
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259028795

Variable Step Size LMS Algorithm for Data Prediction in Wireless Sensor

Networks

Article · March 2012

CITATIONS

7
READS

653

1 author:

Biljana Risteska Stojkoska

Ss. Cyril and Methodius University in Skopje

75 PUBLICATIONS   1,541 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Biljana Risteska Stojkoska on 01 May 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/259028795_Variable_Step_Size_LMS_Algorithm_for_Data_Prediction_in_Wireless_Sensor_Networks?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259028795_Variable_Step_Size_LMS_Algorithm_for_Data_Prediction_in_Wireless_Sensor_Networks?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Biljana-Risteska-Stojkoska?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Biljana-Risteska-Stojkoska?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Biljana-Risteska-Stojkoska?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Biljana-Risteska-Stojkoska?enrichId=rgreq-3dbb98827389f5e3d69c05a8cc455f7e-XXX&enrichSource=Y292ZXJQYWdlOzI1OTAyODc5NTtBUzoyMjQzMDY1NzY1MzE0NTdAMTQzMDQ5MDI2Mzg4Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


S������ � ������	
��� ��	����
 ���� ����
 S��
��� ���	�
 ����	��� ����
 pp. 111-124 

 111

Sensors & Transducers
I��� ��� !"#�$

© 2012 by IFSA

http://www.sensorsportal.com

Variable Step Size LMS Algorithm for Data Prediction

in Wireless Sensor Networks 
 

1
Biljana RISTESKA STOJKOSKA, 

2
Dimitar SOLEV, 

3
Danco DAVCEV 

1 
Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, 

Skopje, 1000, Macedonia 

Tel.: +38923099157
2 

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, 

Skopje, 1000, Macedonia 
3 

University for Information Science & Technology St. Paul the Apostle, Ohrid, 6000, Macedonia 

Tel.: +38946550001, fax: + 38946550004 

E-mail: biljana.stojkoska@finki.ukim.mk, dimitar.solev@gmail.com, dancho.davchev@uist.edu.mk 

 

 

Received: 15 November 2011   /Accepted: 20 December 2011   /Published: 12 March 2012 
 

Abstract: Wireless communication itself consumes the most amount of energy in a given WSN, so the 

most logical way to reduce the energy consumption is to reduce the number of radio transmissions. To 

address this issue, there have been developed data reduction strategies which reduce the amount of 

sent data by predicting the measured values both at the source and the sink, requiring transmission 

only if a certain reading differs by a given margin from the predicted values. While these strategies 

often provide great reduction in power consumption, they need a-priori knowledge of the explored 

domain in order to correctly model the expected values. Using a widely known mathematical apparatus 

called the Least Mean Square Algorithm (LMS), it is possible to get great energy savings while 

eliminating the need of former knowledge or any kind of modeling. In this paper with we use the Least 

Mean Square Algorithm with variable step size (LMS-VSS) parameter. By applying this algorithm on 

real-world dataset, we achieved maximum data reduction of over 95% for star topology and around  

97 % when data aggregation was taken into account for cluster-based topology, both for error margin 

of 0.5°C. Using mean square error as metric for evaluation, we show that our algorithm outperforms 

classical LMS technique. Copyright © 2012 IFSA. 
 

Keywords: Wireless sensor network, Data prediction, Least mean square algorithm, Time series 

forecasting. 
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1. Introduction 
 

By being inherently distributed systems, WSN allow not only measuring the temporal progression of 

the ascertained quantity but also provide the ability to take the spatial progression of this quantity as 

well. By reporting data measurement at each interval, the node itself consumes a great deal of energy, 

thus, it vastly reduces its lifetime and creates sufficient communication overhead. 

 

There are several techniques that have been developed to overcome these problems i.e., to lower the 

communication overhead, to increase energy saving and maximize CPU utilization. 

 

Since wireless communication itself consumes the most amount of energy in a given WSN, the most 

logical way to reduce the energy consumption is to reduce the number of radio transmissions. 

 

Data-reduction techniques aim to reduce the data to be delivered to the sink. These techniques can be 

divided into three main groups (Fig. 1): data compression, data prediction and in-network processing 

[1]. 

 

 

 
Fig. 1. Data-driven approach for energy saving in WSN [1]. 

 

 

Data compression is applied to reduce the amount of information sent by source nodes. This scheme 

involves coding strategy used to represent data regardless of their semantics. 

 

In-network processing performs data aggregation while data is routed towards the sink node. Data 

aggregation aims to transform the raw data into less voluminous refined data. It can be achieved with 

summarization functions (minimum, maximum and average). For applications that require original and 

accurate measurements, such a summarization may be inappropriate since it represents an accuracy 

loss [2]. 

 

Data prediction techniques usually maintain two instances of a model in the network, one residing at 

the sink and the other at the sensor. The model at the sink can be used to answer queries without 

requiring any communication, so the original data can be easily reconstructed within a certain degree 

of precision. To avoid a rapid deterioration in the predicted values, such approaches thus need their 

models to be periodically validated and correspondingly updated, implying again increased 

communication costs. 

 

Data prediction techniques can be divided into three subclasses: stochastic approaches, time series 
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forecasting and algorithmic approaches, which are application specific (Fig. 1). 

 

Stochastic approach is used when sensed phenomena can be considered as a random process by means 

of probability density function. Although this approach is general, its computational overhead makes it 

inappropriate for tiny sensors with limited computational capacities. 

 

The most appropriate models for data prediction in WSN are those based on time series forecasting. 

Moving Average (MA), Auto-Regressive (AR) or Auto-Regressive Moving Average (ARMA) models 

are simple, easy for implementation and provide acceptable accuracy [3, 4]. 

 

In this paper, we investigated time-series forecasting technique for WSN based on LMS algorithm 

with variable step size (LMS-VSS). Least-Mean-Square (LMS) adaptive algorithm as a data-reduction 

strategy in WSN has been firstly proposed by Santini and Römer [5]. The advantages of LMS 

algorithm is that it does not require any a-priori knowledge or modelling of the statistical properties of 

the observed signals, thus providing great flexibility and domain independence. Santini and Römer in 

[5] reported maximum data reduction of 92 % for the temperature measurements (on Intel Berkeley 

Lab dataset [6]) while retaining an accuracy of 0.5 °C. 

 

The fact that a great percentage of the real-world wireless sensor networks are multi hop and hierarchy 

based, motivated us to exploit LMS-VSS on two different network topologies: star topology and 

cluster-based topology. The proposed algorithm is tested on real data obtained from the Intel Berkeley 

Research Laboratory sensor deployment [6]. LMS-VSS produce maximum data reduction of 95 % for 

error margin of 0.5 °C (for star topology) and around 97 % when data aggregation was taken into 

account (cluster-based topology). 

 

The rest of the paper is organized as follows: the next section presents a brief overview of related 

work. The third section explains least mean square algorithm. Section four of this paper describes the 

LMS-VSS. The fifth and the sixth section explore LMS-VSS on star network and cluster-based 

topologies respectively. Finally, we conclude this paper in section seven. 

 

 

2. Related Work 
 

Although WSN attract a great interest among the researches for more then a decade, time series 

forecasting in WSN is still not explored enough. Only a few well known techniques from time series 

analyses have been implemented and evaluated on different WSN datasets. 

 

The most popular paradigm is dual prediction scheme, which is introduced for the first time as Dual 
Kalman Filter [7], and later is adopted as Dual Prediction Scheme [3, 5]. Here, each node runs a filter 

(or a model) that estimates next sensor reading. The sink node (or the base station), runs exactly the 

same models for each sensor in the network and makes the same predictions. Since the sensor makes 

measurements of the sensed quantity, it can check weather the predicted value differs from the sensed 

value above the predefined threshold. If the difference is below the threshold, both the sensor and the 

sink accept the predicted value and store it in the memory instead of measured value. Otherwise, the 

sensor sends the actual value to the sink node. Both the sensor and the sink can apply the sensed value 

for updating the model, so they will have the same updated model again. 

 

In [7], a stream management system is proposed, where Kalman Filter is used as a general and 

adaptive filtering solution at each source. The authors advocate the use of Kalman Filter as a 

prediction-correction mechanism, since it is flexible to the sensor noise and time variance. 

 

Among different adaptive filters, Romer and Santini in [5] choose Least Mean Square as an adaptive 
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filtering technique for data prediction in WSN. They prefer LMS over Kalman Filter since it doesn’t 

require any a-priori knowledge of the observed phenomena, which implies that the sink and the sensors 

don’t need to agree on a pre-defined model. In this case, both the sensor and sink simultaneously 

estimate the prediction model and update the filter weights. 

 

Le Borgne and Santini in [3] presents a general framework for DPS in which sensor nodes 

autonomously selects prediction model among K candidate prediction models, using racing mechanism 

[8] as a procedure for adaptive model selection. In order to evaluate their approach, the framework 

implements constant prediction model (CM) [9] and autoregressive (AR) models of orders 1–5. The 

results obtained from 14 different publicly available datasets show that CM outperforms AR models 

for time series with sudden and sharp changes, while in all other cases AR models perform 

significantly better than CM. 

 

In [4], more complex prediction model is generated using ARIMA technique. In the preliminary data 

collection phase, sink receives n sensor readings from each sensor and use them to build an 

appropriate model for each sensor. The ARIMA model parameters are then propagated back to the 

sensors. In the second adaptive data collection phase, the sensor and the sink predict the next sensor 

reading using ARIMA model. If the readings significantly differ from the predicted values, the sensor 

should send the latest p readings to the sink so it can update the dataset, or both the sink and the sensor 

should switch to the first preliminary data collection phase. Choosing the right order for AR and MA 

component in ARIMA model is a tradeoff between forecasting accuracy and energy efficiency. 
 

An adaptive Auto-Regression Moving Average (A-ARMA) technique with moving window in [10] 

employs low-order AR term and MA term. Each node locally computes the parameters of A-ARMA 

model using the last W sensor readings and propagates the model parameters to the sink node. For the 

next S readings, the sensor computes the root mean-square (RMS) between the real and the predicted 

sensor readings using the same A-ARMA model. If RMS is greater than the predefined error threshold, 

the sensor computes another A-ARMA model and sends the new parameters to the sink node. 

 

In [11], three prediction-based approaches are proposed: Grey-Model-based approach [12], Kalman-

Filter-based approach and a hybrid model that combines the previous two models. Evaluation done on 

real datasets shows that the last model outperforms others in terms of energy consumption. In order to 

avoid cumulative error, a double-queue mechanism is proposed to synchronize the predicted data at 

both sensor and sink node. 

 

In [13], DPS for Wireless Body Sensor Network is presented using proportional–integral–derivative 

(PID) based algorithm for data prediction. Other approaches include “send on delta” technique [14], 

which calculates the difference between the current value and the predicted value. 

 

Metrics used for measuring algorithms performance varies from author to author. Some authors tend to 

reduce the number of transmissions, thus they count the number of sent massages from the sensor node 

to the sink node, or the number of updates [3-5, 7]. Here the metric is the reduction of transmissions in 

percentage. Other way used for evaluating algorithm performance is by measuring the difference 

between the predicted and the true value, i.e. mean square error (MSE) or root mean square error 

(RMSE)  [4, 7, 10]. These two metrics can be integrated into one, which is the ratio reduction/RMSE. 

 

In our work, we implement dual prediction scheme using LMS with variable step size as a predictive 

filter. The evaluation was done with MSE and number of transmissions using real datasets from Intel 

Berkeley Research Laboratory. Since sensor readings are highly correlated in the space domain, we 

additionally consider cluster-based network topology, where each cluster performs data aggregation. 

The results of the simulation show that our technique outperforms LMS algorithm implemented by 

Santini [5]. 
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3. Least Mean Square Algorithm 
 

In this section, we present a brief explanation of the least mean square algorithm. A thorough 

explanation can be found in [6]. 

 

A linear adaptive filter samples a data stream/input signal at an instant n, which we will denote as u[n] 

and calculates a prediction i.e., the output of the filter as y[n] = wT
[n]·u[n], which effectively is a linear 

combination of the previous N samples of the data stream (denoted as the vector u which is of length 

M), weighed by the corresponding weight vector w[n] (also of length M). M is an integer parameter 

that the filter uses and it determines the “memory” of the filter i.e., how many previous input sample it 

will use. 

 

The output y[n] is then compared to the input signal or the sample of the data stream the filter tries to 

adapt to, denoted as d[n]. The prediction error e[n] is then computed as: e[n] = y[n] d[n] and fed into 

the adaptation algorithm, so the filter weights can be updated. The vector w[n] i.e., the weights are 

modified at each time step n in order to minimize the mean square error. 

 

One of the most extensively used adaptive algorithms is the Least-Mean-Square algorithm (LMS). 

Although it is extremely simple, it has quite good performances and has found implementation in a 

variety of applications. [15][16]. The LMS algorithm is defined through the three equations: 

 

1. The filter output: 

 

 y[n] = wT
[n]·u[n], 

 

2. The estimation error: 

 

 e[n] = d[n] – y[n], 

 

3. The weight adaptation: 

 

 w[n+1] = w[n] + ·u[n]·e[n], 

 

where w[k] and x[k] denote the M × 1 column vectors: 

 

 w[k] = [w1[k],w2[k], . . . ,wN[k]]
T
 

 

 u[k] = [u[k  1], u[k  2], . . . , u[k  M]]
T
  (1)

 

With simple modification the filter structure from Fig. 2 (a) to the so-called predictive structure of  

Fig. 2 (b), the LMS algorithm can be used for prediction. Central to the successful prediction is 

delaying the current input value u[n] by one time instance and use it as the reference signal d[n]. The 

filter then computes an estimation û[n] of the input signal at time instance n, as a linear combination of 

the N previous readings. Subtracting the prediction signal from the desired signal gives the value of the 

error which is fed back to adapt the filter weights. 

 

Two parameters need to be defined for the adaptation process: the filter length M and the step-size 

parameter , which is important for updating the filter weights. 

 

Given that w and u are M × 1 vectors, it can easily be concluded that the LMS algorithm requires  

2M + 1 multiplications and 2M additions per iteration. [15]. 
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(a) 

 
(b) 

 

Fig. 2. (a) Basic structure of an adaptive filter; (b) Adaptive filter used for prediction. 

 

 

The practical implementation of the LMS algorithm in the prediction scheme in WSN was introduced 

in [5] where identical predictive filters were introduced both at the source and at the sink. LMS dual 

prediction scheme (henceforth referred to as LMS-DPS) consists of simultaneously running an 

instance of the filter on both the node and the sink. There are three distinct modes of operation: 

initialization, normal and stand-alone. A node goes through the first only at the beginning and then 

switches between the normal and stand-alone modes. When a node is in the stand-alone mode it does 

not report its readings to the sink and this is where the energy savings are made. 

 

 

3.1. Initialization Mode 

 

First, the step-size parameter  must be determined. A certain amount of data must be collected in the 

beginning, so a proper estimation of the step-size can be made. At this time, the node keeps sending 

the data to the sink without making predictions. Both the node and the sink compute the value of . To 

ensure convergence [15, 16] it must satisfy: 

 

 

 

xE

2
0

, 
(2)

 

where 
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n
x nx

N
E

1

2
][

1

 
(3)

   

Ex is the mean power input and N is the number of iterations used to train the filter. Since the input 

mean power Ex is continually dependent on time, we can approximate Êx by computing over the first M 

samples i.e., N data readings and easily obtain the upper bound of (2). 

 

After the initialization phase, both the node and the sink will continue to execute the predictive 

algorithm and node will be switching between the following two modes of operation. 

 
 
3.2. Normal Mode 

 

Both the node and the sink simultaneously execute the predictive algorithm and make a prediction for 

the following reading by using the last M readings and accordingly update the filter weights on the 

prediction error. As stated in [15], if no a-priori knowledge is present, the initial weights should be 

zero. This is rather important, because: 

a) We do not possess any a priori knowledge of the data; 

b) Setting the initial weights to zero (and using the same values for the step-size parameter and for the 

filter length), ensures that any instance of the LMS will behave exactly the same at any arbitrary 

point of time tn. 

 

The node will stay in normal mode (collecting data and reporting it to the sink) as long as the 

prediction error is greater than the maximum error budget emax. When the error drops below emax for M 

consecutive iterations, then the node switches to stand-alone mode i.e., stops reporting the readings 

and consequently stops updating the weights. 

 
 
3.3. Stand-alone Mode 

 

In this mode, the node still collects data and makes predictions, but if the prediction error is below 

emax, instead of the reading u[n], it feeds the filter with the prediction y[n], discards the real reading 

u[n] and does not send it to the sink. This enables both instances of the filter to be consistent and no 

update of the weights is needed (the error is zero) thus reducing the computational overhead. 

 

If the prediction error exceeds emax the node switches to normal mode and reports the reading. When 

the node is in this mode, the filter instance at the sink side uses only the predicted readings as an 

approximation of the real value. 

 

 

4. Least Mean Square Algorithm with Variable Step Size 
 

The step-size parameter  is critical for the convergence of the algorithm i.e., it determines the 

convergence speed, so choosing the right value for  is of critical importance [17]. As we explain later 

on, there are practical boundaries for the values that  can receive and with a simple estimation 

technique, we can determine them. And as we show in this section, we introduce a specific 

improvement to the LMS-DPS algorithm regarding the step-size parameter . 

 

Since LMS-DPS uses single value for the step-size , a further improvement can be made, with the 

introduction of a least mean square algorithm with variable step-size (which we will refer to as LMS-

VSS henceforth), where the step-size parameter  has two distinct values: 
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1. Until a certain number of good predictions are made,  has the maximum value according to (3) and 

two orders of magnitude smaller to ensure robustness [16]. 

2. After  has sufficiently learned what kind of data the filter receives, it switches to a stable value, that 

is: 

 

 

M
old

new

ë
ë

, 

 

where M is the filter length, and old = 2·Ex
-1

·10
-2

. 

 

This improvement accelerates the initial adaptation to the data, so an additional 3-5% reduction can be 

gained where the maximum error is sufficiently small, as can be seen in Fig. 4. 

 

A crucial aspect is when the switch should be made. The best value for the number of consecutive 

iterations in stand-alone mode can be found as: 

 

 2MnM , 

 

where M is the filter length and n is the number of consecutive readings in stand-alone mode. The 

value n=M3/2
 yielded best results since it suited best both lower and higher filter lengths. For instance, 

if M = 4, using n = M2
 = 16 consecutive good predictions as a switch point is a good choice, but for  

M = 10, n = M2
 = 100 consecutive good predictions may never be reached, thus compromising 

performance. In this case, the choice n = M = 10 would be much more optimal. Also, note that the 

point of switching is determined such that both the node and sink can execute it at the same time and 

thus retain consistency of both algorithm instances. 

 

One of the advantages of having only two distinct values for the step-size parameter, one to accelerate 

the initial weight adaptation and another for fine-tuning the weights after the adaptation is that it 

contributes to the overall data reduction without creating additional computational overhead to the 

algorithm. Additionally, without using a specific heuristic for a particular type of data, it can be used in 

other schemes. 

 

In order to compare LMS-VSS and LMS-DPS, both algorithms were implemented in MatLab. For 

algorithms evaluation, a set of experimental data from Intel Berkeley Research Lab network [6] was 

used. The 54 Mica2Dot sensors deployed in the laboratory were equipped with weather boards and 

measured humidity, temperature, light and voltage values once every 31 seconds. The measurements 

were collected between February 28th and April 5th, 2004. The dataset includes 2.3 million readings 

collected from these sensors. For our evaluation we use only temperature and humidity readings at 

different locations in a lab space. We run the simulations for 50 different error margins eMax (ranging 

from 0.1°C to 5°C). 

 

We consider two basic network topologies on which we evaluated the LMS-VSS algorithm (Fig. 3). 

The first is the star topology, where every node sends its readings directly to the sink. The advantage 

of this topology is its simplicity and low latency communications between the sensors and the sink, but 

the sink must be within radio transmission range of all the individual sensors. If this is not possible, 

cluster-based network topology is a suitable alternative. 
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Fig. 3. Star network topology (left), Clustered-based network topology (right). 

 

 

5. The LMS-VSS Algorithm in Star Topology 
 

If a star network topology is considered, LMS-VSS algorithm achieves considerable reduction in 

number of transmissions. We use data readings from [6] and assume that each sensor sends its reading 

to the sink node. Fig. 4 shows the reduction gain when using LMS-DPS and LMS-VSS algorithms. 

The results are average for all 54 nodes from the Intel Berkeley Research Lab network [6]. LMS-DPS 

uses only one fixed step size =1.2·10
-5

 and filter length M=4 and obtain the average savings in the 

entire network of around 88 % for error margin of 0.5  °C. LMS-VSS uses the same filter length, but 

uses the first M=4 data readings to calculate the initial value of  and then after M3/2
 readings switches 

to new = old·M
-1

. LMS-VSS obtain average savings in the entire network of around 92 %, with evident 

reduction in mean square error (MSE). 

 

In Fig. 5, we can see the improvement of LMS-VSS over the LMS-DPS algorithm for particular nodes. 

We chose these nodes because node 11 performs the best results (95 % reduction for 0.5 °C) and node 

49 the worst (90 % reduction for 0.5 °C). 

 

In addition, we investigated humidity readings from the same Intel network [6], where humidity is 

temperature corrected relative humidity, ranging from 0-100 %. The results for node 20 and node 10 

are shown on Fig. 6 and Fig. 7 respectively. As it can be seen from the figures, LMS-VSS performs 

more than 5 % better results compared with LMS-DPS for error margin of 0.5 °C, and more than 10 % 

better results for error margin of 1°C and greater. For node 10, mean square error is given for both 

algorithms (Fig. 7). As can be seen from the figure, our algorithm gives smaller MSE. 

 

 

6. The LMS-VSS Algorithm in Cluster-based Topology 
 

Nodes clustering represent another way of prolonging WSN lifetime. Here, the sensor nodes are 

geographically grouped into clusters. In each cluster one representative node is chosen to be a cluster-

head. Other nodes in the cluster are called members of the cluster and they report their readings to their 

cluster head, and cluster head forwards the messages directly to the sink. Note that except for the sink, 

we consider that all the nodes in the network have exactly the same characteristics, so even when a 

node is a cluster head, it still acts as a sensing node (and its readings are included in the computations 

for its respective cluster), with the additional duty to forward readings from cluster members. An 

example of such clustered-based network is given in [6], as presented on Fig. 8. 
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Fig. 4. The improvement of LMS-VSS over LMS-DPS algorithm for the entire Intel network (temperature). 

 

 

 

Fig. 5. Improvement of LMS-VSS over the LMS-DPS algorithm, filter length M = 4 (temperature). 
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Fig. 6. Improvement of LMS-VSS over the LMS-DPS algorithm for humidity (node 20), filter length M = 4. 

 

 

 

Fig. 7. Improvement of LMS-VSS over the LMS-DPS algorithm for humidity (node 10), filter length M = 4. 

 

 

Our LMS-VSS algorithm was evaluated in this case by using MatLab simulation tool on the same Intel 

network [6]. We assume that each sensor sends its reading to the cluster head, and then cluster head 

resends the reading to the sink. As a result, each reading is sent twice, except the readings taken at the 

cluster heads. The clustering method we used is the simple k-means clustering, with k = 10. The value 

k = 10 was selected on a purely intuitive basis and it produced satisfactory results. Other clustering 
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methods may be used as well. As it can be seen from Fig. 8, the clustering parameter was geographic 

position, i.e., Euclidian distance. 

 

 

 
Fig. 8. A clustered view of the Intel Berkeley Research Lab wireless sensor network [6]  

(cluster heads are circled). 

 

 

Additionally, we simulated data aggregation technique at cluster heads. In this scenario, every message 

carries exactly the same amount of data, since the cluster head aggregates the messages from its cluster 

members using a certain aggregation function (Average, Minimum, Maximum, etc) and forwards the 

aggregate to the sink. 

 

The step size was  = 1.2·10
-5

 and the filter length was M = 4 for all the nodes, although changing the 

step-size or the length of the filter for a specific cluster can further improve the performance and the 

results. 

 

We used the cluster containing nodes: 7, 8, 9, 10, 11, 53 and 54. As displayed in Fig. 9, the averages 

for this cluster show that there is a substantial gain of 5 % when using the LMS-VSS algorithm over 

the LMS-DPS algorithm. When data aggregation is assumed to be implemented in the cluster, the 

reduction is far greater and when it is used alongside the LMS-VSS algorithm it results in 97 % 

reduction of the total messages sent for the given error margin of 0.5 °C. 

 

 

7. Conclusions 
 

In this paper, we investigated time-series forecasting technique for WSN based on LMS algorithm 

with variable step size (LMS-VSS). Santini and Römer in [5] have implemented LMS algorithm 

without variable step size (LMS-DPS) and reported maximum data reduction of 92 % for the 

temperature measurements (on Intel dataset [6]) while retaining an accuracy of 0.5°C. 
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Fig. 9. Various savings in the cluster containing the nodes: 7, 8, 9, 10, 11, 53 and 54 (temperature). 

 

 

We exploited our LMS-VSS on two different network topologies: star topology and cluster-based 

topology. We evaluated the LMS-VSS on Intel dataset [6]. Our algorithm outperforms LMS-DPS in 

terms of data reduction and root mean square error for all evaluated nodes. LMS-VSS performs data 

reduction of around 92 % for error margin of 0.5 °C (for the entire Intel network using star topology), 

and maximum data reduction of around 95 % for particular nodes. In cluster-based topology, when 

data aggregation was taken into account LMS-VSS achieves data reduction of around 97 %. 

 

From the simulated results, we can conclude that star network is the most suitable network topology by 

means of energy saving, since each reading is sent only once. If sensors are not within each other radio 

range, cluster-based topology could be used, where each reading is being resend by the cluster head. 

By applying data aggregation at cluster head, this topology can achieve even greater data reduction in 

scenarios where loosing data precision is affordable. It is obvious that the trade-off is application 

specific. 

 

For future work, we intend to investigate our LMS-VSS on tree-based network topology, and to 

evaluate the results using different datasets (from Intel and other networks). We also plan to explore 

machine learning techniques for choosing the best values for the parameter  or implement a scheme 

that will dynamically readjust the filter length. 
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