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Abstract — Energy is the most important resource in 

state-of-the-art Internet of Things solutions. There are a lot of 

concepts and techniques dedicated to save energy, mainly 

focused to reduce transmission, since the energy used for 

preprocessing (encoding) is incomparable smaller than energy 

used for broadcasting. If applications do not require real-time 

measurements, data compression is one solution to energy 

saving problem. The goal of this paper was to develop new 

coding scheme for delta compression, that can be used for 

efficient data compression of temporally correlated data, such 

as temperature measurements coming from different smart 

devices. We proved that our coding scheme can achieve up to 

85% energy saving. Compared to other coding techniques, our 

scheme has greater compression ratio and lower memory 

requirements. 

Keywords — data reduction, delta compression, internet of 

things. 

I. INTRODUCTION 

he combination of information technologies and 

advanced communication and sensing systems, creates 

a variety of new potential applications under the umbrella of  

Internet of Things (IoT). IoT represents a worldwide 

network of uniquely addressable interconnected smart 

objects or smart devices [1]. In IoT, smart objects have its 

own processor, memory and module for communication 

(usually wireless). The power supply for the devices can be 

provided from the traditional electric grid, but also, many 

devices come with battery or distributed renewable power 

supply, such as solar panel. 

Energy saving for wireless devices has been very 

challenging problem for decades. In IoT context, energy 

saving is not only important from power supply perspective, 

but also from network perspective. Namely, new 

applications are constantly fed with raw data coming from 

many sensors. Therefore, reducing network traffic is very 

important in order to avoid saturation and to achieve many 

devices to work cooperatively within the same data hub [2].  

Data compression is suitable approach in applications 

were data are not needed in real time. Other limitation is the 
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fact that implementing complex algorithm for energy saving 

is constrained by the limited memory, capacity and 

processor power of the smart devices. Therefore, in this 

paper, we aim to develop a lightweight algorithm for data 

compression that is based on delta coding scheme.  

Similar approaches can be found in the literature. For 

example, authors in [3] developed lossless compression 

technique for temperature measurements from Telos motes 

with 14-bit analog-to-digital converter (ADC) and achieved 

compression ratios of 66.99% and 67.33%. Authors in [4] 

investigate a dynamic lossy compression method on smart 

meters data and have a compression gain of up to 65%. In 

[5] a lightweight adaptive lossless data compression scheme 

based on two code options performs compression 

performance up to 74.02% on humidity and temperature 

measurements from a 14-bit ADC. We investigated our 

algorithm on temperature measurements obtained in indoor 

environment from MicaZ [6] devices with 12-bit ADC, and 

proved that our coding scheme can achieve up to 85% 

energy saving. Since the evaluation for different coding 

scheme is evaluated on different dataset, it is very difficult 

to compare compression techniques. Therefore, we 

developed a LZW [7] based scheme to show that our 

approach performs better. We also want to highlight that our 

scheme is not the most optimal regarding compression ratio, 

but is very lightweight, computationally cheap and suitable 

for IoT devices with limited resources. 

The rest of this paper is organized as follows. The next 

section provides statistical processing on temperature 

sensor measurements. Section III provides the design of our 

coding scheme. Section IV examines the experimental 

results. Finally, we conclude this paper in section V. 

II. STATISTICAL PROCESSING OF TEMPERATURE 

MEASUREMENTS 

With statistical processing of a big amount of data, we 

can get more accurate stochastic model of the process. For 

this purpose, we collected “raw” temperature measurements 

from MICAz Crossbow [6] smart devices, also known as 

nodes or motes, identified with a unique identification 

number “nodeid”. MICAz use very efficient, open-source 

TinyOs operating system, developed by UC Berkeley [8], 

optimized to work on devices with limited resources. 

TinyOs is written in NesC (Network embedded systems C) 

programming languages. For our purpose, we use the data 

gathered using MOTE-VIEW Application by Crossbow 

Technology Inc. [6]. We use temperature measurements 

obtained from the MICAz nodes for a period of one week, 
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sampled on 3 minutes. Each temperature value is 

represented as a 10 bits code produced directly from the 

output of the smart device ADC. The ADC output is saved 

in SD internal memory, and then it is send to the base 

station. To store this data, 2B are allocated. By using only 

10 bits long ADC output, we have redundancy of 6 bits for 

each temperature data.  

Temperature process is a slow changing process and there 

is a temporal correlation, i.e. temperature value of the next 

sampling moment depends on the temperature value of 

previous sampling moment. If the ADC output is 10 bits, up 

to 1024 states (symbols) can be generated. Each symbol 

from the ADC output is statistically depended, so the next 

state depends of the previous states and not only from the 

probability of the symbol. If calculating Shannon entropy of 

this source is possible, then with proper coding of these 

symbols, it would be possible to decrease average length of 

the code word and to achieve efficient data transfer [9]. 

Let assume that the frequency of the ADC output samples 

is fs. Then the sample period is T=1/fs, so the time difference 

between the two sample moments is T. Let u(nT), u(nT)∈S 

stands for the ADC output’s state in discrete moments of 

time, where n=0…∞ . The state of the ADC output in 

random moment kT is u(kT). The first difference of the ADC 

output is defined with the equation (1) and (2).    

∆(kT)= u[kT] – u[(k-1)T]                               (1)  

∆(k)= u[k] – u[(k-1)]                               (2)  

Using statistic processing on this data we achieve to find 

the distribution of the probability of ∆, for each sensor node. 

The probability of occurrence of ∆ will be shown trough 

histograms, as a Gaussian approximation for each 

histogram. 

As can be seen in Fig. 1 and Fig.2, the distribution of the 

probability of ∆ follows the Gaussian law for distribution of 

probability. If we make an approximation that the random 

variable ∆ has a Gaussian distribution and if we analyze the 

average value and the variance of this distribution, we will 

see that the most probable values that ∆ can get are 0, -1 and 

1. Using this we can do statistic encoding on the values that 

∆ can get. According to the encoding theory, those symbols 

that have higher probability of occurrence should be 

encoded with less bits, and the symbols that have lower 

probability of occurrence should be encoded using more 

bits. 

 

 
Fig. 1. Histogram of distribution of the probability of ∆ 

for the node 37. 

 
 

Fig. 2. Histogram of distribution of the probability of ∆ 

for the node 25. 

III. DELTA ENCODING SCHEME 

There are many optimal code schemes that can be used to 

encode ∆ [10][11]. One example of that is the Huffman 

code, which is characterized with variable length of the code 

words and it is a prefix code (no code word is a prefix to 

other code word). Huffman code can be used for IoT data 

compression, but in reality, it imposes a few problems. 

Since the distribution of ∆ is gained using statistic methods, 

this distribution does not give us a real view of the process. 

According to this, optimality of the code will be 

questionable. In real time, the variance and the mean value 

of this process are variable, so will the probability of 

occurrence of the symbols. Another big problem would 

appear from the number of symbols that ∆ theoretically can 

accept. Since we cannot certainly depend on the statistic 

analyze, we cannot be certain that ∆ difference will not 

accept some higher value. The Huffman code is based on 

building a code tree for the symbols (or a lookup table), that 

takes a lot of memory and a lot of processing resources for 

locating the symbols. Due to these limitations, if there are 

many symbols in the lookup table, Huffman scheme would 

be hard to implement and also inefficient, especially for 

smart IoT devices with limited processing capabilities.  

Therefore, in this paper we propose an encoding method 

that is avoiding this implementing problem and the problem 

of eventually big temperature difference at the two sample 

moments. This scheme can solve the problem of randomly 

high value for ∆, but in this case, we would not use 

compression and we will send a redounded information. But 

it is approved because of the very small probability of a big 

value for ∆. This code scheme is relatively easy to 

implement and the calculations during the encoding are on a 

minimum rate. The decoding algorithm is also very simple. 

In our coding scheme, encoding data are not sent 

synchronically, but when the memory space given for 

inscribing the encoding words is fulfilled. This is because Δ 

difference is coded with variable length codes. The 

difference between the present and the previous value of the 

temperature (Δ difference) is encoded with this coding 

scheme. The choice of the minimum difference, which this 

code scheme can decode, depends of the threshold of 

sensibility of the application, since some applications 

require larger precision of the measured values. The 

threshold of sensibility is defined as the smaller value of the 



 

difference between two measurements for which the 

application is interested in. In other words, the changes of 

the value of the physical magnitude, which are smaller from 

this threshold of the application, don’t have any influence in 

the functionality of the application. The threshold of 

sensibility of the application measured with units of physical 

magnitude (for temperature °C, °F, K) we will mark with δ, 
and the threshold of sensibility of the application in raw 

format we will mark with θ. For example, if its measure of 

temperature with measuring rectifier that have linear 

characteristic and measurable interval from 0 – 100 °C, and 

the exit of this rectifier is digitalized with 10 bits ADC, the 

threshold of sensibility of the rectifier is about 0.1 °C per 

least significant bit (LSB), i.e. 0.1 °C/LSB. If the 

application has a threshold of sensibility of δ = 0.5 °C, then 

θ =5. If we want to reach the maximum punctuality during 

encoding, then θ should equalize with the threshold of 

sensibility of the measuring rectifier (θ = 1(LSB)). 

A. Data organization of Δ frame 

The encoding data are sent organized in structure called 

frame. The frame has one field that contains the primary 

value of the temperature and other field (memory buffer) in 

which the codes for the value of Δ in every sampling 

moment are inscribed in sequence (Fig. 3). The memory 

buffer in our case is with 32B length. We named this buffer 

as FIFO register with 256 bites length. The inscribing of the 

code of Δ is fulfilled from right, so the register is shifted to 

the left for as many bit positions as the length of the code 

word (Fig. 3). 

 
 

Fig. 3. Data organization of Δ frame 

B. Δ code scheme 

Code words, which are used for encoding Δ, are reached 

with combination of four basic 2bit codes. Three of this bit 

code words are used for encoding of the most probable 

values of Δ, 0, -θ and θ. The four 2bit code word is used as a 

prefix and suffix for reaching code words for the rest values 

of Δ. Table 1 shows the binary values of these four codes 

and their marks. 

Code words for Δ, when the value of (abs(Δ)DIVθ) ≥ 2), 

are reached when as a prefix of the code word is put the code 

FLAG, and then, depending of the sign of Δ are put as much 

basic codes as amounts ((abs (Δ) DIV θ) – 1) ( if Δ < 0 the 

code DOWNF is used, if Δ > 0 the code UPF is used). At the 

end as a suffix, the code FLAG is used. Table 2 shows the 

codes of few of the values Δ when (abs(Δ)DIVθ) ≥ 2). 

From Table 2 we can see that the length of code words 

grows when we increase the value of abs(Δ). For values of 

abs(Δ) > 7θ we do not have compression in the data 

anymore. But with the previous implemented statistical 

analyses we saw that the probability abs(Δ) > 7θ (in this 

statistic data processing θ = 1) is very small. With the usage 

of this delta code scheme there is no possibility to occur 

error in decoding, because it can decode any value of Δ, but 

the cost will be paid in transfer of the redundant data i.e. the 

length of the code word will be bigger than the length of the 

authentic symbol. 

 
TABLE 1: BASIC CODE IN DELTA CODE SCHEME. 

Binary code Mark Δ   

00 EQU 0 

01 FLAG / 

10 UP  

11 DOWN -  

1 

0 

UPF 

DOWNF 

/ 

/ 

 

TABLE 2: ENCODING OF Δ WHEN abs(Δ)DIVθ) ≥ 2. 

Binary 

code 
Mark Δ   

10110 FLAG UPF FLAG 2θ 
10010 FLAG DOWNF FLAG -2θ 
101110 FLAG UPF UPF FLAG 3θ 
100010 FLAG DOWNF DOWNF FLAG -3θ 
1011110 FLAG UPF UPF UPF FLAG 4θ 
1000010 FLAG DOWNF DOWNF DOWNF FLAG   -4θ 

IV. EXPERIMENTAL RESULTS 

In order to explore the efficiency of compression based 

on Delta coding, the same database was used as in the case 

of statistic processing of temperature measurements. For our 

smart devices based on TinyOs (TOS) platform, data are 

sent organized in packets. The packet, beside the 

application data, contains and so called overhead data 

(Header and CRC) (Fig. 4). The magnitude of the Δ frame is 

chosen to be the same with the maximum permitted 

magnitude of the application data which can be sent in one 

packet, which contributes to decrease the sent overhead. 

Fig. 4 shows the data structure of the TOS packet. 

 
Fig. 4. Data structure of TOS packet 

The goal of this analysis was to obtain the number of TOS 

packets sent by the smart device with and without coding, 

respectively. Additionally, the number of TOS packets can 

be used to calculate the energy saving achieved by applying 

delta coding scheme.  

The compression ratio per frame (CRPF) for Δ algorithm 

is defined as relation of the number of encoded values in one 

frame (EVPF) and the number of encoded values which can 

be put in the memory space with length of one frame 

(NVPF).  

                                      
NVPF

EVPF
 CRPF =

                           (3) 

The compression ratio (CR) for N sent frames can be 

obtained using (4). 
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We examine two nodes (nodeid=25 and nodeid=37). 

Number of temperature data values was 3861 for nodeid=25 

and 4016 for nodeid=37. The results from our analysis are 

given in Fig. 5 and Fig. 6, for two different values for θ.  
If Ep is the energy that the node uses for sending one 

packet, No number of packets send without coding, Ne is the 

number of packets send with coding, than data 

communication energy savings is calculated with (5).  

            100)1(100)1([%]
o

e

po

pe
s

N

N

EN

EN
E −=−=              (5) 

Data communication energy savings (in %) when ∆ 

encoding is used is given in Fig. 7. 

Different algorithms can be used for data compression 

(LZ77, LZ78, LZW, Gzip, etc.). The aim of these 

algorithms is to decrease the magnitude of files with 

encoding.  At these algorithms the efficiency does not 

depend just from the compression ratio that that algorithm 

reaches, also depends from the complexity of that algorithm. 

For example, if we use complex algorithm, we will increase 

the power the node spends for complex calculations. 

Therefore, we performed a comparison between our Δ 

coding scheme and well-known LZW based coding from the 

literature, i.e. SLZW [7], a modification of LZW optimized 

for senor measurements. We considered 12 bits long code 

words, and 750В and 1500В memory space. The results are 

presented in Fig. 8. The memory required for both LZW 

algorithms was more than 3KB, while the memory required 

for our coding scheme was only 50B.  

 
Fig. 5. Compression ratios per frame for the node with 

nodeid=25. 

 
Fig. 6. Compression ratios per frame for the node with 

nodeid=37. 

 
Fig. 7. Data communication energy savings (in %) when 

∆ encoding is used. 

 

 
Fig. 8. Comparison of LZW and our coding scheme. 

V. CONCLUSION 

In this paper we investigated Delta coding as a technique 

for energy saving in IoT environment. We showed that this 

technique can achieve up to 85% energy saving if applied on 

data that are temporally corelated. Therefore, for 

applications where the sensor measurements are not needed 

in real-time, using Delta coding is highly recommendable. 
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