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ABSTRACT Sign languages are critical in conveyingmeaning by the use of a visual-manual modality and are
the primary means of communication of the deaf and hard of hearing with their family members and with the
society. With the advances in computer graphics, computer vision, neural networks, and the introduction of
new powerful hardware, the research into sign languages has shown a new potential. Novel technologies
can help people learn, communicate, interpret, translate, visualize, document, and develop various sign
languages and their related skills. This paper reviews the technological advancements applied in sign
language recognition, visualization, and synthesis. We defined multiple research questions to identify the
underlying technological drivers that strive to improve the challenges in this domain. This study is designed
in accordance with the PRISMAmethodology. We searched for articles published between 2010 and 2021 in
multiple digital libraries (i.e., Elsevier, Springer, IEEE, PubMed, and MDPI). To automate the initial steps
of PRISMA for identifying potentially relevant articles, duplicate removal and basic screening, we utilized
a Natural Language Processing toolkit. Then, we performed a synthesis of the existing body of knowledge
and identified the different studies that achieved significant advancements in sign language recognition,
visualization, and synthesis. The identified trends based on analysis of almost 2000 papers clearly show that
technology developments, especially in image processing and deep learning, are driving new applications and
tools that improve the various performance metrics in these sign language-related task. Finally, we identified
which techniques and devices contribute to such results andwhat are the common threads and gaps that would
open new research directions in the field.

INDEX TERMS Sign language recognition, systematic review, sign language visualization.

I. INTRODUCTION
People are considered to have a hearing loss when they are
not able to hear under a hearing threshold of 25dB or less in
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both ears. Around 430 million people worldwide have dis-
abling hearing loss, and it is estimated that by 2050 over
700 million people will have disabling hearing loss.1 Hearing

1World Health Organisation (2022, March 22), Deafness and hearing loss.
Retrieved from https://www.who.int/news-room/fact-sheets/detail/deafness-
and-hearing-loss
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loss can be mild, moderate, severe, or profound. ‘‘Hard of
hearing’’ individuals have a hearing loss ranging from mild
to severe, while ‘‘Deaf’’ individuals mostly have profound
hearing loss.

Hearing loss is one of the most common chronic impair-
ments that appear with age as degeneration of sensory
cells. It results from different congenital or acquired causes
(e.g., genetic causes, complications at birth, infectious dis-
eases, exposure to excessive noise, among others). It is known
as ‘‘Presbycusis’’ and affects approximately one-third of peo-
ple over 65 years of age, and it cannot be reversed [1].
However, it can be effectively treated with common hearing
aids and communication devices. Moreover, some disruptive
assistive technologies based on Artificial Intelligence are
emerging to improve the well-being and quality of life of hard
of hearing and deaf individuals.

The problems tackled by assistive technologies are
numerous and spread around different fields. Newly devel-
oped technologies and Information Technology (IT) driven
and supported systems are at the forefront of the assistive
technologies field. One of the many fields of application of
assistive technologies is improving the life quality of hard of
hearing and deaf persons.

Hard-of-hearing persons usually communicate through
spoken language and can benefit from hearing aids, cochlear
implants, and other assistive devices, as well as caption-
ing. On the other hand, deaf persons face challenges in
everyday communication that can significantly impact daily
life, causing feelings of loneliness, isolation, and frustration,
particularly among older people with hearing loss. One of
the challenges for this community is proper integration in
everyday ‘‘normal’’ society.

Sign languages are classified as natural languages and
exhibit all the design features of other natural languages [2],
[3]. Sign languages’ visual and spatial nature and their vari-
ability present an exciting challenge for research in sev-
eral scientific fields, such as linguistics, medicine, machine
learning, computer vision, natural language processing, and
computer graphics.

Interpretation and linguistics of sign languages are pri-
marily concerned with the meaning conveyed using the sign
language. With the recognition of sign languages as natural
languages in the late 1970 and early 1980, linguist research
took an in-depth look into this field [4]. Neural aspects are
considered for fully grasping the connection between sign
and phonetic languages. Natural language processing is also
concerned with interpretation, a task similar to the interpre-
tation and comprehension problems.

Sign language synthesis and visualization is an area that
tackles visualization issues of sign languages and the creation
of signed speech. This field researches and develops means of
realistically ‘‘spoken’’ sign languages, using video and image
sequences or digital characters [5].

Sign Language Recognition (SLR) is the scientific area
responsible for capturing and translating sign speech using
computer vision and artificial intelligence techniques [6].

The research benefited in the last decade by introducing
general-purpose sensors such as e.g., Intel RealSenseTM,
Microsoft Kinect, LeapMotion Controller, etc. [7], [8].

In this paper, we focus on sign language research, a rel-
atively young field that took off with the breaking research
of William Stokoe [9], [10]. When tackling sign languages,
we have identified three areas prominent for research: inter-
pretation and linguistics of sign languages, sign language
synthesis and visualization, and sign language recognition
(SLR). Considering the importance of sign languages for the
communication of millions of people across the world and
the rapid technological developments, this article performs a
scoping review of themost recent technologies applied in sign
language recognition. One of the novelties of our work is that
we start from a systematic mapping (i.e., a scoping review)
where the trends in literature in the last decade are explored
so that emerging technologies, sensors, algorithms can be
analyzed. Then, we proceed in a more detail-oriented fashion
that is more common of systematic reviews where we identify
the most significant works in the field. To that end, we use
an NLP-based tool to support and simplify the literature
review, which, as a methodological approach, is novel and
considerably reduces the manual effort usually involved in
such activities.

The remainder of the paper is structured as fol-
lows. Section II discusses the related systematic reviews,
and section III discusses our methodology for this paper.
Section IV presents the results of our work, and section V
discusses them. Finally, section VI concludes the paper.

II. RELATED WORK
This section covers other literature reviews relevant to the
domain of this study. First we analyze most important recent
works for sign language recognition. Then, we analyze recent
systematic surveys in gesture recognition. Each area of
research into sign languages has a vast amount of valuable
research that needs to be filtered and analyzed. Surprisingly,
few literature reviews have considered gesture and sign lan-
guage analysis.

A. LITERATURE REVIEWS IN SIGN LANGUAGE
RECOGNITION
In 2011, Cooper et al. [6] provided an excellent review on
sign language recognition approaches and challenges. The
publication focuses on all aspects of sign language recogni-
tion (SLR): sign language linguistics, data acquisition related
to sign languages, and approaches for sign language recog-
nition. The linguistics portion describes some complexity in
sign languages, like body posture and non-manual features.
The data acquisition section enumerates the approaches for
acquiring sign languages available at that time (data gloves,
images and video input, depth-based cameras). It also listed
the prominent sign language datasets that have been obtained
using the methods. Also, the review discusses the main
approaches of hand pose acquisition, as well as individ-
ual fingerspelling and other non-manual features. As for
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recognition, the authors describe the state-of-the-art
approaches, focusing on individual or continuous sign recog-
nition. Various approaches using various types of Neural
Networks, Hidden Markov Models and their variations (like
Parallel HMM), decision trees, and self-organizing maps are
utilized for various parts of SLR.

Similarly, in 2013, Toiba and Elons [11] discuss the
developments in sign language recognition, taking into con-
sideration much of the results mentioned by Cooper et al.
and focusing on neural network approaches for SLR. They
report recent results (as of the time) near 90% recogni-
tion for specific and carefully chosen cases. The paper,
however, does not present a methodology of the sur-
veyed results and provides a more general overview of the
field.

Authors of [12] created a taxonomy to describe the lat-
est research divided into four main categories: development,
framework, other hand gesture recognition, and reviews, and
surveys. Also, the authors created a roadmap and discussed
the limitation of the use of this technology.

Er-Rady et al. [13] in 2017 published a survey about auto-
matic sign language recognition. In it, they describe the
approaches as well as the best methodologies for sign lan-
guage recognition. In the paper, the authors explain the com-
plexity of data acquisition as well as the features of the
manual features of sign languages as well as other properties
that the modality allows (e.g. facial expressions). They also
describe themost common components that should be present
in a system that uses an Automatic Speech Recognition
system (ASLR).

A comprehensive review of recent works for sign language
recognition is presented in [14], where authors defined a
taxonomy to group existing works and discuss their pros and
cons. The article also discusses features, modalities, evalu-
ation metrics, applications, and datasets. Even though our
work is on a similar topic, we focus on technological solu-
tions, particularly those applying advances in camera tech-
nologies and machine learning methods. Likewise, we also
analyze the publications in the recent decade at various
publishers and identify the emerging trends and promising
directions for future work.

A quantitative survey of state of the art in sign language
recognition is presented in [15], where authors centered the
research for the creation of a framework of the hand recogni-
tion system composed by image datasets, preprocessing, fea-
ture extraction, image segmentation, and classification with
supervised and unsupervised learning strategies. The authors’
motivation was to increase the susceptibility, decrease com-
putational complexity, increase classification rate, and reduce
the error rate. Similarly, our review is focused on the different
methods for the recognition of sign language, but we included
more recent studies.

Authors of [16] present a review of hand gesture and
sign language recognition techniques. Unlike it, our survey
presents more quantitative metrics about the trends and also
shows the most relevant works, including novel techniques

that have emerged in the recent years not covered by this
paper.

In [17] a critical review and analysis of machine learning
methods for sign language recognition is presented. It pro-
vides a comprehensive review of artificial intelligent meth-
ods applied in sign language recognition systems and brief
overview of the feature extraction and segmentation methods.
Unlike it, our work covers the wider field of visualization and
interpretation of sign languages.

In [18], the authors presented the analysis of existing meth-
ods related to sign language capturing, recognition, transla-
tion, and representation, also showing their pros and cons.
In addition, the authors analyzed the applicability of the
studies. However, this study is only focused on artificial intel-
ligence techniques and their applicability for sign language
recognition.

B. LITERATURE REVIEWS IN GESTURE RECOGNITION
A field that is in close connection to Sign language recogni-
tion is gesture recognition. Significant research efforts have
been made in that direction. As more notable, Sagayam and
Hemanth have compiled a survey about the use of hand pos-
ture and gestures recognition [19]. In it, the authors describe
the most effective research approaches as well as results from
the recognition. Specifically, all the approaches mentioned
(decomposition, decision trees, support vector machines, hid-
den Markov models, among others) can produce a 90+%
recognition rate. In the paper, the authors have a special
section dedicated to studying hand motion analysis (HMA),
mentioning HMMand its variations as the most commonway
to analyze hand motion.

The gestural language signs differ from different countries,
where, in 2020, the authors of [20] explored the recognition
of Portuguese Sign Language. Several classifiers, including
Deep Neural Network (DNN), Multilayer Perceptron (MLP),
Support Vector Machines (SVM), Hidden Markov Models
(HMM), and Subspace Gaussian Mixture Model (SGMM),
were used for the classification of Portuguese Sign Language
between 2021 and 2018, proving its reliability.

In [21], the authors presented a literature review related
to gesture recognition in a mobile context as well as facial
recognition in sign languages. The classification models used
in the literature included SVM, Hierarchical Temporal Mem-
ory, Feedforward backpropagation neural network, Random-
Forest, and MLP. The use of these devices makes feature
extraction easier.

III. METHODOLOGY
This study adopted a scoping review methodology to iden-
tify and process the literature on sign language recog-
nition, visualization, and interpretation published from
January 2010 to September 2021. Using a scoping technique,
we aimed to examine the research evidence in the broad
field of technological solutions and sign languages, analyz-
ing technology trends, including the resolved and emerging
issues. The lack of a qualitative analysis of identified papers,
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the broad topic range, and the number of studies involved
defined our approach as a scoping review and differentiated
it from a systematic review [22], [23]. The purpose of this
study fully complies with the aims of a scoping review ‘‘to
search, select and synthesize the knowledge addressing an
exploratory question to map key concepts, types of evidence,
and research gaps’’, as defined in [24].

The methodological framework for scoping reviews pro-
posed in [22] was adopted in this study, composed of five
stages: Identification of a research question; Identification
of relevant studies; Study selection; Charting the data; and
Collating, summarizing, and reporting the results. The iden-
tification of relevant studies and study selection stages in the
scoping review methodology corresponds to the ‘‘Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA)’’ [25] workflow phases: study collection, scan-
ning, and eligibility evaluation (see Fig. 1). Therefore, after
the scoping review, our research identifies the relevant works
according to the defined research questions and inclusion
criteria and discusses them in more detail.

FIGURE 1. Flowchart of the PRISMA-based selection process.

A. RESEARCH QUESTIONS
The primary research questions of this review were defined
as follows:
RQ1 What are the prominent research topics and publication

trends in literature?
RQ2 In which way machine learning and deep learning

algorithms can improve sign language recognition and
interpretation?

RQ3 Which approaches are most suitable for recognizing
sequences of signs in sign language?

RQ4 Is there any considerable difference in the state-of-the-
art in sign language recognition, visualization, and syn-
thesis performance between different sign languages?

RQ5 What are future research directions for computer trans-
lation between sign languages and written/spoken
languages?

To answer these research questions, we performed an ini-
tial search and screening of papers and then selected the most
relevant works and analyzed them in more detail. The follow-
ing subsections describe the scoping review parameters, the
search strategy, and the inclusion criteria.

B. SCOPING REVIEW PARAMETERS
This stage employs an NLP toolkit described in [26] enabling
both automated search, scanning, and processing procedures.
Its input parameters are a collection of search terms used to
identify potentially relevant articles, the target digital libraries
(i.e., Elsevier, Springer, IEEE, PubMed, andMDPI), and a set
of properties that should be satisfied by the identified articles.
To determine the initial pool of articles that are then evaluated
for eligibility, we performed the search in the aforementioned
digital libraries with the search phrases:
• ‘‘sign language recognition’’ OR
• ‘‘sign language synthesis’’ OR
• ‘‘sign language interpretation’’ OR
• ‘‘sign language linguistics’’ OR
• ‘‘sign language processing’’
Keywords are search terms or phrases used to query a

digital library (e.g., ‘‘sign language recognition ’’). First,
eventual duplicates in the results are removed in a later phase.
Then to evaluate whether an article is relevant to the research
question, we define properties (see Fig. 2). Properties are
words or phrases that are being searched in the title (i.e., text
in italics in Fig. 2, such as ‘‘Sign language production’’),
abstract or keywords section of the articles identified with
the keywords. Properties can also have synonyms (i.e., the
comma-separated terms after the ones in italics, such as ‘‘sign
language generation’’, which is a synonym of ‘‘sign language
production’’). Property groups are thematically, semantically,
or otherwise grouped properties for a more comprehensive
presentation of results in charts (e.g., text in bold in Fig. 2,
such as ‘‘Domain-specific topics’’).

The start year indicates the starting year of publish-
ing (inclusive) for the papers included in the study. The end
year is the last year of publishing (inclusive) to be considered
in the study. This review encompasses studies published from
January 2010 to September 2021. The minimum of the rele-
vant properties denotes the minimum number of properties
that an article must contain to be considered suitable. This
study set this value to 4, providing the right balance between
falsely identifying relevant papers and potentially missing a
relevant one.

When researchers perform a scoping review according to
the methodology mentioned above, the actual tasks involve
searching digital libraries with different search phrases, often
involving complex Boolean conditions. The NLP toolkit
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FIGURE 2. Property groups, properties and synonyms used as search
input.

counterpart to these phrases are the keywords described
above. By screening the title and abstract, a reviewer deter-
mines whether the article is relevant to the study. The NLP
toolkit is automated using the properties and synonyms to
define what we are looking for in a report. Articles that con-
tain more properties are considered more relevant. Undoubt-
edly, a human reader might better understand the context
and better assess the relevance of an article. However, the
NLP tool kit mimics these tasks in an automated and more
thorough way, providing a higher efficiency in the scoping
review process in far less time. For more information about
the actual implementation, we refer the readers to [26].

C. SEARCH STRATEGY
The initial screening of duplicates and eligibility analy-
sis was performed automatically using the aforementioned
NLP-based toolkit utilizing Natural Language Process-
ing (NLP) techniques, as described in [26]–[28].

The PRISMA methodology is described with details for
our case in fig. 1 and it was used for the selection and
processing of the collected research articles. Upon merging

the results of multiple independent keyword-based searches,
the collected papers were screened to remove duplicates.
In addition, the screening process discarded articles that were
not published in the required period or for which the title or
abstract could not be analyzed due to parsing errors, unavail-
ability, or other reasons.

The qualitative analysis of the remaining articles relied
on the NLP toolkit that automates the initial steps in the
PRISMA approach, significantly reducing the number of
articles for manual evaluation. The identified articles were
labeled as potentially relevant if they contained at least four
predefined properties in their title or abstract (considering the
above NLP-enhanced searching capabilities, thus performing
a rough screening).

The NLP toolkit generates a spreadsheet file with the
following fields: DOI (Digital Object Identifier), link, article
title, authors, publication date, number of citations, abstract,
keyword, source, publication title, affiliations, number of
different affiliations, countries, number of different coun-
tries, number of authors, number of found property groups,
and number of found properties. These additional properties
aided the manual search of the articles with specific filtering
criteria. Each of the articles in this reduced set was sub-
sequently manually retrieved from their publisher and ana-
lyzed for potential inclusion in the qualitative and quantitative
synthesis.

Finally, we used a more traditional systematic survey
approach to provide a detailed analysis of the most relevant
works per the previously mentioned topics. Five reviewers
independently evaluated the remaining studies, and their suit-
ability was determined with the agreement of all parties.
Thus, the studies were evaluated per the previously defined
eligibility criteria and the reviewers’ evaluation of the study’s
relevance, quality, and impact.

D. INCLUSION AND EXCLUSION CRITERIA
Considering the abundance of research available on this topic,
we defined multiple inclusion criteria related to some quali-
tative properties of the articles, as follows:

IC1 The articles should be written in English and should be
published between 2010 and 2021, both inclusive;

IC2 The sign languages treated in the article should be
explicitly mentioned. It should contain at least one of
the most common sign languages per Ethnologue [29]
estimates (40 000 speakers or more). The list of
languages includes, but it’s not limited to: Indian,
Pakistani, Brazilian, American, British, Mexican,
Japanese, Russian, French and Chinese Sign language.2

Publications that do not explicitly mention the sign
language are excluded; Alternatively, if the research is
sign language-independent, it should provide significant
value in respect to IC3 and IC4.

2Ethnologue does not give estimates of the speaker population of Chinese
Sign Language, but it is included because of its perceived size.
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IC3 Articles related to sign language recognition are
included if:

IC3a They describe the algorithms used (e.g. Hidden
Markov Models, deep learning, convoluted neural
networks, among others);

IC3b It has been tested on a publicly available data set,
which is explicitly referenced;

IC3c The results are quantitatively described (i.e., in
terms of accuracy, F-score, among others);

IC4 Articles related to sign language synthesis and visualiza-
tion are included only if:

IC4a A successful visualization has been made, and
the output has been qualitatively or quantitatively
assessed by an expert or proficient sign language
speaker (in that language);

IC4b The article discloses the used technology or device
(e.g., depth-enabled cameras, smartphones, Kinect,
among others).

Considering that the screening part of the methodology
was automated, therewere cases when the potentially relevant
articles were in fact not relevant based on the defined inclu-
sion criteria above. Therefore, further manual inspection of
the remaining articles (1856 as described below in the Results
section), was key to identify whether the article should be
included per the defined criteria above. Some of the works
were included in the in the quantitative trends, but a minor
subset was chosen for a more in-depth qualitative analysis.

IV. RESULTS
The funnel of article selection and screening is presented in
Fig. 1. In the process of identification, 40,669 studies were
deemed potentially relevant to the research field. Duplicates
that emerged in the independent searches were removed, thus
reducing the total number to 16,626 potentially relevant stud-
ies. The first screening process further eliminated 4632 stud-
ies outs, or if errors occurred while parsing or analyzing the
title and abstract of the studies.

The remaining 11,994 studies underwent an automated
eligibility assessment using advanced methods provided by
the NLP toolkit [26]–[28]. After preprocessing, the articles
were taggedwith identified properties, and articles containing
less than four properties were removed (i.e., 10,138 articles).

Of the remaining research publications, 1856) were
deemed eligible for further manual inspection and inclusion
in qualitative analysis. The statistics on the number of the
collected articles, duplicates, articles with invalid time or
the articles with incomplete data, and relevant articles are
presented in Figure 3, for each digital library.

A. STATISTICS PER DIGITAL LIBRARY
Regarding Fig. 3, the Springer digital library provides by
far most of the potential candidates. However, after applying
the additional PRISMA-defined filters based on the defined
properties, the number of relevant articles is severely reduced,
as visible in Fig. 4. This figure shows that most of the relevant

articles for the defined research questions originate from
IEEE Xplore.

The distribution of the number of collected and relevant
articles per year is presented in Figure 5. From the chart,
we can identify increasing research in the field, with a notice-
able increase in the relevant research in time, with a small
peak in 2014. However, the most relevant number of articles
per the defined properties is in 2020.

Depending on the digital library, the ratio of the rele-
vant papers containing specific keywords changes (as seen
in Figure 6). For example, the Springer and IEEE digital
library focus on technology-driven research into sign lan-
guages, with most studies published for sign language recog-
nition and sign language visualization. Thus, it is a logical
outcome of an engineering-based organization and publica-
tion. Springer has a similar tendency, although it does have
a more general-purpose nature. PubMed shows a difference,
recognizing as the most identified keyword, with a significant
percentage of publications identified as sign language pro-
cessing, linguistics, and interpretation. MDPI seems to have
minor publications focused on this subject.

B. STATISTICS OF KEYWORD BASED QUERIES
Selected keywords were used to map the literature corpus on
sign language research. It is done concerning the set research
questions that appear in the relevant articles with different
distributions.

Regarding the source of relevant articles in relation to the
search keywords, the trend is displayed in Fig. 6.

In figure 7 we have a distribution of the number of research
publications that were identified with each keyword for the
period January 2010 until September 2021. Here we present
the annual number of research papers identified by the search
engine of the three libraries with the defined keywords and
additionally filtered manually based on their relevance to the
specified properties. Please note that the internals of their
search engines are not known, and the libraries might differ
in the way they look for these keywords: only in the title,
keywords section, abstract, or the whole article.

C. EXTRACTION OF STUDY CHARACTERISTICS
The evaluated research studies are segmented into two tables.
In Table 1, we have included the studies that have sign
language recognition as the main research question. In the
table, we present the research data in the following columns:
reference, year, key findings, test protocol, dataset, sign
language, problem sub-type and the data input type used
for the publications. The column key findings summarises
the most important parts of the publication, as well as
the method that is being used to achieve the results. The
testing protocol describes the training and testing phases
(if present) in the paper. Next, the dataset column describes
or references the data that is used for training or validating
the results. The column sign language denotes the SL that is
being used (if applicable). Next, the problem sub-type col-
umn describes whether the recognition is static, continuous,
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FIGURE 3. Number of articles (considered, rejected for various selection and eligibility issues, remaining, and relevant) per digital library.

FIGURE 4. Number of identified relevant articles per year (2010–2021) per digital library.

isolated, etc. Finally, the data input type column shows the
device used to capture input data.

V. DISCUSSION
From Fig. 6 and Fig. 7 we can infer some interesting trends.
The most active field for sign language research, indexed in
the specified libraries, is sign language recognition, while
sign language visualization and sign language processing are
trailing behind.

This disparity in the number of publications can be
attributed tomultiple factors: the nature of the area of research

(e.g., mostly engineering vs. medical), the availability of new
devices and methods (e.g., the introduction of depth-based
cameras, development of the machine learning field), etc.

A. EVOLUTION OF RESEARCH INTO SIGN LANGUAGES
One of the contributions of this study is categorizing
the research around sign languages through the years.
In the 1990s, most research related to sign languages was
based on linguistic aspects (e.g., acquisition, evolution, teach-
ing, analysis, etc.).
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FIGURE 5. Number of analyzed and relevant articles in the span
of 2010–2021.

1) SIGN LANGUAGE ANALYSIS
When talking about the acquisition of sign languages,
Volterra and Erting [30] published a book that compiled the
most notable research studies about sign language acquisition
for children of different ages and backgrounds. The amount
of the presented research (21 research studies) enables the
authors to establish correlations between sign languages and
spoken languages. The most important conclusion is that
children’s stages when developing verbosity in sign and spo-
ken language correspond to one another, and the acquisition
phases are the same. Similar research was published by Boyes
Braem [31] focusing on one deaf participant from deaf par-
ents fluent in American sign language. Acquisition of sign
languages by primates is also studied [32].

2) CHALLENGES IN SIGN LANGUAGE RESEARCH
Due to the visual modality present in sign language research,
several considerations have to be taken into account. When
discussing sign language recognition, there is a distinction
between isolated, single-sign recognition and recognising and
interpreting sign language speech (continuous integration).
Isolated recognition focuses on providing a specific term (e.g.
noun, verb, adjective, etc.) to a visual image or sequence of
images (in case of dynamic, motion based sign).

Sign language data can come from different sources, but
usually take the form of:

• image/sequence of images/videos that have some form
of color data (e.g. standard cameras).

• transformation data that can be acquired from spe-
cialized hardware like data gloves or through usage
of motion-tracking techniques. Usually this data gives
information for the movement (rotation and/or location
of joints) of the arm and hands. The data is presented
either as hierarchical transformations in respect to the

anatomy, or as raw transformation/joint pairings that
need to be further processed.

• depth data that comes from specialized hardware
that includes depth sensors. The most common input
devices are Microsoft R© KinectTM (discontinued) and
Intel R© RealSenseTM series of sensors. Kinect is better
suited for whole-body movements and works best at
larger distances (1-4 meters) while RealSense devices
usually require closer distances (0.5 - 1.5 meters) from
the sensors.

Some datasets can come with both image and depth data.
Also, the process of recognition for sign languages follows

the standard pipeline for computer-vision based methodol-
ogy. Ideally, when discussing any problem that needs to
be processed from computer-vision perspective, it needs to
follow the standard steps [17]:
• Acquisition. Acquisition of the data that is needed.
In the case for sign language recognition, this includes
gathering a specific set of images showing different
signs under different conditions (e.g., lighting, environ-
ment, different people, etc.)

• Preprocessing. This can include various preprocessing
tasks ranging from standardization of images taken from
different devices to be in the same format, to different
data augmentation techniques. Namely, to improve the
robustness of the methods, this can include subtract-
ing the per-channel mean pixel values calculated on
the training dataset; random rescaling, horizontal flips,
perturbations to brightness, contrast, and color, random
cropping, etc.

• Segmentation. This involves the process of identifying
and segmenting the relevant parts of the data (image),
in this case, it would be image or video segments that
are focusing on the hand gestures.

• Feature extraction. This process aims to create man-
ageable sets of data that are derived from the initial
raw data. This is usually done by reducing the raw
data (a.k.a. dimensionality reduction), transformation to
other color space, or extracting some custom properties
that better describe certain aspects of the objects in
the image, so that the classification is more robust and
accurate.

• Classification. Categorize the input into a specific
classes, in this case, recognizing different language sym-
bols from the sign language gestures.

A driver to boost research into sign and gesture recognition
was the ChaLearn competition held in 2012 [33] because of
the dataset that was made available with it. The competi-
tion data set consisted of 50 000 gestures containing RGBD
data, using the then-novel Microsoft Kinect sensor. The ges-
tures recorded varied significantly, including signaling for
drivers, aircraft, representing numerals, and sports referees.
Here, the accompanying depth channel contributes consider-
ably to the approaches taken by the competitors, although
HMM-based methods dominate for the recognition of
gestures.
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FIGURE 6. Distribution of the number of relevant articles with each of the defined keywords from each of the source publication databases.

FIGURE 7. Distribution of the number of relevant articles with each of the defined keywords on the annual basis.

3) EDUCATION
The methodologies and results of education of Deaf people
in different environments are studied and tested. It includes
proposing training models for the education of deaf peo-
ple, as well as sign language translators [34], [35], and
the challenges of learning sign languages for in bilingual
environment [36], as well as challenges in learning sign
language [37].

4) MEDICAL ASPECTS
From a medical aspect, a lot of research has been conducted
on the effect of various medical conditions on sign speaking
and analyzing the neuro-biological aspects of sign languages.
Most notable, cases of deaf patients that have acquired signif-
icant brain injuries and the effects on their communication
have been investigated, with specifics on different condi-
tions, like left [38], [39] and right hemisphere [40] damage.
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The research gave insight into the parts of the brain that are
responsible for speech and signing. Further research, using
functional MRI, has been used to figure out the parts of the
brain that specialize in sign language communication [41],
[42]. To summarize the research, a strong indication of inde-
pendence of modality and language organization has been
noticed.

5) TECHNOLOGY ASPECT OF SIGN LANGUAGE STUDIES
The technology aspect of the research of sign languages can
also be discussed as part of this analysis. Generally, computer
science has more impact on sign language studies, providing
mechanisms that vary from data-gathering to visualization.

a: HCI TECHNOLOGIES
With the emergence of the human-computer interface (HCI)
technology, some research into closely related areas to sign
languages has been published. Schmauks andWille [43] have
hypothesized that in HCI, the motor responses, and espe-
cially facial expressions and hand gestures provide additional
non-vocal information that needs to be taken into account
when interfacing computer. Research into gesture recognition
paved the road for developing sign language recognition as an
emerging topic. Significant research of hand gesture recog-
nition [44], [45] have foreseen as having an impact on sign
language recognition. Bordegoni and Faconti [46] compared
and outlined architectures for gesture recognition system, cat-
egorizing into two categories: data-based and pictorial-based,
while the algorithms for recognition have been specified as
based on pattern recognition, neural networks or statistical
classification.

b: IMPLEMENTED SYSTEMS
Authors of [47] did a similar analysis while additionally
taking into account other modalities, such as head and eye
movement. Gilbert et al. [47] also discuss and present imple-
mentation of the recognition system using Hidden Markov
Models (HMMs), particularly ARGo and CADRE. This
work also describes an implementation of a system for
visualization (SAGA).

In 2001, a tool designed explicitly for linguistic, and
computer vision research for American Sign Language was
developed. The freely available tool, called SignStream [48],
primarily was developed as annotation ofmultimedia content.
Later versions of the tool utilize computer vision algorithms
for the annotation of facial expressions and hand shapes. Ges-
Rec3D [49] is a system developed primarily for augmentative
and alternative communication for people that have a motor
or speech disability. The system was designed to recognize
arm-gestures using an electro-magnetic tracker (Polhemus).

Other systems such as the one presented in [50], [51], [52],
[53] use gloves as sensors and machine learning approaches
for detection and recognition of the sign letters. Some
approaches even use Radio Frequency (RF) sensors to detect
and recognise sign languages [54].

c: HMM-BASED METHODOLOGIES
In this phase (late 1990 - early 2000), various HMM recog-
nition solutions are proposed. The most cited of all is the
implementation of Waldherr et al. [55], where they create
an autonomous helper robot that is controlled using gesture
recognition based on implementing modified HMM based on
the ‘‘Viterbi’’ algorithm. In 2003, Kai and Stiefelhagen [56]
present another system for Human-Machine interaction using
HMMs for detection of pointing gestures. In this system,
the authors use a stereo camera to consider the position
and orientation of the arm relative to the body. In their
later work [57], Kai and Stiefelhagen additionally incorpo-
rate head motions in their recognition system. Kingsley and
his coworkers [58] explored the possibility of developing
context-sensitive HMM that would utilize the HMM for ges-
ture learning and recognition.

d: DEEP LEARNING BASED METHODS: TRANSFORMERS,
3D CNN AND OTHERS
The authors of [59] proposed an interactive alignment net-
work with iterative optimization for weakly supervised con-
tinuous sign language recognition. It is composed of a 3D
convolutional residual network for feature learning and clas-
sification with sequence modeling. However, it only focuses
on using two decoders, such as Long short-term mem-
ory (LSTM) and connectionist temporal classification (CTC).
The results demonstrated the effectiveness of the imple-
mented decoders.

In [60], a deep learning-based pipeline architecture was
proposed for automatic hand sign language recognition
using Single Shot Detector (SSD), 2D Convolutional Neu-
ral Network (2DCNN), 3D Convolutional Neural Network
(3DCNN), and LSTM from RGB input videos. The proposed
model outperforms the state-of-the-art. It is an important
study for the review presented in this paper because an auto-
matic system was developed to recognize sign language.

The authors of [61] proposed a solution to speech sign
language without previous knowledge of sign language. The
proposed system converts these rotations through program-
ming to vowels and consonants. Thus, computer vision is an
important subject for the dissemination of sign language.

Transformers are superior in learning long-term depen-
dency, hence the sign language Transformer model achieves
remarkable progress in Sign Language Recognition (SLR)
and Translation (SLT). The following works all report
improvements over the state-of-the-art methods and they use
different alternatives of transformer architectures.

Authors in [62] describe a method that improves state of
the art results in gloss-to-text and video-to-text translation
using STMC-Transformer that outperforms translation of GT
glosses. Similarly, [63] proposes a Connectionist Temporal
Classification (CTC) loss to bind the recognition and trans-
lation problems into a single unified architecture that does
not require any ground-truth timing information, simultane-
ously solving two co-dependant sequence-to-sequence learn-
ing problems.
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TABLE 1. Detailed analysis of SL synthesis, interpretation and visualization research.
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TABLE 1. (Continued.) Detailed analysis of SL synthesis, interpretation and visualization research.
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TABLE 1. (Continued.) Detailed analysis of SL synthesis, interpretation and visualization research.
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TABLE 1. (Continued.) Detailed analysis of SL synthesis, interpretation and visualization research.
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TABLE 1. (Continued.) Detailed analysis of SL synthesis, interpretation and visualization research.

Another transformer-based approach is presented in [64],
which proposes a combination of feature extraction using
OpenPose for human keypoint estimation and end-to-end fea-
ture learning with Convolutional Neural Networks, using the
proven multi-head attention mechanism used in transformers.
Another transformer-based approach applied in word-level
recognition is presented in [65].

The authors of [66] propose a transformer model with self-
attention mechanism. It proposes the use of content-aware
and position-aware convolution layers that explicitly select
relevant features using a neighborhood gathering method.

e: RECOGNITION USING DECOMPOSITION
In-Cheol and Sung [67] utilized HMMs to create a
data-glove-based sign language recognition system using
the Polhemus gloves. The algorithm focused on decompos-
ing gestures into primitive strokes, using different HMMs
for gesture decomposition and stroke recognition. In its
limited experiments, the algorithm achieved a high level
of recognition rate (96.88%). Decomposition of gestures,
along with linguistic knowledge system, was also used by
Konstantinos et al. [68]. Here, the authors decompose the
image sequences into primitives: handshape, location, and
movement. Later, they use linguistic knowledge to recognize
the ASL speech. They used this technique on a large set of
signs and achieved between 86 and 97.13 percent accuracy.

When directly speaking about sign languages, proto-
systems based on neural networks for sign language recog-
nition also emerge. For example, Kim et al. [69] are credited

for creating a recognition system for Korean sign language
based on input generated from data-hand gloves. In 2000,
Marcus and his colleagues [70] presented a Neural Net-
work (NN), called T-CombNET, that has been specialized in
hand recognition. They tested the network using signs from
Japanese fingerspelling and achieved up to 96.5% recognition
when using dynamic gestures. Ming and Naendra [71] cre-
ated a sequential image-based neural network that is capable
of recognition of hand-trajectory gestures by utilizing and
decomposing the image sequences. The NN was tested for
recognition of 40 gestures from American Sign Language.

Fuzzy-rule approaches were also considered and were
tested on Taiwanese sign language [72]. Similar fuzzy-based
methods were considered and tested for Brazilian sign
language [73].

B. VISUALIZATION
From the sign language visualization aspect, efforts were
made to simplify the description of the models used for
gesture/sign language visualization. Aside from the proposed
system by Gibert et al. [47], general improvements of the
more subtle aspects of sign language visualization. John
McDonald et al. [74] purposefully created an anatomically
correct 3D model and skeleton of a human hand for use with
American Sign Language animation and visualization.

C. NOTATION SYSTEMS
The computer representation of sign language notation was
discussed in [75]. The paper details the then-known sign
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language notation systems: Stokoe Notation and its deriva-
tive, the BSL notation; SignFont andHamNoSys. The authors
conclude that the then-current notation systems are not suf-
ficient for sign language and propose a new type of nota-
tion that considers three-layered notation based on: ‘‘idea’’,
‘‘word’’, and ‘‘ deed’’.

D. LIMITATIONS OF THE APPROACH
This study considered only three digital libraries, and some
relevant articles from other indexed publishers were not con-
sidered. However, keeping in mind the size of the evaluated
digital libraries, we believe that the obtained results are repre-
sentative and in linewith the study’s goals. All digital libraries
used in this work have different internal search engines with
different rules for the maximum number of papers retrieved
and another formatting of search results. The papers obtained
for this study were obtained from the various search engines
using the same search queries. However, keeping in mind the
number of papers analyzed within this review, we believe that
specificities of the publishers’ search engines have limited
impact and have not influenced the findings of this work.
In the future, the NLP tool kit needs to be extended to pro-
cess more digital libraries. In addition, there is an apparent
need for a Web app that will make it available to a broader
audience. Until then, readers are encouraged to contact the
authors if they are interested in using the toolkit.

VI. CONCLUSION
The specific problems tackled in this research occupy a wide
range of topics connected to sign language research. Themain
problem when working with sign language is to effectively
translate and interpret them into some easily comprehen-
sible form, both for people and machines. To do this the
researchers have to adjust to the visual modality of sign
languages and extract key features from the visual data. This
problem includes recognition of static images, sequences
of images (video) as well as other types of information
(e.g., depth data).

Based on the thorough analysis of the selected publication,
we can conclude that machine learning and deep learning
algorithms can improve sign language recognition and inter-
pretation.

This means that sign language recognition systems depend
on machine learning approaches that are typical for other
problem domains. These approaches include pattern recog-
nition, statistical approaches, and neural network-based
approaches. Historically HMMs gave the best results ini-
tially since they, as an algorithm, seem to be most suitable
for time series data. However, lately, neural network-based
approaches and deep learning approaches seem to give bet-
ter results. Among them, approaches based on 3D-CNN,
Transformer and LSTM architectures seem to dominate the
continuous sign language recognition regardless of the sign
language. We can attribute the 3DCNN approach due to
its success with problems with image/video recognition,
time series, and natural language processing, areas that we

explained that are of interest in sign language research. Sim-
ilarly, LSTMs are used due to their effectiveness with time-
series data.

Additional studies need to be performed to analyze dif-
ferent sign languages’ recognition, visualization, and syn-
thesis performance. Most of the studies compare the more
novel approaches to the traditional methods for the same
language, but there is a lack of studies that compare methods
between different languages. This is due to the fact that there
are lack of datasets of translated sign language sequences.
Nevertheless, based on our review of the existing literature,
one can conclude that the state-of-the-art approaches used
for sign language recognition perform similarly for various
languages. Therefore, the same methods with slight modi-
fication are applied to different sign languages with similar
success.

With the improvement of the hardware and the machine
learning approaches, including the advancements of neural
networks and deep learning, one can expect that there will
be a significant improvement in all technologies for sign lan-
guage recognition and visualization. The current limitations
are usually related to a lack of data and training examples for
all languages. However, this limitation is becoming less and
less relevant with the advancements of the transfer learning
approaches. Therefore, we expect that within the following
five to ten years, there will be public and commercial products
that will perform live translation from and to distinct sign lan-
guages. This will ideally allow for real-time communication
between people that use different modalities (sign language
and vocal speech) as well as developing systems that will
translate speech from one sign language to another.
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