
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/355163966

Scalable Cloud-based ETL for Self-serving Analytics

Conference Paper · July 2019

CITATION

1
READS

95

4 authors:

Some of the authors of this publication are also working on these related projects:

Boolean reasoning in biclustering View project

OvuFriend View project

Eftim Zdravevski

Ss. Cyril and Methodius University in Skopje

157 PUBLICATIONS   1,489 CITATIONS   

SEE PROFILE

Cas Apanowicz

CogniTrek Corp.

13 PUBLICATIONS   78 CITATIONS   

SEE PROFILE

Krzysztof J. Stencel

University of Warsaw

101 PUBLICATIONS   530 CITATIONS   

SEE PROFILE

Dominik Ślęzak

University of Warsaw

318 PUBLICATIONS   4,631 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Eftim Zdravevski on 09 October 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/355163966_Scalable_Cloud-based_ETL_for_Self-serving_Analytics?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/355163966_Scalable_Cloud-based_ETL_for_Self-serving_Analytics?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Boolean-reasoning-in-biclustering?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/OvuFriend?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cas-Apanowicz?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cas-Apanowicz?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cas-Apanowicz?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Stencel?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Stencel?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Warsaw?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Krzysztof-Stencel?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik-Slezak?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik-Slezak?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Warsaw?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik-Slezak?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-02a370d820a1878144e6727ceecfbe74-XXX&enrichSource=Y292ZXJQYWdlOzM1NTE2Mzk2NjtBUzoxMDc2OTk4MTk3NzcyMjg5QDE2MzM3ODc3ODg4NTc%3D&el=1_x_10&_esc=publicationCoverPdf


Scalable Cloud-based ETL
for Self-serving Analytics

Eftim Zdravevski1, Cas Apanowicz2,
Krzysztof Stencel3, and Dominik Ślęzak4
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Abstract. Nowadays, companies must inevitably analyze the available
data and extract meaningful knowledge. As an essential prerequisite,
Extract-Transform-Load (ETL) requires significant effort, especially for
Big Data. The existing solutions fail to formalize, integrate and evaluate
the ETL process for Big Data in a scalable and cost-effective way. In
this paper, we introduce a cloud-based architecture for data fusion and
aggregation from a variety of sources. We identify three scenarios that
generalize data aggregation during ETL. They are particularly valuable
in the context of machine learning, as they facilitate feature engineering
even in complex cases when the data from an extended time period has
to be processed. In our experiments, we investigate user logs collected
with Kinesis streams on Amazon AWS Hadoop clusters and demonstrate
the scalability of our solution. The considered datasets range from 30
GB to 2.5 TB. The results were deployed in the domains, such as churn
prediction, fraud detection, service outage prediction, and more generally
– decision support and recommendation systems.

Keywords: Data warehouses, Data streams, ETL, Business analytics

1 Introduction

Ubiquitous smart devices, sensors and social media result in sheer data vol-
umes, while consumers became accustomed to personalized services that are
available instantaneously. Delivering targeted information shapes the success of
many companies, health providers and governmental institutions. In the past,
they could decide which data to store by making compromises between available
resources and capabilities to manage the data. In the era of Big Data, companies
experience growing pressure to store and analyze the whole data that is being
collected just to stay competitive in the data-driven marketplace.



Several steps are needed to make the data available in a usable format: iden-
tification of all relationships and business context, data collection and ETL,
which usually is time-consuming in terms of both development and execution.
Once the data is processed and loaded into a data warehouse (DWH), it needs to
be fully ready for reporting, visualization, analytics and decision support. Even
though all building blocks for efficient ETL and Big Data analytics are present
on the market, there is no comprehensive cloud-based architecture offering an
integrated, scalable and cost-effective solution. Most approaches are either for
specific purposes or only provide general definitions [1, 2].

In this article, we propose an architecture that first addresses the integra-
tion of high-velocity data by using scalable streaming technologies and Lambda
functions. Then, it performs ETL using a combination of traditional tools for
processing dimensional data, and Spark – for processing high-volume transac-
tional data. We discuss detailed steps for performing three generic ETL scenarios
covering a variety of real applications, ranging from traditional Business Intelli-
gence (BI), to feature engineering in machine learning, such as churn prediction
and fraud detection. In such applications, events like “the time that passed from
the last occurrence of event X”, “the time since the user’s last login”, “last use of
a service”, or “last bought product” could be valuable features.

Most importantly, the whole process is integrated from end-to-end and eval-
uated in a production environment on real high-velocity Big Data, something
that lacks in most related approaches. The three scenarios were evaluated with
different workloads ranging from 30 GB to 2.5 TB using the proposed architec-
ture on Hadoop clusters deployed on Amazon AWS. The evaluation of each step
of the three ETL scenarios showed that the cluster size could be optimized so it
can process the required data volume within the expected time.

2 Related Work

Traditional BI relies on ETL tools for data import into DWH servers [3]. For
reasonably sized data volumes there are ETL tools that have been successfully
used in organizations throughout the years, such as Informatica, IBM Infos-
phere Datastage, Ab Intio, Microsoft SQL Server Integration Services (SSIS),
Oracle Data Integrator, Talend, Pentaho Data Integration Platform (PDI), etc.
Recently, ETL tools started to evolve into Enterprise Application Integration
(EAI) systems that now perform much more functionalities than just ETL. Tra-
ditional ETL and ELT (Extract-Load-Transform) tools are reviewed in [4], with
a focus on description of their terminology and capabilities, but without a dis-
cussion on how to tackle Big Data challenges. Scalable loading of data in NoSQL
tables is one such challenge, which could be addressed by proper row key designs
(i.e., their clustered index), as elaborated in [5].

The authors of [6] propose the BigDimETL approach, which aims to conserve
the multidimensional DWH structure while integrating Big Data. However, the
work is only theoretical, with no experimental evaluation.



Quite often, a user prefers a “quick and dirty” approximation over a correct
answer that takes much longer to compute. Online aggregation in [7] was pro-
posed to address this issue, as the batch-oriented nature of traditional MapRe-
duce implementations makes these techniques hard to apply.

The idea of in-database analytics is pursued by the MADlib open source
library [8]. It provides an evolving suite of SQL-based algorithms for machine
learning, data mining and statistics that run at scale within a database engine,
with no need for the data import/export to other tools.

GraphLab [9] expresses asynchronous, dynamic, graph-parallel computation
while ensuring data consistency and achieving a high performance degree in
the shared-memory setting, which is not originally supported by MapReduce
and Spark. Our approach also recognizes that data consistency is essential, but
achieves it differently, by relying on consistent dimensional tables. Consistent
DWHs allow using data mining and machine learning libraries directly within
the database system. Alternatively, consistent data in DWH could be used with
more traditional visualization, reporting and BI services.

Another distributed parallel architecture for Big Data ETL is proposed in
[10], but its limitation is that ETL should be completed before the data is ag-
gregated. It is alleviated with our solution by performing aggregation during the
ETL process. An approach that proposes a set of rules to map star schemas
into NoSQL logical models with a pre-computed aggregate lattice is described
in [11]. Similar to our case, the aggregate metrics need to be defined up front
so that ETL can calculate them. The CloudETL system presented in [12] ex-
ploits MapReduce and Hive for distributed data processing, focusing on slowly
changing dimensions. Our approach goes beyond it by using Spark for faster
processing and Lambda functions for handling high-velocity data.

GENUS system [13] deals with data veracity by cleansing and tagging, sim-
ilarly to our idea of standardization by templates. However, a drawback of this
approach is poor evaluation, especially concerning high volume, versatility and
velocity of the data. From the veracity perspective, the authors consider just
one simple example. Moreover, the document store used is XML, without any
scalability considerations. A real-time data ETL framework was presented in
[14] to process historical/incoming data separately. Dynamic mirror replication
technology was proposed to avoid the contention between OLAP queries and
OLTP updates. A kind of drawback is that the evaluation of this methodology
was conducted on a static dataset of only 16 GB.

Reference architecture for Big Data systems and classification implementa-
tion technologies and products/services, which is based on analysis of published
implementation architectures of Big Data use cases, is provided in [15]. It aimed
to facilitate architecture design and selection of technologies or commercial so-
lutions when constructing Big Data systems. Their recommendations are con-
sidered in the design of the proposed system. From the perspective of the afore-
mentioned areas of deployment of the proposed architecture, we also compared
our work with other approaches referring to Big Data analysis in combination
with data mining and machine learning, such as [16].



3 Architecture

The proposed system is shown in Figure 1. In organizations, commonly there are
traditional data sources, such as relational database systems and structured/semi-
structured data from internal or third-party data providers, that generate rea-
sonably-sized data. This kind of data can be processed with traditional data
integration tools. In our experiments, Pentaho Data Integration Platform (PDI)
was utilized for such ETL tasks, which process the incoming low-volume data
and store it in DWH (marked with light gray arrows in Figure 1).

We chose PDI because it enables users to ingest, blend, cleanse and prepare
diverse data from any source. Its visual tools eliminate coding and complexity
of creating data pipelines. It offers the data agnostic connectivity spanning from
flat files to Hadoop, powerful orchestration and scheduling capabilities (including
notifications and alerts), agile views for data modeling/visualization on the fly
during the data preparation process, support for Hadoop distributions, Spark,
NoSQL data stores and analytic databases, etc.

On the other hand, if there are data producers that generate Big Data with
high volume, velocity or versatility, then the classical approach for ETL is not
suitable. Big Data streams can be efficiently collected and processed by Dis-
tributed Streaming Platforms (DSP), which are scalable, replicated and fault-
tolerant (e.g., Apache Kafka, Amazon Kinesis, etc.).

By defining a retention policy, DSPs can be configured to retain the data on
the queue for a specific time after it was published, regardless if it was consumed
or not. For example, for Amazon Kinesis the maximum data retention period
is one week. DSPs allow the same data stream to be consumed by multiple
consumers independently and simultaneously, each of them working at their own
pace. Accessing the data on a DSP queue can be performed by either push or
pull mechanisms. The pull mechanism is innate for Amazon Kinesis and Apache
Kafka, so each consumer has and manages its read pointer.

Our solution allows consumption of DSP queues by the three most common
types of consumers: Push Lambda functions (stream-based model), as well as
Storage and Analytics Stream Pullers. The first two types are redundant alter-
natives for permanent raw data storage on different Object Storage containers,
such as Amazon S3 or Windows Azure Blob Storage (WABS). Each of them is
reliable with guaranteed Service Level Agreement (SLA). Using both of them
can simplify deployment procedures and further improve the system’s reliability.
If the data format changes drastically or sources vary, consumers can be updated
without any downtime or risk of data loss. Having both alternatives also provides
integration convenience with the existing infrastructure.

Once the data is permanently stored on S3 or WABS in a raw format, we
employ another Lambda function, which triggers after new files are deposited
in a particular location. This function can cleanse the data (e.g., extract plain
text from HTML files) and ingest it to Full-text search indexing services, such
as Elasticsearch or Solr, which would subsequently provide free-text search func-
tionality [17]. To some extent, this results with robustness to data veracity and
complements the analytical capabilities of DWHs.
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Analytics Stream Pullers (e.g., Apache Spark Streaming, Apache Storm or
Apache Flink) are a different kind of consumers that process data streams to
provide near real-time insights and analytics. Our architecture complements this
by employing on-demand Spark clusters for implementing more sophisticated
algorithms for ETL and feature engineering. They can analyze changing trends
over extended time periods (e.g., week-by-week or month-by-month comparisons
of various metrics) or find the time since some particular event happened. Such
metrics are not computable with Analytics Stream Pullers.

To facilitate on-demand starting of Spark clusters, on the machine that hosts
Data Integration Tool (DIT) there is a Cluster Launcher module. It can be in-
voked manually or based on a predefined schedule by DIT. Cluster Launcher can
start an Amazon EMR or Azure HDInsight cluster with configurable size and
can run a particular Spark job. After the Spark cluster is started, it downloads
the source code from a release branch of a code repository and automatically
starts it. Code development and management adhere to the adopted organiza-
tion’s strategy (e.g., GitFlow), which defines rules and best practices for conflict
resolution, peer-review, merging to staging and production branches, etc. Each
Spark cluster during its lifetime executes only a specific ETL job. If the organi-
zation requires multiple ETL processes of unrelated data, then multiple Spark
jobs can be defined and for each of them a separate workflow is managed (i.e.,
separate code repositories, execution schedules, target DWHs).

Next, the so-called Distributed Load Agent (DLA) is executed on all cluster
nodes to process distinct portions of HDFS data generated by Spark. After DLA
work is complete, the data is available in DWH for various BI tools and data
mining or machine learning methods. Traditionally, data ingestion is a massive
burden on database servers and often is a bottleneck. After Extract-Transform
steps are completed and the primary/foreign keys are set, the load needs to be
performed. The idea of DLA comes from the principles of edge computing, and
it is partly inspired by the technology described in [18]. The goal is to offload
most of the work to remote machines away from DWH. These edge nodes would
compress the data and prepare an output, which could be simply copied to the
database end. Thus, the overall impact on the database server would be minimal.
In the proposed architecture, the whole on-demand cluster is considered as being
on the edge from the DWH perspective (see Figure 1).

4 ETL Data-flow Scenarios

Let us describe three ETL data-flow scenarios commonly needed in organizations.
These scenarios relate to the significant data portion to be stored in DWH,
i.e., fact tables. The volume of dimensional data is considerably smaller. Thus,
it usually does not require processing based on Big Data technologies; rather
traditional ETL tools are sufficient. The proposed architecture assumes that
traditional ETL tools already process dimensional data and that one only needs
to handle the data to be stored in fact tables. The steps for implementing the
ETL process of the three scenarios are shown in Figure 2.



3. Generate unique ids for each record 
(MaxId + ZipWithUniqueId)

4. Transform and clean the data; and
set primary and foreign keys to the dimensions

(MapPartitions)

6. Group data by grouping key, such as userId
(GroupByKey)

7. Calculate sessions, aggregate data per
session, determine incomplete sessions

(MapPartitions)

5. Transform and clean the data; and
set foreign keys to the dimensions

(MapPartitions)

8. Extract sessions (FlatMap),
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3. Read all incomplete data from S3

4. Merge of all new and incomplete data (Union)
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10. Save unaggregated data to HDFS

5. Save output to HDFS

c) ETL3: Session-based aggregation

a) ETL1

b) ETL2

a) ETL1: No aggregation

b) ETL2: Predefined time period aggregation

Fig. 2: Extract/Transform steps in Spark for completing the three ETL scenarios



Business (i.e., natural) keys denote unique record identifiers that could have
some business meaning, but most importantly, they are managed by operational
data stores (ODS). In DWH, a surrogate key is a necessary generalization of the
ODS business key and is one of the essential elements of DWH design. Every
join between dimension tables and fact tables in a DWH environment is based
on surrogate keys, not business keys. It is up to the data extraction logic to
systematically look up and replace every incoming business key with a DWH
surrogate key each time either a dimension record or a fact record is brought
into DWH. Surrogate keys provide independence from ODS business keys, which
could be subject to deletion, updating or recycling.

Populating foreign keys in fact tables in a traditional way with joins between
the fact and dimension tables would be inefficient for large datasets because it
requires shuffling and redistributing the data across the cluster nodes. On the
other hand, if the dimensions’ business and surrogate keys are distributed across
nodes in advance, populating foreign surrogate keys is a simple dictionary lookup
operation based on business keys with O(1) complexity. This method does not
require reshuffling and adheres to the data locality principle.

Figure 2 shows the data flow for all proposed scenarios. The first two steps
are common, so they are omitted. Each scenario is described in details in the fol-
lowing subsections. After the cluster is started per a defined schedule, Spark first
loads business and surrogate keys of all processed dimensions. Also, the max-
imum values of surrogate keys for each table are calculated in step 1, because
they define the starting values of new surrogate keys to be generated during
a subsequent run of the ETL process. Then, Spark distributes them with the
Broadcast operation to each node. For non-existing business keys, new surro-
gate keys are generated as a sequence of increasing integers, starting from the
current maximum key for the table. Gaps in the generated sequence of numbers
are allowed by design (for computational efficiency). During the surrogate key
generation, their density is calculated (defined as the ratio of the total number
of surrogate keys and the maximum), which shows how efficiently they are used.
If the density is low and the maximum value of surrogate keys increases rapidly,
this may be used to recommend a redesign. Step 2 reads all new data from S3
(using Spark operations TextFiles or WholeTextFiles).

4.1 ETL Scenario 1: No Aggregation

The first scenario requires parsing, data type conversion, setting foreign keys
(Extract-Transform steps) and loading only into the fact tables of DWH. This
scenario is the simplest of the three and does not need any aggregations in the
fact tables. It is required for the whole generated data be available at the lowest
level of granularity (after performing proper cleansing), including associations
with other entities in the system. Some typical use-cases of this workflow refer to
the log analysis in resource management, application troubleshooting, marketing
insights, regulatory compliance, security, etc. What is common about these use-
cases is that the original data needs to be preserved entirely without any level of
aggregation so that particular events can be pinpointed. Hence, it is also worth



mentioning one more application aspect – regulatory compliance and security.
Indeed, maintaining compliance with industry regulations often requires the data
to be preserved in a source format to tag certain events.

Step 3 generates unique numeric identifiers for each record with the Zip-
WithUniqueId transformation. Even though there can be gaps in the generated
numbers, it does not require data shuffling, making it very efficient. When the
maximum surrogate key value (MaxId) is added to the generated number, a
unique surrogate key of each record is obtained. In step 4 the transform phase
of ETL is performed, consisting of data transformations, data cleaning, type
casting, setting primary surrogate keys (using unique IDs generated in the pre-
vious step) and setting foreign keys to the dimensions (by performing lookups
in the dictionary already distributed to each node in step 1). This step uses the
MapPartitions Spark operation, which guarantees that the transformations will
not cause shuffling, thus adhering to the data locality principle. Step 5 stores
the output of the transformations to HDFS in text format.

4.2 ETL Scenario 2: Predefined Time Period Aggregation

Scenario 2 refers to a predefined time period aggregation. It is present through
aggregating the data for nominal or dynamically quantized column domain (e.g.,
user, campaign, asset) in conjunction with some predefined time period. Associ-
ating the aggregated records with the actual records that comprise them, allows
drilling down. For example, if suddenly a spike in the number of daily signups
happens, the change can be quickly validated by checking logs to see who signed
up and when. Such functionality is not always possible with traditional dash-
boards, as they do not maintain the data source that is used to calculate the
metrics. Another use of aggregated data is for concept drift detection, trend
analysis over extended periods, or feature engineering [19].

The corresponding steps are shown in Figure 2, flow b. Steps 1 to 4 are
like in scenario 1. The GroupByKey operation handles records with the same
grouping key in step 5. Step 6 aggregates records within the same group, thus
producing a new record with one or more aggregate values (e.g., count, sum).
For each such new record, all records that comprise it are also preserved. Step 7
extracts the aggregated records (with the Map or FlatMap operations), generates
primary keys for them with the same method as applied in step 3 and updates
the aggregated records to reflect primary keys. It also sets the foreign key to the
new record in all records that comprise it. Step 8 stores new records (without
the comprising records) on HDFS. Step 9 extracts the comprising records of each
new record with the FlatMap operation in one set of the unaggregated records.
Then these records are stored to HDFS in step 10.

4.3 ETL Scenario 3: Session-based Aggregation

Aggregation on predefined time periods still does not cover all use-cases. For
instance, consider the task of feature engineering. In many applications, e.g.,
churn prediction and fraud detection, meaningful features may be defined as: “the



time that passed from the last occurrence of event X”, “the time since the user’s
last login”, “last use of a service”, or “last bought product”. Similar attributes
could be utilized in other data mining applications, such as identifying reasons
for service outages or even predicting them. Even though such features are easy to
understand, their calculation requires to look in a variable, practically unlimited
data periods [20]. On the other hand, in typical streaming scenarios, only the
very recent data portions are accessible.

Scenario 3 calculates user sessions, performs aggregation on session level and
loads the data in both aggregated and unaggregated formats. We show ETL for
this scenario in Figure 2, flow c. Incomplete sessions are defined as those that
were still active at the end of the period that is being processed. Records of
incomplete sessions are then stored separately so that they could be taken into
account in the next run. Step 3 reads the data corresponding to incomplete ses-
sions. Step 4 merges two datasets – new and incomplete data. In step 5, the data
is cleansed and transformed, and foreign keys to dimensions are set. In step 6,
the records are grouped by a more coarse grouping key, such as the user id. This
enables implementation of complex business rules in step 7 for determining user
sessions because all recent user records are available sequentially in one logical
and physical location. During step 7, full sessions are determined, along with the
records that comprise them and some aggregations are performed per session.
Step 8 extracts full sessions with the FlatMap operator, generates primary keys
for them and updates the records to reflect the generated keys: aggregated to
have proper primary keys and comprising records to have proper foreign keys to
the corresponding aggregate (session) records. The result of this step is preserved
in memory as it will be needed three times in the following steps. Step 9 stores
full sessions to HDFS. Using the result from step 8, Step 10 combines the unag-
gregated records that comprised completed sessions, and generates and sets their
primary keys. In step 11, these records are stored to HDFS. Step 12 extracts the
unaggregated records of incomplete sessions into one set and then step 13 stores
them in the original format (without any data cleansing and transformations)
in S3 so they can be used in the next run in step 3.

4.4 Data Load Steps for All Scenarios

After the last step described in each scenario, Data Load steps are executed.
First, the data is loaded to DWH, using the proposed distributed data load
algorithm that processes one table at a time in a parallel way. Finally, all meta-
data that was collected during the cluster lifetime (i.e., various metrics such as
duration of each step, the number of processed records per table, etc.) is loaded
into DWH and then the cluster self-terminates.

5 Experimental Results

Let us present the results of evaluation of three ETL scenarios with the pro-
posed architecture. Table 1 shows information about the considered datasets.



Table 1: Statistics on datasets and generated records in each ETL scenario
ETL scenario

ETL1 ETL2 ETL3 ETL3 (100 days)

Source type CSV JSON JSON JSON
Source columns 31 17 17 17
Destination aggregated columns - 86 86 86
Destination unaggregated columns 86 26 26 26
Source S3 objects 550 410K 410K 36M
Source size (GB) 53 30 30 2603
Source records 137M 44M 46M 3987M
Destination unaggregated records 137M 44M 44M 3985M
Destination unaggregated size (GB) 94 28 28 2427
Destination aggregated records - 2M 1M 108M
Destination aggregated size (GB) - 2 1 70

The data was provided from a service that collects user logs very frequently,
and the processing result was timely and actionable information. All three sce-
narios were used to populate data marts that we designed for a subscription
video-on-demand company that was competing with Netflix in their local mar-
ket. First, decision support systems leveraged the aggregated data for evaluating
investment opportunities and tracking historical performance. ETL scenarios 2/3
were applied for feature engineering to build machine learning systems for: churn
prediction, fraud detection (i.e., account sharing against the terms of use), and
predicting service outages. Finally, we preprocessed the log data to infer implicit
user feedback, in order to build a recommendation system.

The experiments with each of the scenarios were repeated ten times and
all presented times represent the average of the repetitions. All scenarios were
evaluated on clusters with 5, 10, 15, 20, 30, 40 and 60 nodes so that we could
investigate the impact of cluster size on the speedup.

ETL scenario 1 We experimented with the whole data stored in one large text
file, as well as 550 smaller text files (see Table 1, column ETL1). The size of
the source files did not influence the performance of the system, which is under-
standable, considering that S3 is a distributed storage system. The performance
of each step (Spark duration and DLA duration) depending on cluster size is
shown in Figure 3a. Note that Amazon does not bill the booting duration. Simi-
larly, the cost depending on cluster size is shown in Figure 3b. It is evident that
the 15-node cluster was the most cost-effective because its chargeable duration
is just under one hour. It is also notable that when we used more than 30 nodes,
the overall duration did not improve significantly.

ETL scenario 2 Duration of each step and the cost for this case study (Table 1,
column ETL2) depending on cluster size is shown in Figures 4a and 4b, respec-
tively. Obviously, the 5-node and 15-node clusters are the cheapest. However,
the latter completes the job faster for the same cost.
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Fig. 6: Speedup of Extract-Transform steps (Spark) of the three ETL scenarios.

ETL scenario 3 The results of the experiments with the third scenario, which
performs session-based aggregation, are shown in Figures 5a and 5b. As before,
the most cost-effective is the 15-node cluster.

To verify that our architecture is reliable and sustainable, we executed sce-
nario 3 (the most complex one) on a considerably increased workload using the
data collected during 100 days (Table 1, column ETL3 (100 days)). We used a 20-
node cluster with “r3.2xlarge” instances. Considering that the volume of source
data (2.6 TB) exceeds the cluster’s storage capacity (20 × 160 = 3.2 TB total
hard drive space, of which less than 1 TB is available for HDFS), the Spark and
DLA jobs were executed interchangeably one day at a time (i.e., flow c shown in
Figure 2 was executed 100 times on the same cluster). Execution in a one-day-
at-a-time fashion also enabled the results of the ETL to be available even though
the whole process is still in progress. The Spark jobs completed in 174,481 sec-
onds in total, or on average about 1,745 seconds per daily data volume. This is
considerably less than when a cluster of same size processes daily data (2,034
seconds, see Figure 5a). We attribute these savings to the overhead of starting
a Spark job on a new cluster and to the variance in daily data volumes. DLA
completed in 8,514 seconds, an increase which is linearly proportional to the pro-
cessed data volume. Figure 6 shows the obtained speedup of Extract-Transform
steps in Spark when comparing different cluster sizes for the three ETL scenar-
ios, which is based on the results reported in Figures 3a-5a. Obviously, as the
number of nodes increases, the speedup decreases.



6 Conclusions

We proposed a cloud-based architecture for efficient ETL of Big Data. Spark
performs Extract-Transform phases. Then the results are loaded into a data
warehouse using distributed load agents that utilize the processing resources of
the cluster slaves (edge nodes), instead of the database server. To that end, ETL
employs on-demand Hadoop clusters with a variable size that run for a limited
duration on Amazon AWS. By defining and evaluating three ETL scenarios that
cover a variety of use cases, we demonstrated the scalability of our solution.
Most notable was the non-trivial usage of the proposed scenarios for feature
engineering in the considered data mining applications.

Having such run-time facilities, one can think about automatizing ETL’s
design too. Elemental data analysis (file formats, data types, measure units),
data model recovery, dimensional model identification, are activities that at least
to some extent can be performed by a computer program. Our initial experiments
are promising. We believe that the full ETL effort from the design to a running
data warehouse can be limited to days instead of months.
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