
Accelerat ing the world's research.

Data Compression for Energy
Efficient IoT Solutions

Biljana Stojkoska

Telfor 2017

Cite this paper

Get the citation in MLA, APA, or Chicago styles

Downloaded from Academia.edu

Related papers

A review of Internet of Things for smart home: Challenges and solut ions
Biljana Stojkoska

Accepted Manuscript A review of Internet of Things for smart home: Challenges and solut ions
Ahmed Shoeeb

An embedded system architecture for wireless neural recording
Jack Judy

Download a PDF Pack of the best related papers

https://www.academia.edu/35257814/Data_Compression_for_Energy_Efficient_IoT_Solutions?auto=citations&from=cover_page
https://www.academia.edu/35257814/Data_Compression_for_Energy_Efficient_IoT_Solutions?from=cover_page
https://www.academia.edu/30733027/A_review_of_Internet_of_Things_for_smart_home_Challenges_and_solutions?from=cover_page
https://www.academia.edu/34066607/Accepted_Manuscript_A_review_of_Internet_of_Things_for_smart_home_Challenges_and_solutions?from=cover_page
https://www.academia.edu/1115225/An_embedded_system_architecture_for_wireless_neural_recording?from=cover_page
https://www.academia.edu/35257814/Data_Compression_for_Energy_Efficient_IoT_Solutions?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

25th Telecommunications forum TELFOR 2017 Serbia, Belgrade, November 21-22, 2017.

978-1-5386-3073-0/17/$31.00 ©2017 IEEE

Abstract — Energy is the most important resource in

state-of-the-art Internet of Things solutions. There are a lot of

concepts and techniques dedicated to save energy, mainly

focused to reduce transmission, since the energy used for

preprocessing (encoding) is incomparable smaller than energy

used for broadcasting. If applications do not require real-time

measurements, data compression is one solution to energy

saving problem. The goal of this paper was to develop new

coding scheme for delta compression, that can be used for

efficient data compression of temporally correlated data, such

as temperature measurements coming from different smart

devices. We proved that our coding scheme can achieve up to

85% energy saving. Compared to other coding techniques, our

scheme has greater compression ratio and lower memory

requirements.

Keywords — data reduction, delta compression, internet of

things.

I. INTRODUCTION

he combination of information technologies and

advanced communication and sensing systems, creates

a variety of new potential applications under the umbrella of

Internet of Things (IoT). IoT represents a worldwide

network of uniquely addressable interconnected smart

objects or smart devices [1]. In IoT, smart objects have its

own processor, memory and module for communication

(usually wireless). The power supply for the devices can be

provided from the traditional electric grid, but also, many

devices come with battery or distributed renewable power

supply, such as solar panel.

Energy saving for wireless devices has been very

challenging problem for decades. In IoT context, energy

saving is not only important from power supply perspective,

but also from network perspective. Namely, new

applications are constantly fed with raw data coming from

many sensors. Therefore, reducing network traffic is very

important in order to avoid saturation and to achieve many

devices to work cooperatively within the same data hub [2].

Data compression is suitable approach in applications

were data are not needed in real time. Other limitation is the

This project was financially supported by the Faculty of Computer

Science and Engineering.

Biljana Risteska Stojkoska is with the Faculty of Computer Science

and Engineering, University Ss. Cyril and Methodius, Rugjer Boshkovikj

16, P.O. Box 393, 1000 Skopje, Macedonia (e-mail:

biljana.stojkoska@finki.ukim.mk). Zoran Nikolovski is with the Faculty

of Electrical Engineering and Information Technologies, University Ss.

Cyril and Methodius, Rugjer Boshkovik bb,

P.O. Box 574, 1000 Skopje, Macedonia.

fact that implementing complex algorithm for energy saving

is constrained by the limited memory, capacity and

processor power of the smart devices. Therefore, in this

paper, we aim to develop a lightweight algorithm for data

compression that is based on delta coding scheme.

Similar approaches can be found in the literature. For

example, authors in [3] developed lossless compression

technique for temperature measurements from Telos motes

with 14-bit analog-to-digital converter (ADC) and achieved

compression ratios of 66.99% and 67.33%. Authors in [4]

investigate a dynamic lossy compression method on smart

meters data and have a compression gain of up to 65%. In

[5] a lightweight adaptive lossless data compression scheme

based on two code options performs compression

performance up to 74.02% on humidity and temperature

measurements from a 14-bit ADC. We investigated our

algorithm on temperature measurements obtained in indoor

environment from MicaZ [6] devices with 12-bit ADC, and

proved that our coding scheme can achieve up to 85%

energy saving. Since the evaluation for different coding

scheme is evaluated on different dataset, it is very difficult

to compare compression techniques. Therefore, we

developed a LZW [7] based scheme to show that our

approach performs better. We also want to highlight that our

scheme is not the most optimal regarding compression ratio,

but is very lightweight, computationally cheap and suitable

for IoT devices with limited resources.

The rest of this paper is organized as follows. The next

section provides statistical processing on temperature

sensor measurements. Section III provides the design of our

coding scheme. Section IV examines the experimental

results. Finally, we conclude this paper in section V.

II. STATISTICAL PROCESSING OF TEMPERATURE

MEASUREMENTS

With statistical processing of a big amount of data, we

can get more accurate stochastic model of the process. For

this purpose, we collected “raw” temperature measurements

from MICAz Crossbow [6] smart devices, also known as

nodes or motes, identified with a unique identification

number “nodeid”. MICAz use very efficient, open-source

TinyOs operating system, developed by UC Berkeley [8],

optimized to work on devices with limited resources.

TinyOs is written in NesC (Network embedded systems C)

programming languages. For our purpose, we use the data

gathered using MOTE-VIEW Application by Crossbow

Technology Inc. [6]. We use temperature measurements

obtained from the MICAz nodes for a period of one week,

Data Compression for Energy Efficient IoT
Solutions

Biljana Risteska Stojkoska, Member, IEEE, and Zoran Nikolovski

T

sampled on 3 minutes. Each temperature value is

represented as a 10 bits code produced directly from the

output of the smart device ADC. The ADC output is saved

in SD internal memory, and then it is send to the base

station. To store this data, 2B are allocated. By using only

10 bits long ADC output, we have redundancy of 6 bits for

each temperature data.

Temperature process is a slow changing process and there

is a temporal correlation, i.e. temperature value of the next

sampling moment depends on the temperature value of

previous sampling moment. If the ADC output is 10 bits, up

to 1024 states (symbols) can be generated. Each symbol

from the ADC output is statistically depended, so the next

state depends of the previous states and not only from the

probability of the symbol. If calculating Shannon entropy of

this source is possible, then with proper coding of these

symbols, it would be possible to decrease average length of

the code word and to achieve efficient data transfer [9].

Let assume that the frequency of the ADC output samples

is fs. Then the sample period is T=1/fs, so the time difference

between the two sample moments is T. Let u(nT), u(nT)∈S

stands for the ADC output’s state in discrete moments of

time, where n=0…∞ . The state of the ADC output in

random moment kT is u(kT). The first difference of the ADC

output is defined with the equation (1) and (2).

∆(kT)= u[kT] – u[(k-1)T] (1)

∆(k)= u[k] – u[(k-1)] (2)

Using statistic processing on this data we achieve to find

the distribution of the probability of ∆, for each sensor node.

The probability of occurrence of ∆ will be shown trough

histograms, as a Gaussian approximation for each

histogram.

As can be seen in Fig. 1 and Fig.2, the distribution of the

probability of ∆ follows the Gaussian law for distribution of

probability. If we make an approximation that the random

variable ∆ has a Gaussian distribution and if we analyze the

average value and the variance of this distribution, we will

see that the most probable values that ∆ can get are 0, -1 and

1. Using this we can do statistic encoding on the values that

∆ can get. According to the encoding theory, those symbols

that have higher probability of occurrence should be

encoded with less bits, and the symbols that have lower

probability of occurrence should be encoded using more

bits.

Fig. 1. Histogram of distribution of the probability of ∆

for the node 37.

Fig. 2. Histogram of distribution of the probability of ∆

for the node 25.

III. DELTA ENCODING SCHEME

There are many optimal code schemes that can be used to

encode ∆ [10][11]. One example of that is the Huffman

code, which is characterized with variable length of the code

words and it is a prefix code (no code word is a prefix to

other code word). Huffman code can be used for IoT data

compression, but in reality, it imposes a few problems.

Since the distribution of ∆ is gained using statistic methods,

this distribution does not give us a real view of the process.

According to this, optimality of the code will be

questionable. In real time, the variance and the mean value

of this process are variable, so will the probability of

occurrence of the symbols. Another big problem would

appear from the number of symbols that ∆ theoretically can

accept. Since we cannot certainly depend on the statistic

analyze, we cannot be certain that ∆ difference will not

accept some higher value. The Huffman code is based on

building a code tree for the symbols (or a lookup table), that

takes a lot of memory and a lot of processing resources for

locating the symbols. Due to these limitations, if there are

many symbols in the lookup table, Huffman scheme would

be hard to implement and also inefficient, especially for

smart IoT devices with limited processing capabilities.

Therefore, in this paper we propose an encoding method

that is avoiding this implementing problem and the problem

of eventually big temperature difference at the two sample

moments. This scheme can solve the problem of randomly

high value for ∆, but in this case, we would not use

compression and we will send a redounded information. But

it is approved because of the very small probability of a big

value for ∆. This code scheme is relatively easy to

implement and the calculations during the encoding are on a

minimum rate. The decoding algorithm is also very simple.

In our coding scheme, encoding data are not sent

synchronically, but when the memory space given for

inscribing the encoding words is fulfilled. This is because Δ

difference is coded with variable length codes. The

difference between the present and the previous value of the

temperature (Δ difference) is encoded with this coding

scheme. The choice of the minimum difference, which this

code scheme can decode, depends of the threshold of

sensibility of the application, since some applications

require larger precision of the measured values. The

threshold of sensibility is defined as the smaller value of the

difference between two measurements for which the

application is interested in. In other words, the changes of

the value of the physical magnitude, which are smaller from

this threshold of the application, don’t have any influence in

the functionality of the application. The threshold of

sensibility of the application measured with units of physical

magnitude (for temperature °C, °F, K) we will mark with δ,
and the threshold of sensibility of the application in raw

format we will mark with θ. For example, if its measure of

temperature with measuring rectifier that have linear

characteristic and measurable interval from 0 – 100 °C, and

the exit of this rectifier is digitalized with 10 bits ADC, the

threshold of sensibility of the rectifier is about 0.1 °C per

least significant bit (LSB), i.e. 0.1 °C/LSB. If the

application has a threshold of sensibility of δ = 0.5 °C, then

θ =5. If we want to reach the maximum punctuality during

encoding, then θ should equalize with the threshold of

sensibility of the measuring rectifier (θ = 1(LSB)).

A. Data organization of Δ frame

The encoding data are sent organized in structure called

frame. The frame has one field that contains the primary

value of the temperature and other field (memory buffer) in

which the codes for the value of Δ in every sampling

moment are inscribed in sequence (Fig. 3). The memory

buffer in our case is with 32B length. We named this buffer

as FIFO register with 256 bites length. The inscribing of the

code of Δ is fulfilled from right, so the register is shifted to

the left for as many bit positions as the length of the code

word (Fig. 3).

Fig. 3. Data organization of Δ frame

B. Δ code scheme

Code words, which are used for encoding Δ, are reached

with combination of four basic 2bit codes. Three of this bit

code words are used for encoding of the most probable

values of Δ, 0, -θ and θ. The four 2bit code word is used as a

prefix and suffix for reaching code words for the rest values

of Δ. Table 1 shows the binary values of these four codes

and their marks.

Code words for Δ, when the value of (abs(Δ)DIVθ) ≥ 2),

are reached when as a prefix of the code word is put the code

FLAG, and then, depending of the sign of Δ are put as much

basic codes as amounts ((abs (Δ) DIV θ) – 1) (if Δ < 0 the

code DOWNF is used, if Δ > 0 the code UPF is used). At the

end as a suffix, the code FLAG is used. Table 2 shows the

codes of few of the values Δ when (abs(Δ)DIVθ) ≥ 2).

From Table 2 we can see that the length of code words

grows when we increase the value of abs(Δ). For values of

abs(Δ) > 7θ we do not have compression in the data

anymore. But with the previous implemented statistical

analyses we saw that the probability abs(Δ) > 7θ (in this

statistic data processing θ = 1) is very small. With the usage

of this delta code scheme there is no possibility to occur

error in decoding, because it can decode any value of Δ, but

the cost will be paid in transfer of the redundant data i.e. the

length of the code word will be bigger than the length of the

authentic symbol.

TABLE 1: BASIC CODE IN DELTA CODE SCHEME.

Binary code Mark Δ

00 EQU 0

01 FLAG /

10 UP

11 DOWN -

1

0

UPF

DOWNF

/

/

TABLE 2: ENCODING OF Δ WHEN abs(Δ)DIVθ) ≥ 2.

Binary

code
Mark Δ

10110 FLAG UPF FLAG 2θ
10010 FLAG DOWNF FLAG -2θ
101110 FLAG UPF UPF FLAG 3θ
100010 FLAG DOWNF DOWNF FLAG -3θ
1011110 FLAG UPF UPF UPF FLAG 4θ
1000010 FLAG DOWNF DOWNF DOWNF FLAG -4θ

IV. EXPERIMENTAL RESULTS

In order to explore the efficiency of compression based

on Delta coding, the same database was used as in the case

of statistic processing of temperature measurements. For our

smart devices based on TinyOs (TOS) platform, data are

sent organized in packets. The packet, beside the

application data, contains and so called overhead data

(Header and CRC) (Fig. 4). The magnitude of the Δ frame is

chosen to be the same with the maximum permitted

magnitude of the application data which can be sent in one

packet, which contributes to decrease the sent overhead.

Fig. 4 shows the data structure of the TOS packet.

Fig. 4. Data structure of TOS packet

The goal of this analysis was to obtain the number of TOS

packets sent by the smart device with and without coding,

respectively. Additionally, the number of TOS packets can

be used to calculate the energy saving achieved by applying

delta coding scheme.

The compression ratio per frame (CRPF) for Δ algorithm

is defined as relation of the number of encoded values in one

frame (EVPF) and the number of encoded values which can

be put in the memory space with length of one frame

(NVPF).

NVPF

EVPF
 CRPF =

 (3)

The compression ratio (CR) for N sent frames can be

obtained using (4).

=

=

N

i

iCRPF

1
N

1
 CR(N) (4)

We examine two nodes (nodeid=25 and nodeid=37).

Number of temperature data values was 3861 for nodeid=25

and 4016 for nodeid=37. The results from our analysis are

given in Fig. 5 and Fig. 6, for two different values for θ.
If Ep is the energy that the node uses for sending one

packet, No number of packets send without coding, Ne is the

number of packets send with coding, than data

communication energy savings is calculated with (5).

 100)1(100)1([%]
o

e

po

pe
s

N

N

EN

EN
E −=−= (5)

Data communication energy savings (in %) when ∆

encoding is used is given in Fig. 7.

Different algorithms can be used for data compression

(LZ77, LZ78, LZW, Gzip, etc.). The aim of these

algorithms is to decrease the magnitude of files with

encoding. At these algorithms the efficiency does not

depend just from the compression ratio that that algorithm

reaches, also depends from the complexity of that algorithm.

For example, if we use complex algorithm, we will increase

the power the node spends for complex calculations.

Therefore, we performed a comparison between our Δ

coding scheme and well-known LZW based coding from the

literature, i.e. SLZW [7], a modification of LZW optimized

for senor measurements. We considered 12 bits long code

words, and 750В and 1500В memory space. The results are

presented in Fig. 8. The memory required for both LZW

algorithms was more than 3KB, while the memory required

for our coding scheme was only 50B.

Fig. 5. Compression ratios per frame for the node with

nodeid=25.

Fig. 6. Compression ratios per frame for the node with

nodeid=37.

Fig. 7. Data communication energy savings (in %) when

∆ encoding is used.

Fig. 8. Comparison of LZW and our coding scheme.

V. CONCLUSION

In this paper we investigated Delta coding as a technique

for energy saving in IoT environment. We showed that this

technique can achieve up to 85% energy saving if applied on

data that are temporally corelated. Therefore, for

applications where the sensor measurements are not needed

in real-time, using Delta coding is highly recommendable.

REFERENCES

[1] Stojkoska, Biljana L. Risteska, and Kire V. Trivodaliev. "A review of

Internet of Things for smart home: Challenges and

solutions." Journal of Cleaner Production 140 (2017): 1454-1464.

[2] Stojkoska, Biljana Risteska, Dimitar Solev, and Danco Davcev.

"Variable step size LMS Algorithm for Data Prediction in wireless

sensor networks." Sensors & Transducers 14, no. 2 (2012): 111.

[3] Marcelloni, Francesco, and Massimo Vecchio. "A simple algorithm

for data compression in wireless sensor networks." IEEE

communications letters 12, no. 6 (2008).

[4] Ukil, Arijit, Soma Bandyopadhyay, and Arpan Pal. "IoT data

compression: Sensor-agnostic approach." In Data Compression

Conference (DCC), 2015, pp. 303-312. IEEE, 2015.

[5] Kolo, Jonathan Gana, S. Anandan Shanmugam, David Wee Gin

Lim, Li-Minn Ang, and Kah Phooi Seng. "An adaptive lossless data

compression scheme for wireless sensor networks." Journal of

Sensors 2012 (2012).

[6] Datasheet, MICAz. "Crossbow technology inc." San Jose,

California 50 (2006).

[7] Sadler, Christopher M., and Margaret Martonosi. "Data compression

algorithms for energy-constrained devices in delay tolerant

networks." In Proceedings of the 4th international conference on

Embedded networked sensor systems, pp. 265-278. ACM, 2006.

[8] Levis, Philip, and David Gay. TinyOS programming. Cambridge

University Press, 2009.

[9] Shannon, Claude E. "A mathematical theory of

communication." ACM SIGMOBILE Mobile Computing and

Communications Review 5, no. 1 (2001): 3-55.

[10] Srisooksai, Tossaporn, Kamol Keamarungsi, Poonlap Lamsrichan,

and Kiyomichi Araki. "Practical data compression in wireless sensor

networks: A survey." Journal of Network and Computer

Applications 35, no. 1 (2012): 37-59.

[11] Infanteena, S. Denis, and EA Mary Anita. "Survey on compressive

data collection techniques for wireless sensor networks."

In Information Communication and Embedded Systems (ICICES),

2017 International Conference on, pp. 1-4. IEEE, 2017.

