
Web Interface for Habitat Monitoring using Wireless Sensor Network

Biljana Stojkoska, Danco Davcev
Faculty of Electrical Engineering and Information Technologies, University “Ss. Cyril and Methodius”,

Skopje, Macedonia
biles@feit.ukim.edu.mk, etfdav@feit.ukim.edu.mk

Abstract— In the near future, the wireless sensor networks
(WSN) consisting of hundreds or thousands of small sensor
devices are expected to become increasingly popular due to
their low cost and easy use. As a distributed system, they are
usually deployed in unattended environments and aim to
collect useful information from the sensed area. In this paper,
we present a web interface model for habitat monitoring using
wireless sensor network, which can be used for wide range of
applications. The interface we developed provides a user-
friendly environment and a set of functionalities that easies the
interaction between the end-users and the WSN. Our web
interface is characterized with modularity, which makes
applications easily extensible.

Keywords-Wireless Sensor Networks, Web interface, Habitat
Monitoring, Mica motes

I. INTRODUCTION
Wireless tiny sensors capable of observing physical

phenomena, data processing and communicating, are
expected to be widely used in industry, habitat monitoring,
battlefield surveillance, enemy tracking, etc. During the last
decade WSNs have attracted a great interest in the research
community [1][2]. Most of these works are mainly focused
on theoretical issues such as energy-efficient routing, data
aggregation, localization, deployment, etc. The fundamental
mode of WSN operation is meaningfully different from
traditional networks, due to their constraints (processing
power, memory space, communication range and energy
resources). These unique characteristics make the
development of applications not trivial.

This paperwork is aimed to describe our web interface
model for wireless sensor network, which is partly intended
for collecting and processing environmental sensor readings,
but also for creating network topology. This interface model
can be used as a base for wide range of habitat monitoring
applications, like greenhouse monitoring, climate control etc.

Some of the functionalities provided by our web interface
are real time data transfer, parsing, converting and
processing the raw data. There are also modules for network
configuration (sending commands directly to the nodes),
network visualization, statistical data analysis, chart drawing
etc.

Our model is comprehensive and user friendly. In order
to provide good interaction with the end-users we use
cutting-edge technologies, like Silverlight from Microsoft
[3]. The use of Silverlight in this project was suitable in

order to visualize the network topology and to provide the
freedom to the client to change and update it dynamically.

Next section of this paper positions our work with respect
to the related work. Section three describes the architecture
and the process of designing on the system level. The forth
section explains our web interface model, while the process
of implementation is in-details described in the fifth section.
Section six considers the functionalities of this model.
Finally, we conclude this paper in Section seven.

II. RELATED WORK
Although the WSN can participate in many new and

exciting application areas, in the literature there are very
few modular and generic applications [4] [5].

Mote-VIEW [5] is a full-featured data analyzing
application developed by Crossbow. It provides tools to the
users to visualize results from a sensor network. Readings
arriving from the network are stored in a relational database.
The sophisticated interface is used to check the motes
readings on the fly, visualize the topology, produce graphs
from selected motes, check their status and export the
readings to a spreadsheet.

In comparison with [5], our model presents a web-based
interface, which is customizable and allows the designer to
present the information in different ways. It offers different
statistics based on the needs of the application. Component-
based architecture used in designing the web interface is
highly adaptable, which means that functionalities can be
added and implemented to fulfil the demands of a particular
scenario.

Another generic application environment is jWebDust
[4]. It is Java based application that consists of various
software components that communicate with each other
through well defined interfaces. New services can be
developed and integrated with the modification of existing
services.

In contrast to jWebDust , our web interface is developed
on the top of .NET framework and shows how state-of-the
art technologies can be used for this purpose.

III. SYSTEM ARCHITECTURE AND DESIGN
The particular, the WSN that was deployed follows a

simple system architecture. All sensor nodes send their
sensor readings to the base station, and the base station (sink)
sends the data to the users (clients) via the Internet. Smart

2009 Fifth International Conference on Wireless and Mobile Communications

978-0-7695-3750-4/09 $26.00 © 2009 IEEE

DOI 10.1109/ICWMC.2009.33

157

phones or desktops represent the clients that communicate
with the server. The medium through which the
communication is accomplished is wireless local area
network, e.g. the clients could be anywhere if they have
connection to the Internet (Fig. 1).

The base station serves as a link between the sensors and
the clients. It can simultaneously communicate to both the
sensor network and the clients.

Figure 1. Architecture of the system

The sensor nodes are outdoor deployed and are
programmed to monitor different physical phenomena.
Sensors take samples at pre-defined intervals and send data
to the sink. This data is stored in a database and can be
analyzed and processed on demand. If rapid or undesirable
changes of some crucial values are noticed (e.g. if
parameters exceed the predetermined range) system should
alarm about the new situation in order to prevent or fix the
problem. The whole sensing data stored in the database can
be accessed by users (PC or Smart phones) using web
browsers.

While UML (Unified Modelling Language) is an
evolving standard for modelling and designing visual
systems, it is rarely used for designing embedded systems
[6]. We therefore encourage future developers of WSN
applications to use UML, to implement object-oriented
paradigm and to apply object analysis patterns in the analysis
[7].

The deployment diagram shown in Fig. 2 was used as a
start point in designing the WSN system, which consists of
four components: sensors, sink, web server and clients
(users).

The software required to deploy a wireless sensor
network consists of three tiers: mote tier, server tier and
client tier. Motes run XMesh protocol developed by
Crossbow [8], which enables low-power consumption and
scalability. XServe application runs on the server tier. The
client tier includes a web application that interacts with
XServe and accesses the sensor network through an XML
RPC command interface. In this paper we will propose a
graphical web interface for managing a wireless sensor
network using any computing device worldwide, connected
to Internet. The user should be able to make different queries
in order to access the current and past readings from different
groups of motes.

Figure 2. Deployment diagram

IV. MODEL OF THE WEB INTERFACE
The success of an application generally depends on its

usability issue. Usability can be achieved by proper web
interface design and by the implementation of the
interactive techniques. Client side components are intended
to deliver high quality user interface so that the usage of the
system becomes easy and intuitive [9]. To fulfill these
requirements, we develop a web interface model that uses
state-of-the-art technologies. Additionally, our model is
general, layer-based and modular.

The web interface model is comprised of two Silverlight
components and one web application, dependent on the
Silverlight components. Microsoft Silverlight is a cross-
browser, cross-platform, and cross-device plug-in to deliver
.NET based media experiences and rich interactive
applications for the Web. Windows Communication
Foundation WCF [10] (WSN Service) serves as a
connection between the web interface and the data provider
(Fig. 3).

The first Silverlight component is used for data acquiring
from the PostgreSQL database and displays up-to-date
sensor information. Currently the only database supported
by XServe is PostgreSQL database, which is an Object-
Relational Database Management System [11].

The second Silverlight component creates the topology
of the sensor network on the basis of the last data stored in
the database (Fig. 7). The process of retrieving the sensor
data, as described earlier, includes communication with the
WCF Service.

158

Figure 3. Model of web interface

WCF was selected as the best practice for writing

services with Silverlight [10]. As Silverlight plug-ins run
completely on the client computer, Silverlight applications
are isolated from the entities that are managed on the server.
In other words, Silverlight cannot access a database directly;
therefore service-based communication through technologies
such as WCF is required.

The Silverlight applications (presentation layer) are made
up of a handful of user controls and styles. The presentation
layer communicates with the server using asynchronous calls
through WCF (Fig. 4), whereas WCF calls functions from
the business layer [12]. The business layer provides data
from the PostgreSQL database, using the data provider (data
layer) NpgSQL [13], formats the received data and hands the
data to the WCF Service. NpgSQL is a .Net Data Provider
for Postgresql. It allows any program developed for .Net
framework to send and receive data with a PostgreSQL
server.

Figure 4. Web interface layers

V. IMPLEMENTATION
In this section we are going to describe in details

explanation of the implementation of WSN and our web
interface.

A. Programming the motes and collecting the data
For this project we used Berkeley MICA motes, which

can be purchased from Crossbow technology [8], Inc (see
Fig. 5). They are equipped with a radio module, 4 MHz
microprocessor, memory, two AA batteries and a suite of
sensors. The motes run under TinyOS operating system,
which is primarily intended for embedded systems that have
limitations and addresses its resources concurrency and
resource management. TinyOS, libraries and applications are
all written in NesC, which is structured, component-based
language, very similar with the programming language C.

The client (mote) tier consists of the cloud of sensor
nodes, that run XMesh software library, which enables
communication between the nodes in the WSN, and
implements algorithms for efficient multi-hop routing.
XMesh protocol stack is flexible and powerful platform built
on top of the TinyOS operating system. The server tier is a
facility that deals with buffering of data coming from the
motes.

The central application here is XServe. It runs on a PC
and serves as the primary gateway between WSN and the
applications that interact with the WSN. XServe provides
services to route data to and from the network. Loadable
plug-in modules and XML configuration files are used for
customizing different applications wishing to interact with
the network. Interaction with XServe can be done directly
(terminal interface) or through a powerful XML RPC
command interface.

Figure 5. Mica motes

B. Web interface implementation
The WCF Service named NpgSqlService implements the

interface INpgSqlService. The interface INpgSqlService
contains definitions for service contract, data contract and
operation contract. A service contract specifies how an
endpoint communicates to the outside world. It is a statement
about a set of specific messages. A service operation is a
single message exchange. Therefore, an operation contract
defines the parameters and return type of a service operation.
The data types a service uses must be described in metadata
to enable others to interoperate with the service. The
descriptions of the data types are known as the data contract,
and the types can be used in any part of a message, for
example, as parameters or return types. If the service is using

159

only simple types, there is no need to explicitly use data
contracts.

The parsing of the packet is done in accordance with an
xml configuration file, specific for each data acquisition
application. If the packet fulfills the conditions, then the data
are extracted from the received bytes and converted with the
conversion functions given in the configuration file. For the
purpose of conversion, a special library empowers the
project. It is called bcParserNET and it enables executing the
conversion functions retrieved as string values from the
configuration file. In order that the information on the web
page is up-to-date, the AJAX (Asynchronous JavaScript and
XML) [14] capabilities are utilized. At a specified timer
interval, an AJAX calls a specified function that checks to
see if new packets have arrived. AJAX enables real time data
transfer and dynamic graphs. It provides partial update of the
web page e.g. the topology can be changed without causing
the entire HTML page to reload. The existing tools in AJAX
carry on a background conversation with the server,
retrieving only the information the user needs at whatever
interval the application program requires.

Controlled by the users, the web site tries to establish a
socket connection to XServe. The communication with
XServe is based on the Serial Forwarder Protocol, which
allows enterprise applications to send and receive raw data to
the sensor network. As soon as the socket connection is
established, the web page starts to receive data
asynchronously. Since Serial Forwarder Protocol sends raw
data, there is a necessity to add the functionality of parsing,
converting and processing the received data on the web site.
When a packet is received, it is first checked if it is a sensor
type packet.

VI. FUNCTIONALITIES OF THE WEB INTERFACE
From the users’ point of view, the first contact with the

web page shows historical data about the sensors. The first
Silverlight component named SensorDataGrid acquires data
from the PostgreSQL database, through the WCF service. It
shows the last data retrieved from the sensors e.g. saved in
the database. This application makes an asynchronous call to
the WCF Service, defines an event handler and when the
retrieval of the data is completed, the event handler displays
the latest sensor readings.

Figure 6. Sensor readings

Fig. 6 shows that the client can request for live stream, by
checking Acquire Live Data. Before the real time data
transfer starts, the user needs to make choice on the
application name. The dropdown list that appears after
checking shows the names of the data acquisition
applications supported by XServe. The application name
needs to be compatible with the data acquisition board. If the
application name is not the appropriate one, the packets that
are received are rejected and the web application alerts the
user to check if the application name is the correct one. By
clicking on the play button, the real time data transfer starts.

A great advantage of this application is that it can work
with any type of sensor. As long as the correct application
name is selected, this project converts the received bytes in
eligible and logical, and above all, informative content.

The second Silverlight component was used for
generating the topology of the sensor network, using
available information from the database (Fig. 7). A great
advantage of Silverlight that we found useful in the creation
of the topology is that Silverlight C# code behind the
controls generated in xml. It allowed giving features to the
nodes, links and the whole network on the picture. There are
user controls and code behind files which lead to the
Silverlight content on the picture. The web page is enriched
with the animations that Silverlight supports. The user has
the freedom to add and remove the nodes, to change their
position or any other attribute, to add and remove links and
so on.

Figure 7. Topology control

The link Statistics (Fig. 8) leads to the web page that
processes the data and delivers the required result. This
module is used for calculating the maximum, minimum or
average value of a specific sensor, e.g. sensor for
temperature, light or voltage. The user can also provide a
date, so that only the values measured after that date are
included in the calculation. The last three queries are shown
on the right side of the page. If no date is obtained, the web
page processes all the results in the database. The client can

160

also choose which nodes he/she wants to have results for. All
the nodes can be selected or deselected. The result refers
only to the values for the selected nodes.

Figure 8. Statistics

The last page has the ability to show how the
environment conditions change with time. It can draw graphs
for the selected sensor measure. The line changes with time
showing the ups and downs of the selected measure. On Fig.
9, the graph shows the temperature values for the selected
nodes in the selected time interval. This page is created with
the help of a reusable component called ZedGraph [15]. This
component is open source and is used to draw graphs for a
given set of points. However, in order that we create a
dynamic graph, changes needed to be made. The graph
changes at each second, therefore the scale of the x axis
changes and new values from the database are retrieved for
the current second e.g. new points are added to the graph
line. All points in the shown time interval are saved
temporarily for that session so that they can be redrawn,
when the graph updates. The scale of the Y axis is
determined dynamically. Bearing in mind the selected nodes,
the application calculates the maximum and the minimum
values of the selected feature, e.g. temperature. The user has
the option to save the graph as a picture.

If the TextBox Since is left empty, the web page
calculates the most recent data received and shows the latest
data changes. Therefore, if a live stream flows, the graph will
show the current data flow.

Figure 9. The flow of the temperature changing at each second

We implemented another module to increase interaction
with the system. Since WSN nodes are usually deployed in
vast regions and are operating unattended, we sometimes
need to know the location of a particular node. Nodes
localization is one of the most challenging research topics in
WSN. In the last few years, many researchers have
investigated different algorithms for nodes localization.
Although some of them are quite successful, there is still
work to be done in this field. Even if we use localization
algorithm, it rarely can predict the position without error. For
this reasons, within this application, we developed an
interactive module. The users can remotely send commands
to the sensor nodes (such as “sound on”, “sound off”. “green
led on|” etc), and nodes will take particular actions. For
example, the employee in the greenhouse can send command
from the smart phones (Fig. 10). This is a simple way to find
lost node in a large network. This can help users for
successful management of the system. Additionally, users
can send commands such as “wake” or “sleep” (Fig. 11). For
example, if one node runs out of battery, it can cause the
network to be divided into two parts and stop operating.
Hence, these commands can periodically activate or
deactivate particular nodes or part of the network in order to
extend the lifetime of the whole network.

Figure 10. Smart phone controlling the WSN

161

Figure 11. Interacting with the WSN

In order to identify possible drawbacks that can be
repaired and redesigned, we made a simple evaluation. The
web interface was tested by many users, most of whom were
IT engineers and students.

The questions that examine the interface usability and
provide information for future upgrades are:

1. Do you think we should extend the module
Statistics?

2. Are you satisfied with the way the charts are
presented?

3. Do you like the colors chosen for the interface?
4. What is your opinion about Silverlight topology

generator?
5. Do you consider we should automate the process of

nodes localization?
The X axis in (Fig. 12) represents questions with the

same number from questionnaire above.

0
2
4
6
8

10
12
14

Number
of

answers

1 2 3 4 5

Question number

Interface Usability

positive
negative

Figure 12. Results from interface usability part of questionnaire

General opinion among participans for the interface

usability is positive. Interface is functional and suggestions
for addind additional moduls will be included in the future
project.

VII. CONCLUSION
In this paper, we presented a web interface model for

typical wireless sensor network application. The whole
system architecture was presented in details, beginning from
the sensor node hardware to the management system and the
web interface. By using up-to-date technologies we
developed a very functional web interface for the purpose of
WSN applications for habitat monitoring. The sensed data
are real-time available, so the users on Internet can
accomplish remote managing and controlling the network.
WSN topologies can be generated by allowing users to give
features and links to the nodes of the network. For future
work, we intend to implement a localization algorithm in
order to automate the process of topology generation.

REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A survey on

sensor networks. In IEEE Communication Magazine, 40(8): 102-114,
2002.

[2] J. M. Hellerstein, W. Hong, S. R. Maden, “The Sensor Spectrum:
Technology, Trends and Requirements”, SIGMOD Record, Vol.32,
No. 4, December 2003; pp. 22 – 27

[3] http://www.microsoft.com/SILVERLIGHT/ [May 18, 2009]
[4] I. Chatzigiannakis, G. Mylonas, S. E. Nikoletseas, “jWebDust : A

java-based generic application environment for wireless sensor
networks,” in DCOSS, 2005, pp. 376---386.

[5] M. Turon, J. Suh, MOTE-VIEW: A Sensor Network Monitoring and
Management Tool, In The 2nd IEEE Workshop on Embedded Network
Sensors (EmNets’05), May. 2005

[6] S. Konrad, B.H.C. Cheng, L.A. Campbell, “Object Analysis Patterns
for Embedded Systems”, IEEE Transactions on Software Engineering
Vol 30, Issue 12, Dec.2004, pp. 970- 992

[7] http://www.uml.org/ [May 18, 2009]
[8] Crossbow, Inc.

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MIC
Az_Datasheet.pdf [May 18, 2009]

[9] A. Sears, J. A. Jacko (Eds) The Human-Computer Interaction
Handbook. (2nd edition) CRC Press, 2007. ISBN 0-8058-5870-9;

[10] S. Gupta “A Performance Comparison of Windows Communication
Foundation (WCF) with Existing Distributed Communication
Technologies,”
http://msdn.microsoft.com/en-us/library/bb310550.aspx
[May 18, 2009]

[11] www.postgresql.org [May 18, 2009]
[12] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart

of Software. Boston, MA: Addison-Wesley Professional, 2003.
[13] www.npgsql.com/ [May 18, 2009]
[14] http://www.ajax.org/ [May 18, 2009]
[15] www.zedgraph.org/ [May 18, 2009]

162

