
Analysis of trends in scientific publications by an NLP
toolkit: A case study in Software Development Methods

for Enhanced Living Environment

Abstract- As the number of published scientific articles
increases, the analysis of trends and state-of-the-art in software
engineering is becoming very time-consuming and laborious task. To
address the ever-growing demands for systematic literatures review
techniques, rapid review and scoping reviews techniques have
emerged. We used an NLP powered tool, which employs the
PRISMA surveying methodology, to automate most of the review
processes. We used it to automatically review relevant articles
indexed in IEEE Xplore, PubMed and Springer digital libraries on
the topic “Software Development for Enhanced Living
Environments and Ambient Assisted Living”. The relevant articles
identified by the NLP toolkit contained up to 21 properties clustered
into 3 logical groups. We discovered that Software Development for
Enhanced and Assisted living environments attracted an increased
attention from the scientific communities over the last 10 years and
showed several trends in the specific research topics that fall into this
scope. The research uncovered that iterative software methodology
had been the most attractive research topic in the field. Despite the
enormous empirical evidence on application and success stories of
agile development methodologies in many software development
engineering, it received a little attention from the scientific
community in the software development for Enhanced and Assisted
Living Environments. The NLP toolkit identified the most relevant
articles that contained the defined properties in the search. Hence, it
significantly reduced the manual work, while also generating
informative tables, charts and graphs.

Keywords- software development for enhanced living environments;
Software development for ambient assisted living; NLP toolkit;
Automated surveys; Scoping review;Systematic review;Rapid review.

I. INTRODUCTION

Software systems are being increasingly employed in all area
of human endeavors. They are applied in many sectors, devices,
and products at an alarming rate of growth. New generations of

medical devices, automobiles, aircraft, manufacturing plants,
nuclear power generating stations, automated trains, banking and
investment systems, manufacturing systems, and a growing
number of automated systems within our homes heavily dwell on
software to enable new functions, provide pre-existing functions
more efficiently, reduce time to service a user need, and reduce
effort and competence required by people providing services [1].
In particular, they are heavily applied in safety and mission critical
systems, with safety-critical systems being a subset of the wider
area of mission-critical systems [2]. A mission critical system is
defined as “a system that is essential to the survival of a business
or organization. When a mission critical system fails or is
interrupted, business operations are significantly impacted” [3].
Grant defined Safety-critical systems as “subset of mission-critical
systems for which, failure may result in harm or death to life, or
damage or destruction of property” [2]. Generally, a system is
safety-critical if its failure can cause financial loss, damage to the
environment, injury to people and in some cases, loss of lives [1]
[4].

The application of software in safety-critical systems has
increased in upward trajectory to the degree where software
failures may completely impair system safety [5]. For example, the
automotive domain include software in a break system, which in
case of failure could result in unacceptable hazards, but also active
safety functions that override driver behavior in certain situations
to avoid a crash [5]. Similar applications in another domain include
but not limited to railway [6] and avionics [2].

Safety-Critical Systems have stringent regulation and
scrutinized requirement certification against industry standards by
the relevant governing body [7]. Hence, a demanding need to
design them with safety in mind. Unlike hardware where general
safety design principles have been integrated into standards, the
standards for development of safe software are still evolving. For
example, the standards ISO26262, IEC61513, IEC62304, DO-
178B for automotive, nuclear, medical and avionics, respectively,
are envisioned to ensure best engineering practices are adhered to

�������	
���
�������	���
�������
�����������
�������
���
������������������� ���
�
��!��"���
��

#���$������%
����
�%�!������&!�'�����������%�����(��
��(�����)�
����
�*��(��
��(��������+
�,
�
���
�-�������.%
���/���.���.��

�(00(1��)�
����
�*����1�
���&����
����2��
�+3�������%���
���
�-�4�%���
���%,����5/�
.��
.,�

�2��,�����#�
�����������%
����
�%��)�
����
�*�#�.�2*�
���������+��
����#��,"����������
�
���
�-�4���
�.6��������
��������5/�
��
.��
�.��

�'�,�����������2��,�����#�
������(��
��(�����)�
����
�*��(��
��(��������+
�,
�
���
�-�����
�.�
���/���.���.��

2020 Seventh International Conference on Software Defined Systems (SDS)

978-1-7281-7219-4/20/$31.00 ©2020 IEEE 59

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

and are often based on traditional/waterfall also called plan-driven
approaches [5]. This is mainly due to the fact that agile methods
neglect upfront requirement specifications that model the solution
on a paper before embarking upon a system implementation [8].

Agile methods emphasize close collaboration between
customers and developers, while delivering software within time
and budget constraints. As agile methods depend on frequent
informal face-to-face communications rather than providing
lengthy documentations, the process is repetitive, adaptive, and
minimally defined [9]. The key features of the methods are
continuous requirements gathering; frequent face-to-face
communication; pair programming; refactoring; continuous
integration; early expert customer feedback; and minimal
documentation [10]. Scrum is the most widely used method [11].

Scrum framework composed roles, ceremonies, and artifacts
[12]. The three distinct roles in the Scrum process are the Product
Owner, the Team and the Scrum master [13]. The ceremonies of
Agile Scrum embrace Daily Scrum Meeting, the Daily Scrum of
Scrums Meeting, the Sprint Review Meeting and the Sprint
Planning Meeting. Agile Scrum process also presents three
artifacts, known as Product Backlog, the Sprint Backlog, and the
Burndown Chart. Scrum is used together with Kanban method by
agile software companies.

Kanban is an agile method developed in early 1940s as a
method of the Toyota Production System [14]. This method pays
attention to visualization and signaling of workflow. The main
purpose of Kanban method is to match the volume of work in
progress to the attributes of the team. It harnesses more flexible
planning options, transparency in the development flow, makings
tasks more visible and faster output [14]. The team in Kanban
method attempts for continuous delivery, instead of having hard
milestones for delivery. Unlike Scrum, it doesn’t have any existing
roles for the development team [14].

Despite its obvious shortcomings, agile methods have
increasingly been employed to meet the ever increasing need for
short development cycles and quick time to market software
products [15]. Complex dynamic systems-of-systems require
components of different vendors to interact at runtime. This
dynamic nature of such environments may necessitate continuous
deployment for product success as well as maintaining functional
safety, e.g. in the automotive domain [16].The present focus on
autonomous driving and intelligent vehicles is the cause for the
high complexity of Safety-Critical Systems [5]. Companies like
Tesla have proved how the ability to deploy new functions and
experiment their performance in the field can get enormous
advantages.

Large Software companies such as Google, Apple, and
Amazon have entered into automotive market, increasing the need
to develop competencies in continuous software engineering.
Slowly, companies developing safety-critical systems realize the
competitive advantages that agility can provide [5]. However, the
existing agile frameworks should be tailored to the needs of the
software development organization [17].

European Union has also sought solutions, which is safety-
critical, for European citizens’ aging issues by integrating
Information and Communication Technology (ICT) solutions into

habitats, along with improved building design, to enable them live
at home active and productive for longer despite cognitive or
physical impediments [18]. To this end, improving accessibility,
functionality, and safety at home, at work and in society in general
requires combining many disciplines together to develop solutions
that integrate ICT, ergonomics, healthcare (psychological and
physical), building and community design.

European Cooperation in Science and Technology (COST)
with COST Action 16226, Smart Habitat for Elderly (SHELD-
ON) aims to foster knowledge exchange and the development of a
joint research agenda in terms of design and development of
multifunctional indoor environments to meet the requirements of
Europe's ageing population while promoting healthy and safe
ageing [18].

II. RELATED WORK

This research is investigating on Software Development
Methods for Ambient Living Environment/ Enhanced Living
Environment (ALE/ELE). We identified potentially relevant
articles with the following keywords: software Development for
Ambient and assisted living, Software Development for Enhanced
Living Environment, Software for Older People, and Apps for
Older People along with properties in three categories as exhibited
in Fig. 1.

This research is envisioned to undertake a Systematic
Literature Review (SLR) with the help of automated Natural
Language Processing (NLP) toolkit on the software development
methodologies that have been effectively utilized in the
engineering of software for SHELD-ON.

SLR is a technique that has been used to answer a research
question (s) through searching, assessing and synthesizing relevant
evidences in order to make conclusion (s). To this end, the
“Preferred reporting Items for Systematic reviews and Meta-
analyses: the PRISMA statement" [19] [20] is one of the widely
used methodologies in most disciplines in general and Software
Engineering, recently [21], [22] . Other review techniques wherein
SLR model does not fit well have recently been introduced[23].
For example, the rapid review is used when time is of the essence.
The scoping review can be used when the goal is not to get detailed
answers to specific research question (s) but overview of a broad
field [24]. The evidence map is similar to scoping reviews but is
focused on specific visual presentation of the evidence across a
broad field. Finally, the realist review is used where the question
of interest includes how and why complex social interventions
work in certain situations, rather than assume they either do or do
not work at all.

The aforementioned review types are usually carried out
manually, which is daunting and laborious. Therefore, the current
research employed Natural Language Processing (NLP) toolkit,
which has been developed by some of the authors of this work
[25], identify relevant articles, and generate visualizations of
trends and relationships and the like. By exploring the publications
over the last decade, we have summarized the state-of-the-art
software development methodologies, future research focus and
publication statistics related to software development approaches
in ALE/ELE.

2020 Seventh International Conference on Software Defined Systems (SDS)

60

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

The subsequent sections are organized into different sub
sections. Section 2 will elaborate on the parameters of the NLP
Toolkit [25], while also describing the data collection processes.
Section three gives succinct discussion of the results. Finally, the
last section provides conclusion based on the research findings and
pinpoints further research works.

III. METHODOLOGY

This research employed the NLP toolkit developed by some of
the authors of this paper [26] [27][25]. The toolkit ensures
compliance with the terms of use of the digital libraries, in regard
to the number of requests per unit time. Additionally, the plotting
of aggregate results was integrated and streamlined using the
Matplotlib library [28] and NetworkX [29]. The NLP toolkit input
parameters are described as follows.

A. Search Input Taxonomy
The user input is a collection of keywords that are used to

identify potentially relevant articles and a set of properties that
should be satisfied by identified articles. The input is defined with
following parameters, which are further enhanced by proposing
synonyms to the search keywords and properties by the NLP
toolkit, as described in the following sub-section 2.4:

Keywords Search terms or phrases that are used to query a
digital library (e.g. Software Development for Ambient and
assisted living, Software Development for Enhanced Living
Environment, etc.). See example of searched keywords in Fig. 6
and 7. To this end, keywords are searched for independently and
duplicates are removed in a later phase.

Properties The properties are words or phrases that are being
searched in the title, abstract or keywords section of the identified
articles. Example of such properties employed in this study are
exhibited in Fig. 8, 9, 10.

Property synonyms In addition to the original form of the
properties, also their synonyms or words with similar meaning in
the domain terminology, are being searched for in the article's
abstract, title and keywords. For each property, only one original
form appears in the results for brevity, while the synonyms are
omitted. Note that a synonym can be a completely different word,
or another form of the same word, such as a verb in another tense
or an adjective (e.g. synonyms of Agile: Kanban and Scrum,
synonyms of Implementation: code; synonyms of Deployment:
Installation; etc.). Therefore, instead of showing all those words,
only one word per synonym set is being displayed in the results.
Synonyms can be provided by the user, or proposed by the toolkit,
with a possibility of fine-tuning the proposals. For the considered
use case, the list of used properties and property groups is shown
in Fig. 1.

Property groups are thematically or semantically or otherwise
grouped properties for the purpose of more comprehensive
presentation of results. Properties within property groups are being
displayed together in charts or tables. The property group has a
name (e.g. Development Methodologies, Critical Systems and
Phases), and within a group there are sets of property synonyms
(e.g. within the Development Methodologies propriety group:
Agile (synonymous with Kanban and Scrum), extreme

programming, waterfall, etc.). Exemplary summary results per
property group are presented in Fig. 7, while exemplary result per
property within groups are shown in Fig. 8, 9, and 10.

Start year the start year (inclusive) of the papers that we are
interested in. Default: current year - 9.

End year the end year (inclusive) of the papers that we are
interested in. Default: current year.

Minimum relevant properties a number denoting the
minimum number of properties that an article has to contain in
order to be considered as relevant. Default: 2.

Fig. 1: List of property groups and properties (main and the synonyms).

B. Enhanced Search Capabilities with WordNet
The user provided input in the form of keywords and properties

is enhanced by proposing synonyms from WordNet for Python
before the actual searching kicks-off [26] [27][25]. In most cases,
this increases the robustness of the searched properties by
including synonyms that the user might have neglected. However,
considering that Word Net is a general-purpose database, some of
the proposed synonyms might not be inappropriate. In such a case,
the user can manually choose which of the proposed synonyms to
be included before the actual processing starts. The toolkit also
performs stemming of the properties and the abstract, for a more
robust searching. If none of the properties of interest are identified
within the abstract, then those articles are removed from the result
set, which corresponds to the eligibility step in the PRISMA
statement. In addition to this, we can specify the minimum number
of properties that need to be identified within an article for it to be
considered eligible and potentially relevant.

C. Article sources
The NLP toolkit indexes the following digital libraries (i.e.

sources): IEEE Xplore, Springer and PubMed. From PubMed all
articles that match the given search criteria (i.e. a keyword) are
analyzed. IEEE Xplore results include the top 2000 articles that
match a given criteria, sorted by relevance determined by IEEE
Xplore. For Springer the search for each keyword separately is
limited to 1000 articles or 50 pages with results, whichever comes
first, sorted by relevance determined by Springer.

D. Survey Methodology
The methodology used for the selection and processing of the

research articles in this section is based on PRIMA [19], [20], as
shown in Fig. 2. The goal of PRISMA is to standardize surveys.

The first part is gathering articles based on search keywords.
After the articles are collected, the duplicates are removed as well
as some of the articles are discarded for various reasons, such as

2020 Seventh International Conference on Software Defined Systems (SDS)

61

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

relevance, missing meta-data, and invalid publication period.
Finally, from the selected subset of articles, a qualitative analysis
is performed and from those articles, only a certain number is
selected for more thorough screening. The NLP toolkit developed
by [26] [27], automates most of the steps in the PRISMA approach
to significantly reduce the number of articles that need to be
manually screened.

Identification and duplicate removal The NLP toolkit
perform the identification automatically. First, the candidate
articles are identified by querying the integrated libraries with the
same search terms (i.e. key-words). While integrating the results
from multiple sources (i.e. digital libraries), duplicate removal was
also carried out by using the article DOI as their unique identifier.
Articles that had already been identified by the search keys from
another source were counted towards the number of identified
articles per source. To this end, the retrieved articles per source are
not disjoint. After the candidate articles were identified, they were
processed, and the properties of the texts are used for selection of
the relevant articles. The process of article selection is the same as
the one presented in [19][20], except for the last part where articles
are manually processed by several researchers.

Augmented Screening and Eligibility analysis by NLP
After the duplicates were removed, during the screening process
discarded articles which were not published in the required time
period (e.g. last ten years) or for which the title or abstract could
not be analyzed due to parsing errors, unavailability or other
reasons. Afterwards, the eligibility analysis was performed, which
involved tokenization of sentences [30] [31], English stop words
removal, stemming and lemmatization [31] using the NLTK
library [32] for Python. At the beginning, this was applied to each
property, based on which a reverse lookup was created from each
stemmed word and phrase to the original property. The same
process was also applied to the title, keywords and abstract of each
article. As a result of the stemming, for each property, the noun,
verb and other forms were also considered. As a result of the
lemmatization and the initial synonym proposal, the synonyms of
properties were also taken into account. This resulted in a more
robust analysis. Then, stemmed and lemmatized properties were
searched in the cleaned abstract and title and the article was tagged
with properties it contained.

Fig. 2. PRISMA statement workflow with total number of articles for the current
survey.

The identified articles were labeled relevant provided they
contained at least the minimum relevant properties, defined as an
input, in its title or abstract (considering the above NLP-enhanced
searching capabilities, thus performing a rough screening). To help
in the eligibility analysis, the remaining relevant articles were
sorted by number of identified property groups, number of
identified properties, number of citations (if available) and year of
publication, all in descending order. For the relevant articles, the
toolkit automatically generated a Bibtex file with most important
fields that can be included in an article for simplified citations. An
Excel file was also generated with the following fields: DOI, link,
title, authors, publication date, publication year, number of
citations, abstract, keyword, source, publication title,
affiliations, number of different affiliations, countries, number
of different countries, number of authors, bibtex cite key,
number of found property groups, and number of found
properties. The researcher can use this file to drill down and find
specific articles by more advanced filtering criteria (e.g. by
importing it in Excel). This can facilitate deciding which articles
need to be retrieved from their publisher and manually analyzed in
more detail in order to determine whether it should be included in
the qualitative and quantitative synthesis.

Visualization of aggregate results The results of the
processing and retained relevant articles were aggregated by
several criteria. The output contained CSV files and charts in
vector PDF files for each of the following aggregate metrics:
� By source (digital library) and relevance selection criteria

(see Fig. 3).
� By publication year (see Fig. 4a).
� By source and year (see Fig. 4b).
� By search keyword and source (see Fig. 5).
� By search keyword and year (see Fig. 6).
� By property group and year (see Fig. 7).
� By property and year, generating separate charts for each

property group (see Fig. 8, 9 and 10).
� By number of countries, number of distinct affiliations and

authors, aiming to simplify identification of multidisciplinary
articles (e.g. written by multiple authors with different
affiliations) (See Fig. 13).

In addition to that, the toolkit also generated graph
visualization of the results, where nodes are the properties and the
edges are the number of articles that contain the two properties it
connects. Articles which do not contain at least two properties and
properties that are not present in at least two articles were
excluded. An example of this is presented in Fig. 11 and 12. For a
clearer visualization, only the top 25% property pairs by number
of occurrences are shown (i.e. ones above the 75-th percentile).

A similar graph for the countries of the author affiliations is
also generated (see Fig. 13). The top 50 countries by number of
collaborations are considered for this graph. Additionally, we
show only countries and an edge between them if the number of
bilateral or multilateral collaborations between them in the top 5%
(above 95-th percentile) within the top 50 countries.

2020 Seventh International Conference on Software Defined Systems (SDS)

62

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

IV. RESULTS

Fig. 3. Number of papers per relevance selection criteria.

a. Number of remaining and relevant

articles per year.

 b. Number of relevant articles from

each digital library per year.

Fig. 4. Number of articles per year and source.

The NLP system with the keywords mentioned in Fig. 6 were
used. We searched for these keywords and automatically identified
and screened the articles, as exhibited in Figure 2. A more detailed
analysis was carried out using the properties that were aggregated
into three groups of properties each containing at least three
property synonyms, as exhibited in Fig. 1.

Fig. 3 clearly depicts the selection process based on the
adopted methodology. From all identified articles based on the
keywords, first, the system eliminates the ones with incomplete or
invalid meta-data. Second, the duplicate entries are eliminated and
lastly, from the remaining ones, the relevant articles are selected if
they contain the minimum number of properties (in this case 1).
Fig. 4a is the number of remaining and searched for articles from
each year and Fig. 4b is the number of relevant articles from each
source.

The number of relevant articles grouped by keywords from
each source can be seen in Fig. 5. The top 3 keywords by number
of papers are “Software for Old People", “Software Development
for Ambient and Assisted Living" and “Software Development for
Enhanced Living Environment". It is interesting to see that they
vary in frequency between different sources, which can be
expected, considering that for PubMed the number of analyzed
articles is unlimited, unlike the other sources.

On Fig. 6, we can see the distribution of papers per keyword
for each year. Notably, the number of papers for some of the
keywords is increasing through the years, while for others it is
relatively small. Similarly, on Fig. 7, we can see the trends of
articles mentioning at least one property from each property group,
and evidently, all property groups are becoming more relevant.

Apparently, the articles are not covering critical systems as often
as the other themes (i.e. Development Methodologies and Phases).

Fig. 5. Number of relevant articles for each keyword from each source.

Fig. 6. Number of articles for searched keyword per year.

Properties and keywords follow a similar trend in the number
of articles, with most of them reaching the highest number in 2016
and 2017. However, some terms, such as “Apps for Older People",
is still on the rise. Note that the numbers from 2018 are
inconclusive because, at the time of this analysis, 2018 is not yet
finished. Also, the number of articles is increasing in IEEE Xplore
and Springer and the in PubMed the number of articles starts
decreasing after 2017.

Fig. 7. Number of articles mentioning each property group per year.

2020 Seventh International Conference on Software Defined Systems (SDS)

63

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

After the initial property analysis, for each property group, we
analyze the articles based on each property. In Fig. 8, the result
about the “Development Methodologies” property group is
displayed. To this end, the property agile (embracing Kanban and
Scrum), extreme programming, spiral, incremental, iterative,
prototyping, continuous integration, rapid application
development, rapid development and waterfall in the analysis
including their synonyms were considered. The trend clearly
depicts that all of the terms are increasing in popularity in the
respective research communities. The most popular development
methodology in the papers is iterative followed by prototyping and
finally agile which slowly and steadily increases in popularity.

Fig. 8. Article distribution per year and properties in Development
Methodologies property group.

Fig. 9 exhibits the result of the second property group,
“Phases”, which embraces Analysis, Design, Product
Management, Project Management, Implementation (Code),
Integration, Testing, Deployment (Installation) and Maintenance.
The result shows that most of the published articles highly focused
on analysis, design, testing, integration and implementation, which
also synonymous with code, respectively. Analysis is the most
researched topic, which shows the need for upfront software
requirements gathering before embarking upon design, and coding
in ALE/ELE, whereas software testing, design and integration are
also demanding considerable attention in the field.

Fig. 9. Article distribution per year and properties in Phases property

group.

The third property type as exhibited in Fig. 10 is “Critical
Systems", which includes Business Critical, Mission Critical and
Safety Critical. The finding shows that Software Development for
ALE/ELE and Software Development and apps for Older People

do not specifically identify themselves as business, mission, and/or
safety critical key words.

Next, Fig. 11 shows how different properties are related
between each other in terms of how often they occur together in
the same article. These graphs can be used for guiding the drilling
down process and selection of articles that need to be analyzed
manually. The darker an edge is, the more articles that have the
connected keywords. Also, it shows that some properties are not
often encountered with others (e.g. Prototyping and Deployment
on Fig. 11.). The two figures clearly depict that the iterative and
prototyping software development methods are intensively used in
the engineering of software for ALE/ELE. These terms are highly
connected with the software development lifecycle.

Finally, Fig. 12 exhibits how authors from different countries
collaborated. This graph lucidly shows that there is collaboration
among authors from different countries and continents. In most
cases, we attribute this to geographical location, smaller language
barriers, or both.

Fig. 10. Article distribution per year and properties in Critical Systems property

group.

Fig. 11. Graph visualization with circular layout relevant articles by properties.

Node labels show the property and number of articles that contain it and edge

label shows the number of papers that have the properties it connects.

2020 Seventh International Conference on Software Defined Systems (SDS)

64

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSIONS

Software Development methods can be classified as either a
heavyweight or a lightweight method [33]. The heavyweight
methods, Plan-driven methods, or Traditional Software
Development Methods (TSDMs), usually focus on comprehensive
planning, complex documentation, and big design up-front.
Conversely, the lightweight methods, also known as Agile
methods, concentrate (1) more on individuals and interactions than
processes and tools, (2) more on working software than
comprehensive documentation, (3) value customer collaboration
more than contract negotiation, and (4) focus more on responding
to change than following a plan [34].

TSDMs, which invests significant time of system development
in requirements engineering, have been increasingly employed in
Safety/Mission-Critical software engineering such as ALE/ELE.
This is due to the fact that these systems have stringent
requirements validation and verification from industries. On the
other hand, Agile software methods, which pays a considerable
attention to working software without clear upfront definition of
requirements, has not at least popularly and widely been used in
such software engineering endeavors. Accordingly, the present
research was intended to review the software methodologies that
are in use for ALE/ELE software engineering by employing an
NLP toolkit, which implements the PRISMA model.

Hence, an increasing trend over different search keywords over
the last decade (see Fig. 6) was observed. In all searched keywords
(Software Development for Ambient and assisted living, Software
Development for Enhanced Living Environment, Software for
Older People, and Apps for Older People) showed increasing
trends from year to year except Apps for Older People, which
slightly dropped in 2017. As depicted in Fig. 8, this research has
also uncovered Iterative development and prototyping software
development methodologies are the highly sought-after
methodologies in engineering of software for ALE/ELE. In
addition, agile development methodology is on the rise in the field.

Fig. 12. Graph visualization with spring (i.e. Fruchterman-Reingold) layout

relevant articles by properties.

In this paper, the NLP toolkit was found invaluable to identify
software development method for ALE/ELE research focuses for
the last decade. It was also applied to simplify the review process
in several previous works [26]. The NLP toolkit can be used by
many researchers to ease the review processes of the vast amount
of research publications in our discipline, Software Engineering.
By being able to reuse intermediate results and allowing tweaking
and fine-tuning of keywords and properties, the researcher can test
different alternatives of keywords and properties very quickly. The
toolkit also provides ability to fine-tune the graph plotting
thresholds, so they can show appropriate number of edges. These
default parameters were empirically determined based on
extensive analysis with over dozens of different use-cases.

Fig. 13: Graph visualization of relevant articles by countries. Node labels show

the country and number of publications from it, while edge labels show the
number of papers that were published by authors with affiliations from the

countries it connects.

VI. CONCLUSION AND FUTURE WORKS

In this paper we used NLP toolkit to speed up the process of
surveying scientific articles and trend analysis Meta studies. By
leveraging NLP, it facilitates a robust and comprehensive
eligibility analysis of papers, so the user can focus on reading a
small number of potentially relevant papers. The toolkit was able
to analyze the abstracts of nearly seven thousand papers
automatically and visualize different trends of interest.

In this research, based on the obtained data, we can conclude
that almost all of the searched keywords and properties have an
increasing trend except critical systems. The processed articles
show that the research community are more interested in
researching Software and Apps Development for Enhanced living
environments by using iterative and prototyping software
development methodologies. The finding also lucidly exhibits that
agile software development methodology is being adopted in the
engineering of software for elderly people. In addition, the
research community in the area are not designating the research
articles by business, mission and/or safety critical keywords.
Furthermore, substantial research articles have invested in the
requirements engineering (analysis) phase of the software
development life cycle for elderly people. However, it is

2020 Seventh International Conference on Software Defined Systems (SDS)

65

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

imperative that the research community and software development
industry and practitioners exert relentless efforts at least to tap on
the “sweet Spot” of agile development methodologies, which
brought success from small to large to very large software
development projects, in the software development for ambient
and enhanced living environment.

Researchers in software engineering discipline can benefit by
employing NLP Toolkit to minimize the daunting work of
reviewing the voluminous publications. For future work, we will
expand keywords and increase the years to investigate into more
research works and corroborate the current findings.

ACKNOWLEDGMENT

This work was supported by FCT
project UID/EEA/50008/2013 (Este trabalho foi suportado pelo
projecto FCT UID/EEA/50008/2013).

This article/publication is based upon work from COST Action
IC1303 - AAPELE - Architectures, Algorithms and Protocols for
Enhanced Living Environments and COST Action CA16226 -
SHELD-ON - Indoor living space improvement: Smart Habitat for
the Elderly, supported by COST (European Cooperation in
Science and Technology). More information in www.cost.eu

REFERENCES

[1] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones, “Certifiably safe
software-dependent systems: challenges and directions,” Proc. Futur. Softw.
Eng. - FOSE 2014, pp. 182–200, 2014.

[2] E. S. Grant, “Requirements engineering for safety critical systems: An
approach for avionic systems,” 2016 2nd IEEE Int. Conf. Comput. Commun.
ICCC 2016 - Proc., pp. 991–995, 2017.

[3] TechoPedia, “What is a Mission Critical System?” [Online]. Available:
https://www.techopedia.com/definition/23583/mission-critical-system.
[Accessed: 10-Dec-2018].

[4] P. A. Laplante and J. F. Defranco, “Software Engineering of Safety-Critical
Systems: Themes from Practitioners,” IEEE Trans. Reliab., vol. 66, no. 3,
pp. 825–836, 2017.

[5] R. Kasauli, E. Knauss, B. Kanagwa, J. K. Balikuddembe, A. Nilsson, and G.
Calikli, “Safety-Critical Systems and Agile Development: A Mapping
Study,” 2018 44th Euromicro Conf. Softw. Eng. Adv. Appl., pp. 470–477,
Aug. 2018.

[6] L. Provenzano and K. Hänninen, “Specifying software requirements for
safety-critical railway systems: An experience report,” in Int. Working Conf.
on Requirements Engineering: Foundation for Software Quality, 2017, vol.
10153 LNCS, no. January, pp. 363–369.

[7] M. Vuori, Agile Development of Safety-Critical Software. 2011.
[8] B. Boehm and R. Turner, “Using risk to balance agile and plan-driven

methods,” Computer (Long. Beach. Calif)., vol. 36, no. 6, pp. 57–66, 2003.
[9] K. Aguanno, Managing agile projects. Multi-Media Publications, 2005.
[10] S. Jalali and C. Wohlin, “Global software engineering and agile practices: a

systematic review,” J. Softw. Evol. Process, vol. 24, no. 6, pp. 643–659, Oct.
2012.

[11] I. Sommerville, Software Engineering, 9th ed. Boston: Addison-Wesley,
2011.

[12] K. Schwaber, “Agile project management with Scrum,” Microsoft Press,
2004.

[13] K. Schwaber and M. Beedle, Agile software development with Scrum. Upper
Saddle River: Prentice Hall, 2002.

[14] M. Poppendieck and T. D. Poppendieck, Lean software development : an
agile toolkit. 2003.

[15] M. Paasivaara, “Adopting SAFe to scale agile in a globally distributed
organization,” Proc. - 2017 IEEE 12th Int. Conf. Glob. Softw. Eng. ICGSE
2017, pp. 36–40, 2017.

[16] P. Pelliccione, E. Knauss, R. Heldal, S. Magnus Ågren, P. Mallozzi, A.
Alminger, and D. Borgentun, “Automotive Architecture Framework: The
experience of Volvo Cars,” J. Syst. Archit., vol. 77, pp. 83–100, 2017.

[17] C. Ebert, M. Paasivaara, D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling
agile methods,” IEEE Softw., vol. 34, no. 6, pp. 98–103, Nov. 2017.

[18] European Cooperation in Science & Technology, “Action CA16226 -
COST.” [Online]. Available:
https://www.cost.eu/actions/CA16226/#tabs%7CName:overview.
[Accessed: 10-Dec-2018].

[19] D. Moher, A. Liberati, J. Tetzlaff, and D. Altman, “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses: The PRISMA
Statement,” PLos Medicine, Ottawa, Canada, Jul. 2009.

[20] D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P.
Shekelle, and L. A. Stewart, “Preferred reporting items for systematic review
and meta-analysis protocols (PRISMA-P) 2015 statement,” Syst. Rev., vol.
4, no. 1, p. 1, Dec. 2015.

[21] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature reviews in Software Engineering,” Durham, UK, 2007.

[22] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic literature reviews
in agile software development: A tertiary study,” Inf. Softw. Technol., vol.
85, pp. 1339–1351, 2017.

[23] D. Moher, L. Stewart, and P. Shekelle, “All in the Family: systematic
reviews, rapid reviews, scoping reviews, realist reviews, and more,” Syst.
Rev., vol. 4, no. 1, p. 183, Dec. 2015.

[24] M. D. J. Peters, C. M. Godfrey, H. Khalil, P. McInerney, D. Parker, and C.
B. Soares, “Guidance for conducting systematic scoping reviews,” Int. J.
Evid. Based. Healthc., vol. 13, no. 3, pp. 141–146, 2015.

[25] E. Zdravevski, P. Lameski, V. Trajkovik, and I. Chorbev, R. Goleva, N.
Pombo, N. Garcia,“ Automation in systematic, scoping and rapid reviews by
an NLP toolkit: a case study in Enhanced Living Environments” in
Algorithms, Architectures and Platforms for Enhanced Living Environments
(AAPELE), Springer, 2019

[26] A. Alla, E. Zdravevski, V. Trajkovik.: Framework for aiding surveys by
natural language processing,” in Web proceedings of the ICT Innovations
2017 conference, 2017.

[27] E. Zdravevski and A. Kulakov, “System for prediction of the winner in a
sports game,” in Davcev, D., Gomez, J.M. (eds.) ICT Innovations 2009.,
2010, pp. 55–63.

[28] E. G. K. Thiruvathukal and B. J. D. Hunter,
“2011Namikawa_BTO_FE_SXRL_J.pdf,” pp. 90–95, 2007.

[29] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” Proc. 7th Python Sci. Conf., no.
SciPy, pp. 11–15, 2008.

[30] J. J. Webster and C. Kit, “Tokenization as the initial phase in NLP,” in
Proceedings of the 14th conference on Computational linguistics -, 1992,
vol. 4, p. 1106.

[31] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,
“The Stanford CoreNLP Natural Language Processing Toolkit,” in
Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014, pp. 55–60.

[32] S. Bird, “NLTK: The Natural Language Toolkit Steven,” in Proceedings of
the COLING/ACL on Interactive presentation sessions, 2006, pp. 69–72.

[33] J. J. Cho, “An Exploratory Study on Issues and Challenges of Agile Software
Development with Scrum,” All Grad. Theses Diss., p. 599, 2010.

[34] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas,
“Manifesto for Agile Software Development,” Agile Alliance, 2001.
[Online]. Available: https://moodle2016-
17.ua.es/moodle/pluginfile.php/80324/mod_resource/content/2/agile-
manifesto.pdf. [Accessed: 01-Oct-2018].

2020 Seventh International Conference on Software Defined Systems (SDS)

66

Authorized licensed use limited to: University of Malta. Downloaded on February 10,2021 at 08:07:11 UTC from IEEE Xplore. Restrictions apply.

