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Abstract—Computer music generation has application in many
areas, including computer aided music composition, on demand
music generation for video games, sport events, multi-media
experiences, creating music in the style of passed away artists, etc.
In this work we describe our approach towards music generation.
We trained a deep learning model on a corpus of works of several
authors. By priming the model with a snippet of an authors
work we used it to create new music in their style. The dataset
consists of music for guitar in midi format, containing only 1
part/instrument. We gathered more than 2000 files, of which we
used from 5 to 300 per experiment. The data for the deep learning
model is represented in piano roll format, a binary matrix where
one axis represents the time and the other axis represents midi
notes. Two deep learning architectures were evaluated, a 2-layer
recurrent neural network of LSTM (Long Short Term Memory)
cells and an Encoder-Decoder (Auto-Encoder) architecture for
sequence learning, where both the encoder and decoder are built
as recurrent layers of LSTM cells. The models were implemented
in the Keras deep-learning library. The results were evaluated
on a subjective basis, and with the evaluated datasets both
architectures produced results of limited quality.

Index Terms—music generation, midi, deep learning, recurrent
neural networks, LSTM, auto-encoder

I. INTRODUCTION

Computer music generation is an aspect of com-
puter/artificial intelligence that has peaked interest in recent
years. Opinions are split on whether computer generated music
is just imitation of human work or if computers can show
signs of actual creativity [1]. The opponents of computer
creativity claim that no computer model can create anything
novel because it would be based on a corpus of human work
or human defined rule-set, which it would only recombine
in arbitrarily abstract or complex way. On the other hand,
most human musical composition is achieved in a similar way.
People are exposed to music long before they can contribute
their musical compositions, and therefore heavily influenced
by other works, either consciously or subconsciously. By
mimicking the human creative process and leveraging the
ability of modern computers to process massive amounts of
data, and inspired by the, by now legendary, article [2] by
Andrej Karpathy, we would like to contribute to the discussion
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with our experiments with deep learning models and try to
show computer creativity.

Other than adding to the philosophical discussion, we see
practical applications for a music generation system. Exem-
plary applications include:

• Video games music, i.e., procedural generation of music
based on the setting and gameplay tempo.

• Exercise music, e.g. cardio workouts, where the music’s
rhythm is synchronized to the users vitals and/or an
exercise tempo scheme.

• Computer aided music composition, where the model
would help human composers by “filling in the gaps”
with candidate sequences of which the user would select
the most appropriate, to augment their work or give them
inspiration.

• Creating new music in the spirit or style of passed away
musical performers and actors.

However, any attempt of creating a deep learning model for
computer musical creativity is severely limited by the lack of
a way to objectively evaluate the model. The most common
approach is subjective evaluation of the results by a human,
usually qualified, with musical training and experience. This
not only limits evaluation of the final results, but also limits
the selection and training of deep learning algorithms and can
prove a severe bottleneck.

We decided to limit the scope to training models on one
track/voice of polyphonic music, with an arbitrary sequence
of notes or chords. We built the dataset from MIDI files due
to their availability and ease of parsing.

In this paper we provide details of two experiments that we
conducted, a multilayer Long-Short Term Memory (LSTM)
Recurrent Neural Network (RNN) and feed-forward network,
based on [3] and [4]; and a LSTM based Encoder-Decoder
architecture as baseline models based on [5]; as well as
outline how we aim to improve them and other experimental
architecture we intend to use in future works.

The paper is organized as follows: in section II we give
a brief overview of literature in the field of computer music
generation; in section III we describe how we obtained the
dataset, how it was processed and in subsection III-A the
data representation we chose for the learning model. Then,
in section IV we describe the deep learning architectures we
used in the experiments, in section V we discuss and interpret



the obtained results, in section VI we outline how we intend
to improve the current experiments and the architecture we
plan to test out next, and finally in section VII, we conclude
this paper.

II. OVERVIEW OF SIMILAR APPROACHES TO MUSIC
GENERATION

This work was inspired by the legendary article by Andrej
Karpathy - The Unreasonable Effectiveness of Recurrent Neu-
ral Networks [2]. In it Karpathy shows how a neural network
consisting of 2 layers of 512 LSTM cells can generalize
over several datasets of textual data: Paul Graham essay,
Shakespeare plays, XML and Linux C/C++ source code.
The resulting model can generate new sequences that are
reasonably close to the source material and can almost fool
a human, and in the case of C/C++ code some of the results
compile. It is a character-level language model, i.e., it learns
the texts letter by letter. Our first experiment was to adapt this
model to the task of music generation.

Eck et al. in [6] describe the first application of deep
learning to music generation. Due to the limited computational
power at the time they defined a very simple experiment,
generalization over 12 bar blues in written form, with a
maximum of 8 notes per bar. They represented music in
slices of note-time, i.e., one unit of time is 1

8 -th note long.
This representation was later named as piano roll. The more
complex of their two experiments consisted of learning in
parallel a chord progression and a melody line, allowing them
to generate both. Their architecture consists of 8 blocks of 2
LSTM cells, of which 4 are dedicated to learning melody the
other 4 to learning the chord progression. The chords sections
have output connections that influence the melody section but
not vice versa. This work is the inspiration for most of the
following research in the filed, including our own.

As an expansion to the previous work in [7] Eck et al.
improve their model by using musically important temporal
information from the pieces, allowing it to learn structure
at different granularities. The said information is metrically
significant and is provided to the network as time-delayed
copies of the network inputs at intervals that depend on
the piece’s meter. For pieces where no meter information is
provided, the authors developed a technique for algorithmic
meter extraction. The architecture consists of parallel LSTM
layer and standard feed-forward layer, which is supposed to
speed-up local dependency discovery. We plan to investigate
how and whether having metrical information embedded into
the learning model impacts performance.

The architectures presented in [8] and [3] are specifically
designed to tackle Bach chorales. A hybrid architecture was
presented in [8] consisting of 2 LSTM subnets, of which one
learns the sequence in standard order and the other in reverse
order and a feed-forward subnet that learns the sequence in
standard order. The three subnets are combined in a single
feed-forward network. There is a copy of the architecture for
each voice in the chorales. The music is generated by pseudo-
Gibbs sampling procedure. They treat the 4 voices separately,

as monophonic music generation problems, and combine them
into a polyphonic melody. In contrast, we aim to generate
mixture of chords/single notes from a single network output.
To augment the dataset they transposed all the chorales to all
transpositions that fit in the tonal range present in the corpus.
We intend to do similar transposition schemes. The authors
of [3] approached the same problem with a 3-layer LSTM
network, to which they applied Grid-search hyper-parameter
tuning extensively to find optimal network and parameter
configurations. They used a very different data representation,
encoding all the voices in a single sequence, ordered by
descending pitch.

Boulanger-Lewandowski et al. in [9] attempted to combine
the RNNs’ ability to model sequences and Restricted Boltz-
mann Machines’ (RBMs) ability to model probability distri-
butions and apply them to music generation, in an architecture
dubbed RNN-RBM. In this architecture the RBM part models
note co-occurrence probability distributions at each time-step
and the RNN part models the temporal sequences. We aim to
achieve polyphony by modeling the probability of each output
of the network independently of one another, even though
realistically they are not, and try to avoid using a hybrid
solution like RNN-RBN, due to it being difficult to train and
computationally expensive.

In [4], another hybrid deep learning model, the LSTM layers
try to learn the temporal dependencies in the music, followed
by a set of feed forward layers that try to learn note co-
occurrences (or the harmonic part). They used a piano roll
very similar to our own, enriched with additional meta-data
extracted from the pieces.The meta-data depends on the music
being of very regular form, which our dataset is no, so we did
not include any.

The work presented in [10] approaches music generation
as a word-level language model, where each unit (composed
of 1 to 4 bars of music) is treated as word. The words are
embedded in a descriptor vector. A library of word (or units)
is then created from the complete set of embeddings. A LSTM
network learns sequences of the embeddings. Music is gener-
ated by first sequencing embeddings, which are then decoded
to actual note sequences by selecting the most appropriate
representative out of the library of units. We used character
level embeddings in out second experiment.

The implementation presented in [11] is very close to the
one of [2]. The authors transformed a set of folk songs in ABC
notation into a modified version of the ABC notation that’s
more suitable for deep learning, that makes it very easy to
unambiguously distinguish the various types of tokens, dubbed
folk-rnn. On top of that they built a character-level model
RNN deep learning model. Those tokens were encoded in
one-hot vectors fed to 3 layer LSTM network, which outputs
probability distribution over the unique token set. The authors
of [12] used an Auto-encoder architecture to learn chord latent
space embeddings. A sequence learner model generalizes
over sequences of latent space embeddings. They presented
a comparison of several types of chord representations. One
of the compared representations is very similar to what we



used in our experiments. We discuss more in section VI.

III. MIDI MUSIC DATASET

We created a dataset out of MIDI music files of classical
guitar music, scraped from http://classicalguitarmidi.com. We
chose MIDI files as the source format due to their ready
availability and the variety of music available on the Internet
in MIDI format. There is a number of formats that convert to
MIDI, like Guitar Pro files. MIDI computer-human interfaces
can allow us to extend the system to accept direct human
input in a relatively straightforward way. A total of 4009
pieces were scraped, which we then filtered by number of
midi tracks per file to pieces with only 1 track, resulting in
a set of 2158 unique pieces from more than 70 authors (e.g.,
Aguado, Bach, Carcassi, Duarte, Guiliani, Mertz, Paganini and
Segovia), while some files contain no author information.

The total length of all pieces is 336,878 seconds, the
shortest piece is just 9 seconds, the longest 1,546 seconds,
and the average length of pieces is 84 seconds. A histogram
of max polyphony per piece can be seen in Figure 1. Most
pieces fall between 4 and 6 notes playing at the same time,
which was expected, however there are pieces where more
than 6 notes are playing at the same time. This means that
either more than one guitar track was encoded on the same
MIDI track, or some pieces contain music played on different
instruments and were mistakenly uploaded to the web site or
were scraped by mistake. As seen in Figure 2, which shows
tempo information from the dataset, most pieces fall in the 100
to 240 tempo range, which covers all classical tempos. Figure
3 shows the distribution of note lengths in multiples of quarter
note, showing that the overwhelming majority of notes is of
expected durations from 1

16 -ths to whole notes. However a
significant number of notes are of very long duration, e.g.,
more than ten whole note durations, which is unusual for
guitar, and is probably an instrument that can sustain a tone
for longer durations, or an effect that the MIDI file author
wanted to achieve and not a part of the original composition.
A note range between MIDI pitch 32 (G#1) to 98 (D7) is
present, which also suggests that the dataset contains parts
with different instruments, as a 24 fret guitar can achieve the
highest note E6 or MIDI pitch 88.

A. Data Representation for the Deep Learning Models

We chose to use piano roll representation for the data. A
piano roll, in its most basic form, is a binary 2 dimensional
matrix, where one dimension represents linear time, and the
other the set of all possible notes, usually ordered by pitch.
A non-zero value indicates a certain note played at a certain
time. We used multi-hot encoding to allow for polyphony. It
is the most commonly used data representation in this field,
as seen in [4], [6]–[9], [13]. However we approach the piano
roll transformation from a different perspective. In the other
works selection and regularization steps were taken to obtain
datasets consisting of 4/4 meter [4], [6]–[8] and the tempo was
either ignored or used as a filtering parameter. The musical
sequences were discretized according to note time, to the

Fig. 1. Histogram of Max Polyphony.

Fig. 2. Histogram of Tempos.

smallest possible note duration preset in the dataset, as seen in
[6]–[8], or a preset minimal note duration, where smaller notes
were simply ignored as seen in [7]. We decided to use real
time instead of note time in discretizing the musical pieces, at
a resolution of 16Hz (16 samples a second, i.e., 1s of music is
represented as as a sequence of 16 elements). We chose this
sampling frequency so we can represent 1

16 -th notes at a very
fast tempo of 240 bpm, when the notes are properly aligned
to 1

16 -ths of a second. This sampling technique effectively
captures the vast majority of note sequences in the dataset,
however it is not lossless. Notes that lie on several slices can

Fig. 3. Distribution of Note Durations.



be extended or contracted, or disappear entirely, depending
on how far they span in the beginning and end slices. This
leads to perceptive jitter/stutter when music is converted back
to midi form for fast and dynamic pieces. Just like in the
aforementioned works, our version of piano roll has no explicit
note ending representation, which sometimes leads to several
consecutive notes of the same pitch blending into one longer
note. Since only a subset of the MIDI note pitches were present
in the dataset, the range from MIDI pitch 32 to 98, we ignored
the part of the midi specter that did not appear in any piece.
MIDI files also contain velocity information for the notes
played, which can be used in the piano roll representation,
but we chose to ignore them as characteristics of performance
and not composition, and instead focus on generating correct
musical sequences.

IV. EXPERIMENTAL ARCHITECTURE

We used the Keras deep learning library with the Tensorflow
backend to implement our models. We conducted experiments
with two types of architectures in mind. On the basis of the
BachBot architecture presented in [3] and the architecture
presented in [4], we tried 3 variations of a sequence learner:

• 2 recurrent layers with 256 LSTM cells with 0.2 dropout
followed by fully connected output layer

• 3 recurrent layers with 1024 LSTM cells with 0.4 dropout
followed by a fully connected output layer. Very close to
the implementation in [3].

• 3 recurrent layers with 1024 LSTM cells with 0.4 dropout
followed by 2 fully connected feed-forward layer, the
second being an output layer. The second feed-forward
fully connected layer was inspired by [4].

The activation function of the output layer is sigmoid, the
model was trained with the ADAM optimizer using binary
cross-entropy loss function. In Keras parlance the models
were not stateful, relying on the Truncated Back-Propagation
Through Time (TBPTT) to provide the network with the
ability to learn sequences. We tried values between 16 and 64
timesteps for TBPTT (or between 1 and 4 seconds of look-
back). The more timesteps the more context the model has,
but it also becomes both harder to train, needs more training
time to minimize training loss and requires more resources.
We chose 16 timesteps as the value for TBPTT timesteps.

The other architecture we tried is inspired by the one
described in [5], a Encoder-Decoder technique for sequence
to sequence learning, where we limited the output sequence
to be of length 1. We tried the following configuration:

• An encoder of one LSTM layer of 256 cells, a decoder of
one LSTM layer of LSTM cells, with a fully connected
output layer with sigmoidal activation.

This model was also trained with the ADAM optimizer
using binary cross-entropy loss function. Each of the outputs
from the final layer is treated separately, as if its activation
probability is statistically independent from the rest, even
though that is not strictly true. An output is considered active if
the sigmoid activation value is greater than 0.5. This allow us

to have multiple outputs activated at each time-step, allowing
for polyphony, just like in the “bilinear model” defined in [12].

V. RESULTS AND DISCUSSION

Training was done on a desktop PC equipped with an Intel
i7 processor, 32GB of RAM and a GTX 750Ti NVidia GPU
with 2GB of VRAM. All models were trained up to 100
epochs or until they did not improve on the loss function for
more than 5 epochs. We used a small subset of 5 pieces from
the whole dataset to do a baseline comparison between the
model configurations. The pieces were chosen by familiarity
to the experimenters to give us the ability to spot elements
and patterns in the generated data. They were transformed to
piano roll representation at a sampling frequency of 16Hz and
all of them were concatenated into a single sequence with no
special symbols for start or end of subsequence. With an input
sequence length of 2 seconds, or 32 time slices, we got 26336
samples for training. No data was withheld for validation. The
longest training time per epoch was 12 minutes for the most
complex variant of the first architecture. Generation is done
in a iterative fashion, i.e. a feed-forward generation strategy.
We start by giving the models a primer, a 5 second sequence
from the start of each of the pieces. The network is fed from
the primer one sample at a time, discarding the predictions
until the original primer boundary is reached. Afterwards
the predictions are concatenated to the primer. We generate
sequences of fixed length of 60 seconds. An overview of the
results is given in Table I. An example generated sequence
visualized in it’s piano roll representation is shown in Figure
4. This is the best case result we have achieved, where the
model repeats a subsequence several seconds in length. It was
generated by the simplest model.

TABLE I
OVERVIEW OF THE GENERATION RESULTS BY ARCHITECTURE

Architecture Result

2 layer LSTM Up to 2 seconds of valid sequence of poly-
phonic music followed by either a constant
polyphonic tone, a repeating pattern or silence

3 layer LSTM Silence
3 layer LSTM and 2
feed-forward layers

Silence

Encoder-Decoder Archi-
tecture

A constant tone of several notes for the whole
duration of the generated sequence

One limitation that affects all models is the character of the
data. The music is not structured or very similar from piece
to piece. That coupled with the polyphony make it hard for
the model to generalize over the dataset.

The 2 layer LSTM model is limited in expressiveness due
to the small network capacity and over-fits the data. It learns
small sequences extremely well and tends to get stuck in loops
when they get activated from the primer. In other cases it
doesnt get activated at all and results in silence.

The 3 layer LSTM model on the other hand, is too expres-
sive and does not have enough quality data to learn, so it never
gets activated at all. This was clear from the training process,



Fig. 4. Exemplary generated sequence.

where the 3 layer LSTM model plateaued much more quickly
and at a higher loss value than the 2 layer LSTM model. The
model with 3 LSTM and 2 feed forward layer had the same
issues as the regular 3 layer LSTM model.

The Encoder-Decoder model had the same problems as the
2 layer LSTM model, however it has a more limited arbitrary
memory capability when compare to the pure LSTM model.
This leads to over-fitting even shorter sequences and therefore
gets stuck repeating the same note. According to [12], the way
we structured the outputs, with multi-hot encoding and inde-
pendence assumption of the output probabilities, the model is
expected to perform poorly compared to one-hot encoding or
more advanced encoding schemes.

To get a time estimate for training we ran the simplest
variant of the first architecture with a subset of 300 randomly
chosen pieces from the dataset. An epoch took 52 minutes to
train, which would take the model several days to be fully
trained. This proves impractical for training models on the
complete dataset.

VI. FUTURE WORK

We suggest the following ways in which the results could
be improved:

• Adjust the parameters of the models, the layer sizes, acti-
vations, dropout values, input sequence sizes. Investigate
applicability of Grid Search, as used in [3], or other
optimization algorithms and techniques [14].

• Augment dataset with transpositions to every key present
in the dataset. This is a technique used in [8], [10], and
[13]. It will result in providing more samples that are
musically correct, as well as sequences with the same
relative pitch movement, allowing the models to better
capture patterns across the dataset.

• Create a more efficient training method as well as an
efficient batching method so that we can train the models
on much larger subsets of the dataset.

• Try a different data representation as seen in [3] or [13].
• Try an architecture that learns to embed the input data

into a latent space, i.e. chord embedding, and then have

a multi-layer LSTM model learn embedding sequences
similar to [12].

• Transform the problem to univariate predictions to greatly
simplify the learning difficulty, like in [13].

VII. CONCLUSION

The work so far did not fulfill the set goal of generating a
60 second long sequence of polyphonic music. We discussed
our interpretation of the limitations of the models we used
in section V. They need further refinement before being
able to generate actual musical sequences. We gave a brief
overview of how the results could be improved. In section
V we also noted that training on the complete dataset is
not practical on the current hardware. However thanks to
Microsoft Corporation, we have received a grant for Azure
Cloud for use with machine learning, which we intent to
leverage after refining the architecture.
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