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ABSTRACT 

Different data reduction strategies have been developed in 
order to reduce the energy consumption in wireless sensor 
networks (WSN). Most of them reduce the amount of sent data 
by predicting the measured values both at the source and the 
sink, requiring transmission only if a certain reading differs by 
a given margin from the predicted values. The subject of this 
paper is comparison of a few different techniques for 
prediction of time series data in WSN. While these strategies 
often provide great reduction in power consumption, they don’t 
need a priori knowledge of the explored domain in order to 
correctly model the expected values. 

I. INTRODUCTION 

Distributed WSN provide the ability to make temporal and 
spatial progression of the quantitis they measure. If the nodes 
report sensed data at each interval, it will vastly reduce the 
network lifetime and will create sufficient communication 
overhead. There are several techniques that have been 
developed to overcome these problems, i.e. to lower the 
communication overhead and to increase the energy savings. 

Data-reduction techniques can be basically divided into 
three main groups: data compression, data prediction and in-
network processing [1]. Data compression is applied to reduce 
the amount of information sent by source nodes. This scheme 
involves coding strategy used to represent data regardless of 
their semantics and is very suitable if the WSN application 
doesn’t require the most recent measurements. In-network 
processing performs data aggregation while data is routed 
towards the sink node. This paradigm aims to transform the 
raw data into less voluminous refined data using 
summarization functions (minimum, maximum and average). 
For applications that require original and accurate 
measurements, such a summarization may be inappropriate 
since it brings loss of the accuracy [2]. 

Data prediction techniques usually maintain two instances 
of a prediction model, one residing at the sink and the other at 
the sensor. To avoid a rapid deterioration in the predicted 
values, such approaches need to periodically validate and 
update their models. Data prediction techniques can be divided 
into three subclasses: stochastic approaches, time series 
forecasting and algorithmic approaches. The last are 
application-specific and usually apply some heuristics about 
the domain they explore. Stochastic approaches are used when 
sensed phenomena can be modeled with probability density 
function. These algorithms provide acceptable predictions but 

usually are inappropriate due to its computational overhead. 
Data prediction models for WSN are those based on time series 
forecasting. Moving Average (MA), Autoregressive (AR) or 
Autoregressive Moving Average (ARMA) models are simple, 
easy for implementation and provide acceptable accuracy 
[3][4]. In this paper, we investigate and compare time-series 
forecasting techniques for WSN based on these three 
algorithms. 

The rest of the paper is organized as follows: the next 
section presents a brief overview of related work. The third 
section of this paper describes the process models used for data 
prediction - MA, AR and ARMA. The fourth chapter covers 
the simulation results. Finally, we conclude this paper in 
section five. 

II. RELATED WORK 

Time series forecasting in WSN is still not enough explored, 
beside the attractiveness of WSN in the last decade. Only a few 
well known techniques from time series analyses have been 
implemented and appropriately evaluated on different WSN 
datasets. 

The most popular paradigm is Dual Prediction Scheme 
(DPS) [3][5][6][7] (formerly known as Dual Kalman Filter). 
Here, each node runs a filter (or a model) that estimates the 
next measurement. The sink (or the base station) runs exactly 
the same models for each sensor in the network and makes the 
same predictions. Since the sensor makes measurements of the 
sensed quantity, it can check whether the predicted value 
differs from the sensed value above the predefined threshold ����. If the difference is below the threshold, both the sensor 
and the sink accept the predicted value and store it in the 
memory instead of measured value. Otherwise, the sensor 
sends the actual value to the sink node. Both the sensor and 
sink use this value and simultaneously estimate the prediction 
model and update the filter weights. 

Romer and Santini in [5] choose Least Mean Square  
(LMS) over Kalman Filter since it doesn’t require a priori 
knowledge of the desired measurements, which implies that the 
sink and the sensors don’t need to agree on a predefined model. 
In [6][7], the authors propose a modification of LMS that uses 
variable step size parameter for fine tuning the filter weights. 
Le Borgne and Santini in [3] present a general framework for 
DPS in which sensor nodes using racing mechanism [8] 
autonomously select prediction model among K candidate 
prediction models: constant prediction model (CM) and AR 
models of orders 1–5. The results obtained from 14 different 
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datasets show that CM outperforms AR models for time series 
with sudden and sharp changes, while in all other cases AR 
performs significantly better than CM. 

 In [4] a more complex prediction model is used based on 
ARIMA technique. In the first phase, sink receives 券 sensor 
readings from each sensor, builds an appropriate ARIMA 
model for each sensor and sends the ARIMA parameters back 
to the sensors. In the second phase, the prediction is performed 
on both sides. If the readings significantly differ from the 
predicted values, the sensor should send the latest 喧 readings 
to the sink so it can update the dataset. An adaptive ARMA (A-
ARMA) technique with moving window in [9] employs low-
order AR term and MA term. Each node locally computes the 
parameters of A-ARMA model using the last 激 sensor 
readings and propagates the model parameters to the sink node. 
Choosing the right order for AR and MA component in [4][9] 
model is a tradeoff between forecasting accuracy and energy 
efficiency. 

In [10] the authors introduce a hybrid model based on 
Grey-Model-based approach [11] and Kalman Filter. 
Evaluation done on real datasets shows that the proposed 
model outperforms others in terms of energy consumption.    In 
[12], DPS for Wireless Body Sensor Network is presented 
using proportional–integral–derivative (PID) based algorithm 
for data prediction. Other approaches include “send on delta” 
technique [13], which calculates the difference between the 
current value and the predicted value.  

 Different metrics have been purposed for measuring 
algorithms performance. One metric is the reduction of 
transmissions in percentage [5]. Other metric used for 
evaluation is by measuring the difference between the 
predicted and the true value, i.e. mean square error (MSE) 
[6][7] or root mean square error (RMSE) [4][9]. These two 
metrics can be integrated into one, which is the ratio 
reduction/RMSE. 

 In our work, we implement Moving Average and 
Autoregressive Moving Average models as a predictive filter. 
The evaluation was done with MSE and number of 
transmissions using real datasets from Intel Berkeley Research 
Laboratory [14] and NDBC dataset [15]. 

III. ALGORITHMS FOR DATA PREDICTION 

In this section we are going to give a brief explanation of each 
of the prediction filters. 

A. Moving Average process model 

A moving average process of order p is denoted by MA(p) and 
is defined as 

 隙痛 = ∑ 肯追椎追=待 �痛−追 (1) 

where 肯怠, … , 肯椎 are fixed constants, 肯待 = な holds, and {�痛} is 
the white noise (an array of independent random variables) 
with mean value of 0 and variance �態. 

 By definition, processes of this class are second-order 
stationary and it holds that the autocovariance function has 
value of 

 �� = { ど,                                         |�| > 喧�態 ∑ 肯追肯追+�椎−|�|追=待 ,              |�| 判 喧  (2) 

 It is possible for two MA processes to have the same 
autocorrelation function (defined as �� = ��/�待), for example 

 隙痛 = �痛 + 肯�痛−怠, and (3) 

 隙痛 = �痛 +  ��−迭�  (4) 

both have �怠 = 肯/岫な + 肯態岻 and �� = ど (for |�| > な). 
However, equation (3) yields �痛 = 隙痛 − 肯�痛−怠 = 隙痛 − 肯岫隙痛−怠 − 肯�痛−態岻 
 = 隙痛 − 肯隙痛−怠 + 肯態隙痛−態 − ⋯ (5) 

for |肯| < な, which is a characteristic of an invertible process. 
Two different invertible processes can never have the same 
autocorrelation function [16-20]. 

B. Autoregressive process model 

An autoregressive process of order 喧, similarly, is denoted by 
AR(喧), and is defined as 

 隙痛 = ∑ �追隙痛−追椎追=怠 + �痛 (6) 

where �怠, … , �追 are fixed constants and {�痛} again is a 
sequence of independent random variables with mean value of 
0 and variance �態. 

Following from (6), the AR(な) process is defined as 

 隙痛 = �怠隙痛−怠 + �痛 (7) 

By making successive substitutions, we find that 

 隙痛 = �痛 + �怠(�痛−怠 + �怠岫�痛−態 + ⋯ 岻)  

 = �痛 + �怠�痛−怠 + �怠態�痛−態 + ⋯ (8) 

It can be observed that �岫隙痛岻 is 0 and the autocovariance 
function can be calculated as follows: 

 �� = �鉄�迭�怠−�迭鉄 (9) 

which leads to the conclusion that {隙痛} is second order 
stationary. The autocorrelation function is 

 �� = �怠��−怠 + �態��−態 + ⋯ + �椎��−椎, � = な,に, … (10) 

also known as the Yule-Walker equations [16-20]. 
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C. Autoregressive Moving Average process model 

An autoregressive moving average process of order 岫喧, 圏岻, 
meaning it has 喧 autoregressive and 圏 moving average terms, 
is noted as ARMA(喧, 圏) and is defined as: 

 隙痛 = ∑ �追隙痛−追椎追=怠 + ∑ 肯鎚�痛−鎚槌鎚=待     (11) 

where {�痛} is white noise. This process is stationary for the 
appropriate values for � and 肯. 

 Let us consider the state space model given by: 

 隙� = �隙�−な + ��, 
 桁� = 隙� + 考� (12) 

If we suppose that {隙痛} is unobserved, {桁痛} is observed and {�痛} and {考痛} are independent white noise sequences, while {隙痛} is AR(1), we can write that 

 �� = 桁� − �桁�−な = �� + 考� − �考�−な (13) 

where �痛  is stationary and �剣�岫�痛 , �痛 + �岻 is 0 for any � 半 に. 
That way, �痛  can be modeled as a MA(1) process and {桁痛} as 
ARMA(な, な) process [16-20].  

IV. SIMULATION RESULTS 

In this section the simulation results from the MA(2), MA(4) 
and ARMA algorithms are going to be presented. The 
efficiency of the algorithms evaluated with respect to two 
metrics: percentage of insufficiently correct predictions 
(PICP) and mean square error (MSE). Lower values for PICP 
and MSE are desirable (mean better performance). The 
algorithms were simulated in MATLAB [21]. 

On the following graphs, the results of the algorithms are 
represented by different colors: MA(2) – blue, MA(4) – 
yellow, MA(10) – red  and ARMA – green. The upper graphs 
of each picture represent the PICP values and the lower graphs 
represent the MSE. The horizontal axis represents the value of 
the threshold ���� . 

A. Evaluation of the Intel experimental dataset 

For the evaluation of the algorithms, the first set that was used 
is the experimental dataset from Intel Lab [14]. The 54 
Mica2Dot sensors deployed in the laboratory were equipped 
with weather boards and measured temperature once every 31 
seconds. The measurements were collected between February 
28th and April 5th, 2004. The simulations were run for 50 
different error margins ����  (ranging from 0.1°C to 5°C).  

The results (Figure 1 and Figure 2) show that, concerning 
the PICP, the ARMA algorithm is constantly better than the 
other two. MA(4) is second in this regard, and MA(2) is 
slightly behind. In most of the results from the simulations we 
have done, the difference is greater for threshold values in the 

[0, ~1.5] range. However, there is very little difference for 
values greater than ~1.5. 

Concerning the MSE, the simulation results (Figure 1 and 
Figure 2) are a bit less consistent, but still certain patterns 
emerge. Firstly, one can observe that there are two main 
intervals of threshold values, range [0, ~3.5] and range [~3.5, 
5]. In the first interval the results are relatively consistent – 
ARMA has the best MSE, MA(4) is second and MA(2) third. 
However, in the second interval, the results for the MSE from 
simulations done on some datasets are still relatively consistent 
(Figure 1), while other simulations give inconsistent, 
seemingly chaotic results (Figure 2). 

 

Figure 1: Results from simulations done on 35 different 
nodes that yield relatively consistent performance. 

 

Figure 2: Results from simulations done on 17 different nodes 
that yield inconsistent performance. 

For some datasets, the order of the algorithms (sorted by 
their MSE) changes in the second interval. This is caused by 
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the difference in the values of the data elements in the sets, i.e. 
the entropy of the datasets. We observed that the nodes which 
have relatively consistent MSE in the second interval as well, 
have small differences between the values of two neighboring 
data elements, while those datasets for which the order changes 
have larger differences among their data elements. Although 
the results for such datasets for the most part in the [~3.5, 5] 
range are intertwined, there is a tendency for the algorithms to 
swap their places in regard of their MSE – it can be observed 
that, in Figure 2, MA(4) gradually becomes the best of the 
three, while ARMA becomes worst. From that we can 
conclude that: 

 When the ���� threshold value is in the range of [0, ~3.5] 
the ARMA algorithm performs best in both PICP and 
MSE. 

 When the ���� threshold value is above ~3.5, ARMA is 
still the first choice for datasets with smaller entropy, but 
for datasets with higher entropy, MA(4) is the first choice. 

Another conclusion, concerning the performance of the 
MA algorithm that can be drawn from the results (Figure 1, 2) 
is that both the PICP and the MSE are positively correlated 
with the order of the MA algorithm in question. This is more 
clearly visible when a third MA algorithm – MA(10) is 
introduced (Figure 3). 

 

Figure 3: Results from simulations done on 30 different nodes 
demonstrating the correlation between the performance and 

the order of the MA algorithm. 

B. Evaluation of the NDBC dataset 

The second set of measurement data that was used is the dataset 
of the National Data Buoy Center (NDBC) of the National 
Oceanic and Atmospheric Administration of the USA [15]. 
The results of a simulation run on a dataset of wind direction 
measurements is shown on Figure 4. Wind directions are taken 
as an example of a dataset with suddenly changing element 
values. The ARMA algorithm is not appropriate for making 

predictions of such data and is excluded from this comparison 
because it consistently has a high value for its MSE. 

In regard of the PICP, the results show that it is inversely 
correlated with the order of the MA algorithm.  

Although the results for each of the algorithms are close to 
one another in regard of their MSE metric, MA(2) has the best 
performance again, but for higher values for ���� , the values 
for their MSE are sometimes intertwined. 

 

Figure 4: Results for the MA algorithms of different order of 
a simulation run on a wind direction dataset. 

V. CONCLUSION 

In this paper we compare different algorithms for making 
predictions in time series data acquired from WSN. The results 
of the simulations we have done show that the nature of data 
(mainly their entropy) influences the performance of a certain 
algorithm. We have come to the conclusion that for gradually 
changing data – water temperature, water level etc. (data with 
lower entropy), ARMA performs best; for data with sudden or 
sharp changes in the values (higher entropy), MA(4) has the 
best ratio between the performance and complexity. 
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