength and time of radio signal traveling between the
unknown node and anchor node. ToA measurements are much
more accurate compared to RSS, but need extra hardware
to calculate the ToA of the radio signal. TDoA technique
considers the time difference between two different kind of
signals arriving at the received node. For TDoA approach, the
nodes need to be equipped with two kinds of extra devices
(Hara et al., 2013) which can detect both kind of signals.
Unknown node calculates the time difference between the two
different signals and computes the distance information from
it. Finally, the AoA ranging measurements are based on the
angle of reception at receiver node. Generally, AoA technique
provides very accurate localisation (Wang et al., 2014) but its
cost is much more higher than RSS. In this paper we consider
low-cost RSS based ranging measurements because the sensor
nodes are very low powered devices and equipping the nodes
with extra hardware reduces the lifetime of the sensor nodes.

In this paper, we propose a novel 3D WSN localisation
algorithm based on multidimensional scaling (MDS). Our
algorithm uses classical MDS approach with two main
improvements. First, for distance calculation between the non-
neighbouring nodes, instead of using Dijkstra algorithm, we
used the heuristic approach presented in Stojkoska (2014),
as it was shown that this technique better approximates
the actual distances (Stojkoska, 2014). Second, for local
map construction, we use a refinement phase based on
Levenberg-Marquardt (LM) optimisation technique, which
produces more accurate positioning (Saeed and Nam, 2014).
Our approach actually combines two previous algorithms
(Stojkoska, 2014; Saeed and Nam, 2014) and the achieved
accuracy outperforms both. Henceforth, the acronym MHL-M
will be used for our MDS algorithm with Heuristic approach
and LM refinement. The proposed MHL-M algorithm is more
robust in presence of independent and identically distributed
(i.i.d) zero mean Gaussian noise.

The rest of the paper is organised as follows. Section 2
reviews literature related to 3D WSN localisation techniques.
In Section 3, MDS is briefly discussed with its theoretical
background. Section 4 explains in details our novel algorithm.
Results from the performed simulations are presented in
Section 5. Finally, Section 6 concludes the proposed work.

2 Related work

Indoor and outdoor localisation are becoming increasingly
important for many applications, especially within the last
few years. Although this topic has been interesting for the
research community more than a decade, it is becoming
even more attractive. The main reason for this is that the
concepts of WSN are becoming universally accepted concepts
in mobile computing. In the beginning, WSNs were designed
for a specific applications requirement. Today, when almost
everyone has a smartphone, the mobile networks and IoT can
be considered as a natural extension of WSN. As the range
of mobile applications is becoming endless, the challenges
associated with WSN are being reinvented with additional
requirements. In the case of nodes localisation, the accuracy
of the estimated position is still in the focus.

The most straightforward method for localisation is
trilateration (or triangulation), which is used by the GPS
satellites. The first algorithms for WSN localisation were
based on these techniques (Niculescu and Nath, 2001).
However, in cases where the density of the anchor nodes
is limited to only a small portion of all nodes, the indirect
lateration is necessity. Namely, each node, to obtain its
own position, uses its already localised neighbouring nodes
as anchors. After this, the node itself would become a
new anchor. This process produces huge cumulative error,
thus, these algorithms provide very poor accuracy. Although
these methods are almost being abandoned, the principle of
lateration is still being used even in the newer approaches,
usually for the refinement phase.

The era of MDS algorithms stared after 2003 and 2004
(Shang et al., 2003, 2004). The first algorithm was named
MDS-MAP (Shang et al., 2003). This is a centralised
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approach, where all distance measurements between the nodes
are collected at the central station (sink node) and using
MDS are being converted into two-dimensional array. Today,
there are dozens of algorithms in the literature based on
MDS that tend to increase the accuracy of MDS-MAP. Most
of them are distributed versions, where part of the job is
performed inside the network by more powerful nodes. One of
the first cluster based approaches was presented in Stojkoska
et al. (2008). In this cluster-based MDS algorithm (CB-
MDS), the network is initially divided into clusters, where
one member of the cluster is usually with unlimited resources.
For example, it can be a node equipped with more powerful
microcontroller and connected to steady power supply. This
node is known as cluster-head and is responsible to collect
the measurements from the members of its own cluster.
After performing the localisation, cluster-heads distribute this
information to the sink node. Since cluster-heads provide
only local maps, an iterative process of map merging is
performed at the sink node to obtain global, or absolute map
of the WSN. Approaches based on hierarchical networks are
especially suitable for irregular topologies, where centralised
MDS approaches produce very large localisation error. The
authors of Stojkoska et al. (2008) evaluated the performances
of CB-MDS for irregular topologies (C-shape, L-shape, etc.)
and have shown that this approach outperforms MDS-MAP
in terms of accuracy. Other approaches focus to extend MDS-
MAP with one more step, which performs refinement of the
process of coordinate alignment. In Saeed and Nam (2014),
the authors use iterative refinement algorithm based on LM
method and prove fast convergence of the algorithm.

Optimisation techniques are also used for WSN
localisation (simulated annealling (Kannan et al., 2006),
particle swarm optimisation (Monica, and Ferrari, 2013),
semidefinite programming (Stojkoska et al., 2010), etc.), as
well as machine learning approaches (support vector machines
(Yong et al., 2012), neural networks (Rahman et al., 2009),
etc).

What is common for the above-mentioned algorithms
is that most of them were implemented, simulated and
investigated exclusively for two-dimensional networks. In the
last few years, the new applications impose a demand for
three-dimensional localisation. Thus, there was an evident
need for development of new algorithms dedicated for three-
dimensional environments. Many of the researchers propose
modifications of the existing well known algorithms for 2D
WSN. However, simple extension of 2D algorithms is not
always feasible owing to some specific characteristics of the
3D environments. Generally, the 3D WSN algorithms can be
divided into two main categories:

1 Node self-localisation approach, where each node
performs set of measurements to obtain its own
position. Nodes usually use at least 4 anchors that have
stronger radio signal. Anchor nodes can be either
stationary or mobile nodes (e.g., airplane). These
approaches fit the distributed paradigm.

2 Source (Sink) localisation approach, where all
measurements between the nodes are collected at a

central point where further computation is done. These
approaches can be either centralised or distributed (e.g.,
in hierarchical networks).

Variations of MDS based algorithms for 3D WSN exist. In
Stojkoska (2014) and Chaurasiya et al. (2014), the authors
use novel approach for distance calculation between the
non-neighbouring nodes, instead of using Dijkstra algorithm.
In both approaches, the distance is achieved through more
complex geometrical relationships. In Stojkoska (2014),
the non-neighbouring distance represents an average of
possible distances, while in Chaurasiya et al. (2014) it is
obtained on more accurate iterative way, which, on the
other side, imposes greater computational overhead compared
with Stojkoska (2014). The results of both algorithms
prove improvement over traditional MDS-MAP algorithm.
These are centralised, source localisation algorithms. Mobile
beacon-based localisation using classical MDS is proposed
in Kim et al. (2010). This is a self-localisation approach.
The mobile beacon flying over the 3D terrain broadcasts
messages that are further used by each node in the network
to obtain range measurements. These measurements are
used to construct distance matrix for MDS algorithm.
The CB-MDS algorithm (Stojkoska et al., 2008) has been
modified for 3D networks and named D3D-MDS (Fan et al.,
2015). The simulation analysis of the D3D-MDS algorithm
shows increased localisation accuracy compared with 3D-
DV-HOP and 38.6% compared with 3D-MDS-MAP. The
authors propose their own clustering algorithm which strongly
depends on the position of the anchors. The main assumption
in Fan et al. (2015) is that the anchors are placed on the network
edges, which is hardly true in real WSNs.

3 Description of 3D MDS

Multidimensional scaling (MDS) represents a set of analytical
techniques (Cox and Cox, 1994). For a given set of
multidimensional objects, MDS reduces the dimensionality
of each object. MDS takes as input the distances between
each pair of objects in the set (usually calculated as Euclidean
distances). The aim of MDS is to present data in a visual
(two or three dimensional) form that is more explicable.
MDS has been used for many years in different disciplines,
like scientific visualisation and data mining in fields such
as cognitive science, information science, statistics, psycho-
physics, psychometry, marketing and ecology.

The analogy between object distances and node distances
in a network is used for the purpose of WSN localisation.
MDS algorithm can use inter node distances to produce
two or three dimensional representation, which corresponds
to the real nodes deployment. Since nodes are capable
to measure the inter node distances with respect to their
neighbouring nodes, the only problem remains obtaining the
non-neighbouring inter node distances. In MDS-MAP, these
distances are approximated with the distances calculated by
Dijkstra algorithm.

Distance measurements between each pair of neighbouring
nodes are being collected at the central station (sink). The
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remaining (non-neighbouring) distances would be calculated
by the sink. Thus, MDS can be classified as centralised, range-
based localisation algorithm. The well known MDS-MAP for
3D WSN consists of three steps:

1 Calculate shortest distances between every pair of nodes
(using either Dijkstra or Floyd all pairs shortest path
algorithm). This is the distance matrix that serves as an
input to the MDS in step 2.

2 Apply classical MDS to the distance matrix. Use the
first 3 largest eigenvalues and eigenvectors to construct
a relative map with relative location for each node.

3 Transform the relative map into absolute map using
sufficient number of anchor nodes (at least 4). This
process usually includes translation, rotation and
reflection. This transformation is also known as
Euclidean or Rigid transformation, because it preserves
the shape and the size. There are many algorithms
proposed in the literature that compute a rigid 3D
transformation. Among them, the singular value
decomposition (SVD) is the most stable (Lorusso et al.,
1995). Detailed mathematical description of each step
can be found in Stojkoska (2014).

3.1 Time complexity of MDS-MAP for 3D-WSN

In step 1, distance matrix construction using Dijkstra’s or
Floyd’s algorithm requires O(N)3, where N is the number of
nodes in the network. In step 2, applying MDS to the distance
matrix has complexity of O(N)3 owing to SVD. In step 3,
computing the rigid transformation takes O(w) time, while
applying the transformation (rotation and translation) to the
whole relative map takes O(N − w) time, where w is the
number of anchors (w << N).

4 MHL-M algorithm

Multidimensional scaling algorithm as a mathematical tool is
an exact method to locate the nodes. It assumes knowing the
distances between each pair of nodes in the network, which in
practice is not fusible, owing to two main reasons:

• limited radio range of the sensor nodes

• presence of obstacles in the sensor field.

Under these circumstances, MDS is prone to error, which
results in uncertain node locations. To overcome this drawback
of MDS, original MDS pipeline for WSN localisation can be
extended with two more phases:

i Pre-processing phase:

Preprocessing phase is applied immediately after step 1,
i.e., after the distance measurements. In this phase, different
geometric calculations can be used to correct distances
between the nodes. These corrected distances are used to
fill the distance matrix, which serves as an input to step

2. This approach is actually presented in Stojkoska (2014)
and Chaurasiya et al. (2014), where authors use geometric
characteristics of the network.

ii Post-processing (or refinement) phase:

After obtaining the relative map of the network in step 3 of
MDS pipeline, different refinement techniques can be used
to correct the estimated positions. The distances between
the anchor nodes and their neighbouring nodes are used
as a reference measurements. The approach presented in
Chaurasiya et al. (2014) implements a refinement based on
LM. To the best of our knowledge, all approaches in the
literature based on MDS adopted only one of these phases.
In this paper, we proposed a new algorithm named MHL-M.
Our approach, at the same time implements both phases (pre-
processing based on the algorithm in Stojkoska (2014) and
post-processing based on the algorithm in and Chaurasiya et al.
(2014).

In this section, we will explain in details the background of
the algorithms Stojkoska (2014) and Chaurasiya et al. (2014),
which are combined in our approach.

4.1 MDS with improved distance estimation (IMDS)

The main problem with MDS based localisation is the shortest
path distances between every user in the network. Generally,
the similarity/dissimilarity matrix used in MDS is obtained
using Dijkstra algorithm that calculates the shortest path
routes between every node in the network. Dijkstra algorithm
calculates the longest possible theoretical distance between
two non-neighbouring nodes. This approximation produces
an error in MDS. IMDS (Stojkoska, 2014) algorithm uses
heuristic approach (HA) for distance matrix calculation,
where lightweight computation is performed to average the
difference between the shortest and the longest possible
distance. This approach was firstly implemented and evaluated
for two-dimensional networks (Stojkoska and Kirandziska,
2013), but later it was extended for the 3D networks
(Stojkoska, 2014). The evaluation of this algorithm shows
improvement over classical MDS for both two-dimensional
and three-dimensional networks.

The basic idea behind this averaging can be seen from the
Figure 1. Here, the distance between the neighbouring nodes
A and B is known (d1). Also, the distance between node B
and it neighbouring node C is known (d2), although the exact
positions of all nodes are not known. The radio range is the
same for all nodes in the network, i.e.,R. The distance between
the non-neighbouring nodes A and C has to be calculated.
Dijkstra algorithm will calculate the distance as a = d1 + d2,
assuming that node C lays on node C2. On the other hand,
there is also a real possibility that node C will lay very close
to node C1, thus the distance would be just a little greater
than R. HA assumes that node C lays in the middle of the
curve C1C2. Using geometrical relationships, the distance a
is calculated as

a2 = d21 + d22 − 2 · d1 · d2 · cos(θ), (1)
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where θ = ∠ABC. To find θ

θ = ϕ+ ζ, (2)

where ϕ = ∠ABC1 and ζ = ∠C1BC. From Figure 1, ϕ is
calculated as

ϕ = arccos

(
d21 + d22 −R2

2 · d1 · d2

)
, (3)

and ζ = π
2 − ϕ

2 . Evaluating equation (1) in terms of ϕ and ζ
we get

a2 = d21 + d22 − 2 · d1 · d2 · sin(
1

2
(ϕ)), (4)

which can be rewritten as

a =

√
d21 + d22 + 2 · d1 · d2 · sin

(
1

2
arccos

(
d21 + d22 −R2

2 · d1 · d2

))
.

(5)

Figure 1 Distance approximation (see online version for colours)

4.2 Multidimensional and Levenberg-Marquardt with
heuristic approach (MHL-M) based localisation

In Saeed and Nam (2014) the authors proposed WSN network
localisation scheme based on MDS technique that uses LM
method (MDS-LM). This is an efficient subsequent iterative
algorithm for 2D WSN. The problem with this algorithm is
that it assumes the shortest path distances based on Dijkstra
algorithm which accumulates large error when the network is
not uniformly distributed. The error is large when the nodes
are in multi-hop scenario, which is very common for WSNs.

In this paper, we have developed new algorithm that
combines the advantages of both above mentioned algorithms
(Stojkoska, 2014; Saeed and Nam, 2014). Here, we are going
to give a detail description of our algorithm. A network ofN =
v + w sensor nodes in a three-dimensional space is considered
where v is the number of unknown nodes and w is the number
of anchor nodes respectively. Let X = {Θi}Ni=1, where θi =
[xi; yi; zi]

T are the actual coordinates of the ith node. Based
on classical MDS, the proposed MHL-M algorithm consists
of the following three steps:

1 First of all, the neighbourhood information between all
the nodes in the network are computed. Based on the
neighbourhood information shortest path distances
between every node in the network is obtained using
HA. Distance matrix is denoted by D and is written as

D =

 0 · · · ζ21N
...

. . .
...

ζ2N1 · · · 0

 (6)

where ζ2ij are the HA based shortest path distances
between every node in the network. Matrix D in
equation (6) is a square symmetric matrix with ζii = 0
and ζij = ζji

2 Apply classical MDS to the distance matrix to get the
relative configuration of the sensor nodes. Kruskal
(1956) defined the stress function for the minimisation
of loss function as

S =

√√√√√ N∑
i=1

(
ζ̂ij − ζij

)2
ζ̂ij

(7)

when the MDS perfectly embeds the distance
information data ζ̂ij = ζij and S = 0. The
minimisation of stress function S is computed by
gradient descent approach. Then the relative
configuration is achieved from the 3 largest singular
values h and the corresponding Eigen vectors k as

X̂ = k
√
h, (8)

where X̂ shows the relative estimated position of each
node in the network. Using linear transformations
(scaling, translation and rotation) the absolute positions
of the sensor nodes are obtained. The transformation to
absolute positions is achieved using iterative LM
refinement approach.

3 The estimated positions X̂ = {Θ̂i}Ni=1 are the initially
estimated positions by MDS, while θl = [xl; yl; zl]

T are
the known coordinates of the l-th anchor node, where
l = 1, 2, . . . , w and w ≥ 4 for 3D positioning. Then
from the RSS measurements the log normal path loss
model can be expressed as

ln(Pr,l) = ln(C) + ln(Pt)− β ln(dl) + ηrss, (9)

where Pr,l is received power, C accounts for all other
factors that affect the received power, Pt is the
transmitted power, ηrss is the Gaussian distributed noise
with variance σ2

rss,l. β is the path loss exponent and dl is
the Euclidean distance between the unknown node and
the l-th anchor. Let

rrss = ln(Pr,l)− ln(C)− ln(Pt). (10)

The RSS is simplified to

rrss = −β ln(dl) + ηrss, (11)
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and in vector form equation (11) is written as

rrss = G(x)+ ηrss, (12)

where rrss = {rrss1, rrss2, ...rrssw},
ηrss = {ηrss1, ηrss2, ...ηrssw} and

G(x) = −β


ln(d1)
ln(d2)

...
ln(dw)

 , (13)

where

dl =
√

(xi − xl)2 + (yi − yl)2 + (zi − zl)2 (14)

is the distance between the ith and the lth node. The
probability density function s(pdf) for the rrss in
equation (11) is determined as

f(rrss) =
1

(2π)
w
2
√
σrss,l

exp

(
−1

2
(rrss

−G(x))
T
σ−1
rss,l (rrss −G(x))

)
, (15)

where σ2
rss,l is the noise variance. The cost function is

computed based on the noisy RSS measurements and
initial estimated positions X̂ of the sensor node position
as

Ψ(X̂) =
w∑
l=1

(rrss

−
√
(xi − xl)2 + (yi − yl)2 + (zi − zl)2

)2
. (16)

The cost function tries to minimise the error between
the true Euclidean distance and RSS based shortest path
estimated distance. To find the minimum of cost
function LM efficient iterative algorithm is proposed to
solve the non linear optimisation problem. The iterative
LM procedure to estimate the 3D location of all the
nodes in the network is

X̂p+1 = X̂p −
(
UT

p Up + λ(I)
)−1

×Up

(
rrss −Ψ(X̂p)

)
, (17)

where p is the number of iterations, λ is the step size, I
is the corresponding identity matrix and U is the
Jacobin matrix for the cost function given as

Up =


x̂i−x1

di1

ŷi−y1

di1

ẑi−z1
di1

x̂i−x2

di2

ŷi−y2

di2

ẑi−z2
di2

...
...

...
x̂i−xw

diw

ŷi−yw

diw

ẑi−zw
diw

 , (18)

where w are the total number of anchor nodes and

diw =
√
(xi − xw)2 + (yi − yw)2 + (zi − zw)2. (19)

Final locations of all the sensor nodes in the network are
computed using equation (17).

4.3 Time complexity of MHL-M

The MHL-M algorithm consists of basic three steps. Firstly,
distance matrix construction using HA costsO(N3), whereN
is the total number of nodes in the network. The second step
consists of applying the MDS to the distance matrix which
also have time complexity of O(N3), while the refinement
process using LM method takes O(N − w) where w is the
number of anchors. The overall complexity of MHL-M is

T = 2×
(
O(N3)

)
+O(N − w). (20)

Note that the proposed approach has the same time complexity
as Stojkoska (2014).

5 Performance evaluations

In this section the performance of the proposed MHL-M
is evaluated and compared to already existing 3D WSNs
localisation algorithms.

5.1 Simulation setup

To study the behaviour of the proposed MHL-M algorithm,
we performed extensive simulations in MATLAB. Wireless
sensor nodes are uniformly deployed in 3D cubic area.
We assume that every node has the same communication
range R. Two nodes succeed to communicate only if d ≤
R, where d is the distance between the nodes. We assume
Gaussian noise in distance measurements, that is, the measured
distance d̂ij between nodes i and j is defined in terms of the
true distance dij as d̂ij = N(dij , σ

2
ij). All the nodes in the

network are considered to be static and the distance between
adjacent nodes is measured through RSS. We evaluated the
performance of the proposed MHL-M in (100× 100× 100)
cubic area and compared the results to with IMDS and
MDS-LM algorithms. The impact of various parameters, like
error variance, transmission range and network density on
the performance of the proposed algorithm is evaluated. We
considered root mean square error (RMSE) as the performance
metric for all the simulation results, where the RMSE is given
as

RMSE =

(√∑v
i=1(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

v

)
·100%. (21)

We evaluated our MHL-M algorithm in terms of localisation
accuracy and we compared it with four other algorithms.
Namely, we compare MHL-M with two centralised
algorithms, i.e., its predecessor IMDS (Stojkoska, 2014) and
MDS-LM (Saeed and Nam, 2014). We also implemented
two centroid-based approaches from the literature, which
are a good example of distributed algorithms (Chen et al.,
2008; Blumenthal et al., 2007). We did not perform time
complexity analysis, because we have previously shown that
MHL-M, IMDS and MDS-LM have the same computational
complexity. On the other hand, in case of the distributed
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approaches (Chen et al., 2008; Blumenthal et al., 2007),
each node is performing local computation to obtain its own
location based on simple calculation.

5.2 Simulation results

Before we present the results from the simulation setup, we
visualise the network to show the localisation error more
intuitively. Figures 2 and 3 represent localisation results
obtained with our MHL-M algorithm and with MDS-LM
(Saeed and Nam, 2014) respectively. This network consists
of 100 nodes randomly deployed in the monitored area with
radio range of 35 m and average connectivity of 11.6. The
squares (�) show the actual location of the sensor nodes while
the red lines show the localisation error. Absolute map is
achieved using only 4 anchors. As can be seen from the figures,
the proposed MHL-M performs much better than MDS-LM
(Saeed and Nam, 2014).

Figure 2 Localisation error for the proposed MHL-M algorithm
(see online version for colours)
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Figure 3 Localisation error for MDS-LM algorithm (see online
version for colours)
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Table 1 shows the results outcomes of the proposed MHL-M
algorithm with respect to the other localisation algorithms used

for comparison. For this simulation setting, the localisation
error in

Table 1 is presented in metres.

Table 1 Localisation Error of MHL-M, MDS-LM (Saeed and
Nam, 2014), IMDS (Stojkoska, 2014), Centriod (Chen
et al., 2008) and Weighted Centriod (Blumenthal et al.,
2007) localisation algorithms

Localisation error
Scheme (m)
MHL-M 4.8
MDS-LM (Saeed and Nam, 2014) 6
IMDS (Stojkoska, 2014) 17.54
Centriod (Chen et al., 2008) 20.22
Weighted Centriod (Blumenthal et al., 2007) 19.5

Figure 4 shows the impact of network connectivity to the
RMSE. It can be noticed that when the connectivity in
the network increases the RMSE decreases as there are
more direct connections between the nodes in the network.
MHL-M gives much better estimation compared to IMDS
(Stojkoska, 2014) and MDS-LM (Saeed and Nam, 2014.
The performance of the proposed algorithm is also compared
with centriod localisation (Chen et al., 2008) and weighted
centriod localisation (Blumenthal et al., 2007). MHL-M gives
much better estimation compared to centriod and weighted
centriod localisation algorithms because both of them strongly
depend on the number of anchors and their corresponding
locations. Further it can be seen from the figure that at
certain connectivity level, the proposed approach achieves
the theoretical bound, that is the Cramer Rao lower bound
(CRLB). For this simulation setting, the absolute map is
achieved using only 4 anchors.

Figure 4 RMSE vs. connectivity (see online version for colours)
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Figure 5 shows the impact of range error variance on RMSE,
i.e., the proposed approach is more robust to noise comparing
to other 3D WSN localisation techniques. The connectivity for
this network is 11.6, while the number of anchors is 4 again. It
is important to mention here that all three algorithms based on
MDS are very resilient to range error variance. The algorithms
are very stable especially for range error greater than 30%.
This is very important characteristic, as range measurements



8 N. Saeed and B.R. Stojkoska

are prone to error. In the case of RSSI measurements, this
error is at least 20%, but more often is greater (Jianwu and Lu,
2009).

Figure 5 RMSE vs. range error variance (see online version
for colours)
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Figure 6 shows how adding more number of nodes improves
the accuracy of the proposed algorithm. It is expected, since
number of nodes affects the density of the network. When
the density of the WSN increases, the connectivity level
also increases, which improves the localisation accuracy. The
connectivity level for this network varies from 4.45 to 11.8.

Figure 6 RMSE vs. no of nodes added (see online version
for colours)
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Figures 7 and 8 show the impact of the number of anchors
on the localisation error for different connectivity levels and
range errors of 10% and 50%, respectively. It can be seen,
that increasing the number of anchors does not have a crucial
influence on the localisation error, localisation error decreases
slightly, improving the performance of the proposed MHL-
M algorithm. This is especially notable for large connectivity
levels, where MHL-M achieves the CRLB regardless of the
number of anchors.

Figure 7 RMSE vs. no of anchors with 10% range error
(see online version for colours)
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Figure 8 RMSE vs. no of anchors with 50% range error
(see online version for colours)
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6 Conclusion

Multidimensional scaling techniques have been extensively
used for localisation in WSNs. In this paper, we have proposed
a novel robust MHL-M localisation algorithm based on MDS
for 3D WSNs, which is build upon previous research and it
combines a heuristic approach for shortest path error reduction
between non-neighbouring nodes and a LM based refinement
of the absolute network map.

Statistical performances of the proposed algorithm were
analysed through extensive simulations, regarding different
network parameters, like network density, number of anchor
nodes and range error measurements. Considering network
density, our algorithm outperforms other 3D localisation
algorithms owing to the fact that it is not dependent on
the configuration of the anchors. Furthermore, at certain
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connectivity level, MHL-M achieves the theoretical bound,
i.e., the Cramer Rao lower bound (CRLB). It was shown
that the algorithm is very resilient to range error variance,
achieving stability for range errors greater than 30%. The
algorithm performance and the number of anchors are not
strongly coupled and the increase in anchor number brings
only a small improvement.
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