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Abstract—Numerous phenomena taking place in the nano-
world are inherently quantum in nature. Their description and,
more important, quantitative treatment, therefore, requires usage
of the apparatus of quantum mechanics. The basic paradigm of
today’s “mainstream” quantum mechanics is the Schrödinger
equation. The effort required to solve the Schrödinger equation
is heavily dependent on the dimensionality and complexity of
the problem itself. Here, we present the Schrödinger API -
RESTful web service that provides methods for solution of
one-dimensional, two-dimensional and three-dimensional time-
independent Schrödinger equation based on the the Gauss-
Hermite Discrete Variable Representation (DVR) approach. Sim-
ple use is ensured thanks to the REST architectural style that
uses HTTP requests to access and use data through the website
https://schrodinger.chem-api.finki.ukim.mk. The application of
the web service is shown by a computational physics use case.
Specialists, but also nonexperts in computational chemistry or
physics can use this service to support their research.

I. INTRODUCTION

In many subdisciplines of computational molecular sci-
ences, computational physics, chemistry, biology, materials
science, exact treatment and analysis of a wide variety of
phenomena has to rely on rigorous quantum description of
the underlying processes.

Numerous phenomena in the nano-world are quantum in
nature which requires usage of the quantum mechanics. The
basic paradigm of today’s “mainstream” quantum mechanics is
the Schrödinger equation, which is considered as a “quantum
analog” to the famous Newton’s second law equation in
classical physics.

The effort required to solve the Schrödinger equation is
heavily dependent on the dimensionality and complexity of the
problem itself (e.g. the exact form of the Hamiltonian, number
of the relevant degrees of freedom of the studied system etc.).
Numerous methods have been proposed in the literature to
achieve the mentioned aim. However, the available codes are
most often user-hostile, the procedures for computation and
generation of relevant data are non-standardized, and there is
a clear lack of in-depth, thorough comparison of performances

of various methods for solving the Schrödinger equation for
various purposes.

Figueiras et al. [1] presented a simple Python-based open
source software library for the numerical simulation and
solution of the linear or nonlinear time-dependent one and
two dimensional Schrödinger equation. Srnec et al. [2] used
the Python programming environment and the three-point
finite-difference numerical method to find the solutions of
the Schrödinger equation and plot the results for a particle
in an infinite, finite, double finite, harmonic, Morse, or Kro-
nig–Penney finite potential energy well. Web-Schrödinger 3.2
is a program for the interactive solution of the stationary
(time independent) and time dependent two dimensional (2D)
Schrödinger equation. The program itself runs on our server
and can be used through the Internet with a simple Web
browser. The user can load, run, and modify ready-made exam-
ple files, or prepare her/his own configuration(s), which can be
saved on her/his own computer for later use [3]. WavePacket
[4] is an open-source program package in Matlab for the
numerical simulation of quantummechanical dynamics used to
solve time-independent or time-dependent linear Schrödinger
equation in one or more dimensions. Similar software solutions
can be found for Python, such as PyCav [5] - a physics
simulation library that provides method for solution of time-
dependent Schrödinger equation and QuTiP [6] - an open-
source framework that provides method for solving the unitary
Schrödinger equation.

Schrödinger API provides friendly and simplified
computational platform for solution of one-dimensional,
two-dimensional and three-dimensional time-independent
Schrödinger equation based on the the Gauss-Hermite
Discrete for several model potentials: Morse potential; Simple
Harmonic Oscillator (SHO) potential; Sombrero potential
(Mexican hat) and Woods-Saxon potential.

The advantage of using API becomes particularly obvious
when it comes to automation of a more complex workflow. To
show this, we present a computational physics use case which
uses the Schrödinger API.
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II. SCIENTIFIC BACKGROUND - DVR TECHNIQUES FOR
SOLVING THE SCHRÖDINGER EQUATION

The basic paradigm of today’s “mainstream” quantum me-
chanics is the Schrödinger equation, which is considered as
a “quantum analog” to the famous Newton’s second law
equation in classical physics. When a stationary state of the
considered system is of interest, the Schrödinger equation has
the form:

Ĥ = E (1)

where Ĥ denotes the Hamiltonian of the system, E is the
energy, while  is the wavefunction. The Hamiltonian in (1)
consists of the kinetic energy operator (K̂(q)), which is a
second-order differential operator in coordinate (q) represen-
tation, and the potential energy operator (V̂ (q)):

Ĥ(q) = K̂(q) + V̂ (q) (2)

If one is interested in either molecular bound states or
scattering phenomena, the solutions of (1),  (q), form either a
discrete set of square-integrable eigenfunctions (in L

2) which
are localized, or (as in the scattering problems), which are
not square-integrable, but the asymptotic forms of which
are known, and therefore appropriate boundary conditions
are applicable. As the analytical solution of (1) is known
only for the simplest systems, it is necessary to have an
efficient numerical method to solve it. What is often sought
is a numerical solution of (1) within some finite range (e.g.
finite coordinate range), which is subsequently matched to
the asymptotic form. The statement of finite-range solutions
has an important consequence, namely that the solution may
be sought within a finite basis set composed of n functions
(e.g. of the relevant coordinates - 'i(q)), as in the variational
approach:

 (q) =
nX

i=1

ci · 'i(q) (3)

Assuming an orthonormal set of basis functions, i.e.:

h'i|'ji =
Z
'
⇤
i (q) · 'j(q) dq = �ij (4)

Equation (3) is a spectral representation of the wavefunc-
tion hq| i in a truncated bases within the Hilbert space
L
2{hq|'ii; i = 1, 2, . . . , n}, within the Dirac notation written

as:

hq| ii =
nX

i=1

ci · hq|'ii (5)

inserting (3) in (1) leads to the conclusion that the expansion
coefficients ci and the set of eigenenergies can be found by
solving the matrix eigenvalue problem (6):

Hc = Ec (6)

In (6), c is the column n-vector [c1, c2, . . . , cn]T , while H
is n⇥ n square matrix containing the matrix elements of the
Hamiltonian Hij , given by:

Hij = h'i|Ĥ|'ji =
Z
'
⇤
i (q)Ĥ'j(q) dq (7)

Such matrix-representation is often referred to as variational
basis representation (VBR). As a consequence of the orthonor-
mality of the basis set functions, it can be straightforwardly
shown that the expansion coefficients in (3) and (5) are given
by:

ck = h'k| i =
Z

h'k|qihq| idq (8)

The first convenient numerical method for approximation of
the integrals of the form (7), i.e. their analogues with different
components of the total H , dates back to the works of Harris,
Engerholm and Gwinn [7]. It has been further on shown that
any basis set that consists of orthogonal polynomials (such
as the one constituted by harmonic oscillator eigenfunctions)
can be approximated by the so-called Gaussian quadratures
technique. Approximating, however, the matrix elements by
any quadrature technique, leads to the consequence that the
results need not be the upper limits of the exact (true) eigen-
values. Such representation of the potential energy operator is
called finite basis representation (FBR), to distinguish from the
previously mentioned variational basis representation (VBR).

The quadrature approximation is a straightforward method
to compute the potential energy matrix elements. We define
an n-point quadrature such that it consists of the abscissa set
of values (in a one-dimensional case) {x1, x2, . . . , xn} and
the corresponding weights {w1, w2, . . . , wn}. Such n-point
quadrature leads to:

Vij ⇡ V
FBR
ij =

nX

k=1

wk 
⇤
i (xk)V (xk) j(xk) (9)

Defining:

Aki ⌘ w
1/2
k  i(xk) (10)

along with the diagonal matrix:

V
diag
kl = �klV (xk) (11)

we can easily arrive at:

V
FBR
ij =

nX

k=1

A
⇤
klV

diag
kk Akj (12)

In matrix notation (12) can be written as:

V
FBR = A

†
V

diag
A (13)

The method of Harris, Engerholm and Gwinn for computa-
tion of potential energy matrix elements is actually equivalent
to using the Gaussian quadrature approach in a basis set of
orthogonal polynomials [8]. In the FBR, the potential energy
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matrix is written as a unitary transformation of a diagonal
matrix (eq. (13)).

The fundamental idea of the discrete variable representation
(DVR) technique [9] is to apply such unitary transformation
that enables the potential energy matrix to be diagonal, i.e.:

�k(x) =
nX

i=1

Aki i(x) (14)

Evaluating the DVR functions at the quadrature points, one
arrives at:

�k(xl) =
nX

i=1

Aki i(xl) =
nX

i=1

AkiAliw
� 1

2
l = �klwl

� 1
2 (15)

Thus, it can be easily verified that any operator which is
multiplicative in coordinate representation is diagonal in this
basis, provided that the quadrature approximation has been
used:

h�i|v|�ji =
nX

k=1

wk�i(xk)V (xk)�j(xk) =

nX

k=1

�ikV (xk)�jk = V (xk)�ij (16)

As the kinetic energy matrix is not diagonal in DVR (since
the kinetic energy operator is not multiplicative in coordinate
representation), in the case of one-dimensional problems, the
advantage of DVR over FBR is questionable. However, in
multidimensional problems, the advantage of DVR becomes
immediately evident [10].

III. WEB SERVICE DESCRIPTION AND EXAMPLES

This RESTful web service (SchrodingerAPI) provides a
method for solution of one-dimensional, two-dimensional
and three-dimensional time-independent Schrödinger equation
based on the the Gauss-Hermite Discrete Variable Represen-
tation (DVR) approach. Web service source code is based on
the python module for solving 1D Schrödinger equation [11],
with several code adaptations and modifications. Methods for
solving 2D and 3D Schrödinger equations are developed from
scratch.

The solution of one-dimensional Schrödinger equation is
illustrated in the case of following model potentials: Morse
potential; Simple Harmonic Oscillator (SHO) potential;
Sombrero potential (Mexican hat); Woods-Saxon potential.

Solutions of two-dimensional and three-dimensional
Schrödinger equations are illustrated for the following two
model potentials: multidimensional Morse potential and
multidimensional SHO potential.

All service methods are GET methods and they can be tested
by entering the parameters directly on the SchrodingerAPI
home page (supported by Swagger) at https://schrodinger.
chem-api.finki.ukim.mk. Other possibilites to test the service
methods include using browser URL bar, consuming the

service methods in your source code or by using specific API
testing tools such as Postman [12].

For example, if user wants to test the 1dHermiteSho method
directly at https://schrodinger.chem-api.finki.ukim.mk, the first
step is to click the 1dHermiteSho method from the list shown
in Fig. 1.

Fig. 1. List of Schrödinger API methods

1D harmonic oscillator potential is defined as:

V (x) =
1

2
k · (x� x0)

2 (17)

Next, user should enter the parameters or use the default
ones as shown in Fig. 2. The following parameters are re-
quired: npts - number of points; k - wavenumber of the SHO
potential; x0 - displacement from origin and prec - precision.

The results (eigenvalues) will be shown in the Response
Body form below (Fig 3). User can download or copy them.

Other way to use these REST API methods is to access it
directly from the browser address bar.

If no parameters are provided, the default parameter val-
ues will be taken into consideration. For example, for the
1dHermiteSho method the link should be https://schrodinger.
chem-api.finki.ukim.mk/1dHermiteSho.

If user wants to change only the default parameters
npts and k and to provide his/hers, the URL should
look like this https://schrodinger.chem-api.finki.ukim.mk/
1dHermiteSho?npts=10&k=1.

If user preffers to change other paramerets, they can be
added with the &PARAMETER=VALUE.

Another option is to consume the method in a program
source code. An example in Python is provided in Listing
1.
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Fig. 2. Parameters for 1dHermiteSho method

Fig. 3. Results from 1dHermiteSho method

1 import requests

2 response = requests.get(’https://schrodinger.chem-

api.finki.ukim.mk/1dHermiteSho?npts=20&k=1.0&x0

=0.0&prec=19’)

3 if response.status_code == 200:

4 print(response.content.decode(’utf-8’))

5 else:

6 print("None")

Listing 1. Python example

IV. A COMPUTATIONAL PHYSICS USE CASE USING THE
SCHRÖDINGER API

A. Problem description and algorithm steps
The present use-case illustration is a part of a bigger project

aiming to provide in-depth theoretical understanding of the
tagging of protonated glycine with H2 and He in gas phase.
To avoid any ambiguities in the data interpretation, it is rather
useful to consider the tagging of protonated glycine’s analogue
in which all amine group hydrogen atoms have been replaced
with methyl groups, known as betaine [13]. Specifically, in the
present study we have focused on the process of betaine(+)
(Fig.4) tagging with molecular hydrogen in gas phase.

To compute the anharmonic vibrational potential of the O-H
stretching mode, which is essentially localized and decoupled
from all other intra- and intermolecular modes, we have
generated a series of configurations in which the positions of
all atoms and the center of mass of the O-H oscillator were

Fig. 4. The structure of betaine(+)

kept fixed, while only the O and H atoms were moved in
opposite directions.

Further, we have carried out a series of single-point energy
calculations for each of the generated configurations in the
case of all considered O-H oscillators.

Finally, the vibrational Schrödinger equations were solved
by the discrete variable representation using the 1D Morse
potential:

V (x) = D · {1� exp[�a · (x� x0)]}2 �D

For the purpose of our study, we have used the API function
for 1D Schrödinger equation in case of Morse potential –
1dHermiteMorse.

As we have computed the vibrational potential energy
curves in a pointwise manner, and subsequently fitted the
potential to the Morse model function, for each oscillator
we have different values for parameters D, a and x0. The
number of points for DVR computations (npts), as well as the
precision (prec) remains the same for all cases, to keep the
computational consistency throughout the study and to enable
comparability of the results.

The advantage of using Schrödinger API becomes partic-
ularly obvious when it comes to automation of the process
of analyzing the results from the molecular dynamics tra-
jectories. For each trajectory, a total of 100 snapshots have
been extracted and the OH stretching vibrational potentials
have subsequently been computed and fitted to a Morse
function. One has, therefore, to solve a total of 100 vibrational
Schrödinger equations per trajectory. Using the Schrödinger
API simplifies the computational efforts to a great extent, and
also allows for an automation of the process.

The obtained eigenvalues were further on used to calculate
the anharmonic vibrational frequencies (i.e. wavenumbers) of
the fundamental |0i ! |1i vibrational transitions correspond-
ing to the O-H stretching modes, from the energy differences
between the ground and the first excited vibrational states.

B. Results and discussion
Two minima have been located so far on all studied PESs

of betaine(+) – H2 noncovalently bonded gas-phase dimer.
The first one corresponds to the tagging of the charged group
of betaine, while the second one corresponds to the O-H
. . . H2 contact (tagging of the hydroxyl group). As we are
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especially interested in the influence of tagging on the O-H
stretching vibrational frequencies, we pay a special attention
to this minimum.

Fig. 5 shows typical vibrational energy curves for free
betaine(+) as well as for the betaine(+)OH . . . H2 dimer where
tagging is realized on the O-H oscillator side.

Fig. 5. Vibrational energy curves for free betaine(+) as well as for the
betaine(+) . . . H2 dimer where tagging is realized on the O-H oscillator side

One can readily observe a “downshift”, i.e. a shift of
the potential energy curve to lower energies at higher O-
H distances, implying increase of the anharmonicity and a
red shift of the O-H stretching wavenumber in the case of
betaine(+)OH . . . H2 dimer, as compared to free betaine(+)
cation. A typical fit of the O-H stretching potential energy
function with Morse function is shown in Fig. 6. All the Morse
function fits were excellent, judging from all statistical figures
of merit (e.g. adjusted R2 was always higher than 0.999).

Fig. 6. A typical fit of the O-H stretching potential energy function with
Morse function

The frequencies (i.e. wavenumbers) of the fundamental

|0i ! |1i vibrational transitions corresponding to the O-
H stretching modes in the case of free betaine(+) and be-
taine(+). . . H2, with the H2 tagging realized on the CH3 and
OH sides, and the corresponding frequency shifts calculated
according to the described procedure are summarized in Table
I , where the available experimental IRMPD data [13] are also
shown. All values are in cm�1.

TABLE I
THE WAVENUMBERS OF THE FUNDAMENTAL |0i ! |1i VIBRATIONAL

TRANSITIONS CORRESPONDING TO THE O-H STRETCHING MODE IN THE
CASE OF FREE BETAINE(+) AND BETAINE(+). . . H2, WITH THE H2

TAGGING REALIZED ON THE CH3 AND OH SIDES

B3LYP CAM-B3LYP DFTB(A) Exp.
Betaine(+) 3534.6 3575.6 3486.7 3554
Betaine(+)OH. . . H2 3447.7 3483.0 3412.7 3514
�v -86.9 -92.6 -74.0 -40
Betaine(+)CH3. . . H2 3551.4 3593.1 3486.9 3558
�v 16.8 17.5 0.2 4

As can be seen from Table 1, the noncovalent interaction
of betaine(+) with molecular hydrogen “tag” from the O-H
oscillator side leads to substantial downshift (red-shift) of the
frequency of the O-H stretching vibration. The implemented
rigorous theoretical approaches so far, clearly overestimate
the frequency shift of this mode (computed with reference
to free betaine(+)). Including the long-range corrections into
the B3LYP combination of functionals (i.e. using the CAM-
B3LYP functional) leads to even a more pronounced dis-
agreement with the experiment. The semiempirical DFTB-A
method, however, seems to outperform the other two.

Tagging the betaine(+) molecule with molecular hydrogen
from the charged group side, on the other hand, leads to a
very small blue-shift of the O-H stretching frequency of the
betaine(+) intramolecular O-H oscillator. While all theoretical
approaches implemented in the present study predict correctly
the sign of this shift, the quantitative agreement between the
two advanced DFT methods (B3LYP and CAM-B3LYP) and
the experiment is much poorer than that of semiempirical
DFTB-A.

The previously outlined results clearly indicate that tagging
with molecular hydrogen in photodissociation techniques can
lead to notable perturbation of the intramolecular vibrational
force field of the tagged molecular system. This is particularly
pronounced in the case of typical vibrational chromophores,
such as the O-H group.

V. CONCLUSION

The RESTful web service Schrödinger API enables solution
of one-dimensional, two-dimensional and three-dimensional
time-independent Schrödinger equation based on the DVR ap-
proach. It is free open-access API which encompasses several
different model potentials: Morse potential, Simple Harmonic
Oscillator (SHO) potential, Sombrero potential (Mexican
hat) and Woods-Saxon potential. Schrödinger API provides
friendly, simplified and login-free computational platform that
enables easy input and efficient computation through Swag-
ger tooling ecosystem for developing APIs [14] or directly
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from a browser which does not require any prior knowledge
in programming. The advantage of using Schrödinger API
becomes particularly obvious when it comes to automation
of the process of a more complex workflow. In such case,
the API functions can be consumed in the source code. As a
result, Schrödinger API has been designed to support the entire
community, both specialists and nonexperts in their scientific
research.
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