
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/278244149

Scientific Software Testing: A Practical Example

Conference Paper · June 2015

CITATIONS

4
READS

630

3 authors:

Some of the authors of this publication are also working on these related projects:

Spectroscopic studies of hydrogen-bonded molecules View project

SIARS (Smart I (eye) Advisory Rescue System) View project

Bojana Koteska

Ss. Cyril and Methodius University in Skopje

58 PUBLICATIONS 326 CITATIONS

SEE PROFILE

Anastas Mishev

Ss. Cyril and Methodius University in Skopje

95 PUBLICATIONS 517 CITATIONS

SEE PROFILE

Ljupco Pejov

Ss. Cyril and Methodius University in Skopje

157 PUBLICATIONS 1,594 CITATIONS

SEE PROFILE

All content following this page was uploaded by Bojana Koteska on 14 June 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/278244149_Scientific_Software_Testing_A_Practical_Example?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/278244149_Scientific_Software_Testing_A_Practical_Example?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spectroscopic-studies-of-hydrogen-bonded-molecules?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SIARS-Smart-I-eye-Advisory-Rescue-System-3?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bojana-Koteska?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bojana-Koteska?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bojana-Koteska?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastas-Mishev?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastas-Mishev?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastas-Mishev?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Pejov?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Pejov?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ljupco-Pejov?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bojana-Koteska?enrichId=rgreq-888198852c9239ec7598c9dd37f696dc-XXX&enrichSource=Y292ZXJQYWdlOzI3ODI0NDE0OTtBUzoyNDAzNjIzODM5OTg5NzZAMTQzNDMxODI2NjM0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

4

Scientific Software Testing: A Practical Example
BOJANA KOTESKA and ANASTAS MISHEV, University SS. Cyril and Methodius, Faculty of
Computer Science and Engineering, Skopje
LJUPCO PEJOV, University SS. Cyril and Methodius, Faculty of Natural Science and Mathematics,
Skopje

When developing scientific applications, scientists are mostly interested in getting scientific research achievements. Usually, the
first phase in scientific applications development process is coding. Testing is rarely performed or it is not performed if the final

result is correct. Many bugs are found later and problems arise when no software documentation can be found. The goal of
this paper is to improve the testing of scientific applications by describing the full testing process which follows the software

engineering testing principles. In order to confirm the usefulness of the process, we develop and test an application for solving

1D and 2D Schrödinger equation by using the Discrete Variable Representation method (DVR). Using this testing process in
practice resulted in requirements specification, test specification and design, finding connection between specified requirements

and tests, automated testing and executable tests.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification —Validation; G.4 [Mathe-
matics of Computing]: Mathematical Software—Certification and testing, Documentation, Verification

General Terms: Verification
Additional Key Words and Phrases: Scientific application, Testing process, Software Engineering, Schrödinger equation, Software

quality

1. INTRODUCTION

Scientific applications perform numerical simulations of different natural phenomena in the filed of
computational physics and chemistry, mathematics, informatics, mechanics, bioinformatics, etc. They
are primarily developed for the scientific research community and usually they are used for simulating
some I/O and data extensive experiments [Segal 2005]. The performance of such simulation experi-
ments requires powerful supercomputers, high performance or Grid computing [Vecchiola et al. 2009].
Formally, a scientific application is a software applications which turns the object into mathematical
models by simulating activities from the real world [Ziff Davis Publishing Holdings 1995].

Scientific applications are different from commercial application, especially in the process of test-
ing and evaluation. They are developed for the specific research community and not evaluated by
customers. Testing is usually performed by comparing the obtained results with theory or performed
physical experiments. Also, scientists can decide for the correctness of the results visually, by compar-
ing images.

The absence of software engineering testing practices and documentation is confirmed by the results
obtained in the survey we conducted among participants in the High Performance - South East Europe

Author’s address: Bojana Koteska, FCSE, Rugjer Boshkovikj 16, P.O. Box 393 1000, Skopje; email: bo-
jana.koteska@finki.ukim.mk; Ljupco Pejov, FNSM, P.O. Box 1001, 1000 Skopje; email: ljupcop@iunona.pmf.ukim.edu.mk;
Anastas Mishev, FCSE, Rugjer Boshkovikj 16, P.O. Box 393 1000, Skopje;email: anastas.mishev@finki.ukim.mk.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac, M. Heričko (eds.): Proceedings of the 4th Workshop of Software Quality, Analysis, Monitoring, Improvement, and
Applications (SQAMIA 2015), Maribor, Slovenia, 8.-10.6.2015. Also published online by CEUR Workshop Proceedings (CEUR-
WS.org, ISSN 1613-0073)

4:28 • B. Koteska, Lj. Pejov and A. Mishev

(HP-SEE) project [Koteska and Mishev 2013]. What we are trying to achieve is to change these prac-
tices and to adapt some testing practices of the software engineering which according to the IEEEStd
610.12-1990, is an application of a systematic, disciplined, quantifiable approach to the development,
operation and maintenance of software [The Institute of Electrical and Electronics Engineers 2015a].

The goal of this paper is to describe a practical example of testing a scientific application. It will
help scientists to learn to include software engineering practices in order to change the current test-
ing practices in different stages of scientific applications development process. In our previous paper
[Koteska et al. 2015], we proposed a framework for a complete scientific software development process
which provides a set of rules, recommendations and software engineering practices for all development
stages. The framework follows the incremental software development with changes in the process of
evaluation, in test-driven design and short reports after each iteration. Each increment of the develop-
ment process contains the following 8 phases: planning, requirements definition, system design, test
cases design, coding, testing, evaluation, writing short report.

In this paper, we give special emphasis on the testing process in different development stages. In
addition, we adapt and modify the existing software engineering practices for developing commercial
applications to successfully include them in the requirements specifications, test cases design, testing
and evaluation phase. The proposed testing process is validated with the testing of an application for
solving 1D and 2D Schrödinger equations by using the DVR numerical method. The application is
tested by following the suggested recommendations. As a result, we have specified test cases, testing
functions and automated testing.

The structure of the paper is organized as follows. Section 2 discusses the related work in the area of
scientific application testing. The testing process as a part of the development framework for scientific
applications and the testing of the application for solving 1D and 2D Schrödinger equation by using
the DVR method is presented in Section 3. Section 4 is devoted to the conclusion and future work.

2. RELATED WORK

There are several papers in which authors find some inconsistencies and give recommendations for
improving the testing of the scientific applications, but no paper describes the full testing process. In
[Sanders and Kelly 2008], the authors found out that scientists use testing only to show that their
theory is correct, not that the software does not work. They claimed that testing the computational
engine is important, but they are aware of their disorganized and wrong testing practices.

Cox and Harris [Cox and Harris 1999] elaborated a general methodology for evaluating the accuracy
of the results produced by scientific software which has been developed as a part of the National
Physical Laboratory research. Their idea is to generate and use reference data sets and corresponding
reference results to undertake black-box testing. According to this method, the data sets and results
can be generated in a consistency with functional specification of the software. The obtained results
for the reference data sets are compared with the reference results.

The efficiency of inclusion of software engineers in the process of scientific applications testing is
confirmed in [Kelly et al. 2011]. The authors said that software engineer brings a toolkit of ideas, and
the scientist chooses and fashions the tools into some thing that works for a specific situation. The
results are: an approach to software assessment that combines inspection with code execution and the
suppression of process-driven testing in favor of goal centric approaches.

In [Hook and Kelly 2009], the authors highlight the two main reasons for poor testing of scientific
software: the lack of testing oracles and the large number of tests required when following any stan-
dard testing technique described in the software engineering literature. They also suggest a small
number of well chosen tests that can help in finding a high percentage of code faults.

Scientific Software Testing: A Practical Example • 4:29

Baxter et al. [Baxter et al. 2006] proposed testing according to the test plans which should be de-
veloped in the design phase. They emphasize the need for unit testing which should ensure that a
particular module is working properly. Also, bugs can be identified early if testing is performed it-
eratively throughout the development process. The authors suggest applying of data standards and
quality addressing through performance optimization.

In [Hatton 1997], the authors described two large large experiments: measuring the consistency of
several million lines of scientific software written in C and Fortran 77 by static deep-flow analysis
across many different industries and application areas and measuring the level of dynamic disagree-
ment between independent implementations of the same algorithms acting on the same input data
with the same parameters in just one of these industrial application areas. Their results showed that
commercially released C and Fortran software are full of statically detectable fault and irrespective of
the existence of any quality system, level of criticality, or application area.

3. TESTING PROCESS OF SCIENTIFIC APPLICATIONS

3.1 Testing Methodology

Scientific software testing is complex mainly because the results can not be evaluated by users, but
the they are often compared with results from real experiments or they are based on specific scientific
theory. In our previous paper [Koteska et al. 2015], we have explained the steps we used for develop-
ing an application for solving 1D and 2D Schrödinger equation and in this paper we are focused on
functional testing of the application.

Our testing paradigm is: test small software pieces and test often. In order to achieve this, we per-
form unit testing of each module, in each increment of the application development process. Integration
testing is also performed at the end of an increment. Functional testing is closely related to functional
requirement specification in which all application functionalities (also inputs and outputs of a func-
tions) are described.

Well written requirements lead to well specified test cases. Since our application is split in inde-
pendent modules, there is a functional requirement for every module. Each functional requirement is
identified by a specific id, name, version, history of changes and description.

Test cases are defined by using standardized forms such as [The Institute of Electrical and Electron-
ics Engineers 2015b] and also some templates [Assassa 2015]. They are described also by unique iden-
tifier, name, goal, preconditions, execution environment, expected and actual results, status (passed/-
failed) and history of changes. It is useful to specify the boundary values or range of values when
numerical calculations are performed. Test cases should be written before the coding phase.

We recommend white box testing and automated testing. Also, it is very important to eliminate the
redundant tests. Testing process is completed when all tests pass successfully and source coverage
is achieved. Test automation can be achieved by various testing frameworks. Since our application
is written in C language, we recommend the following frameworks (Check, CUnit, AceUnit, CuTest,
etc.). These frameworks are well documented and very easy to use. They provide methods and struc-
tures, the user should insert code assertions. The connection between modules and functionality of the
application is checked by using the integration testing at the end of each iteration.

The errors found in each iteration must be corrected before the next iteration starts. Errors with
higher priority, such as critical errors, should be corrected first. Evaluation of results is usually per-
formed by scientists in the research group.

4:30 • B. Koteska, Lj. Pejov and A. Mishev

3.2 Scientific Problem - Solving 1D and 2D Schrödinger Equation by using Discrete Variable Representa-
tion Method

Schrödinger equation is a partial differential equation which is used to describe the system dynamics
at atomic and molecular level.

A time independent Schrödinger equation can be defined as:

H ∗ Ψ = E ∗ Ψ (1)

where Hamiltionian operator is denoted by H, Ψ is the wave function of the quantum system and E is
the energy of the state Ψ.

A time dependent Schrödinger equation can be represented as:

i ∗ ~∂Ψ

∂t
= H ∗ Ψ (2)

where ~ is the Planck Constant divided by 2Π and ∂
∂t is a partial derivative with respect to time t.

One of the ways for solving Schrödinger equation by using matrix representation is the discrete
variable representation which is based on truncated standard orthonormal polynomial bases and the
corresponding Gaussian quadratures. The matrix elements of differential operators are calculated ex-
actly and those of the operators which are local in the coordinate representation, such as the potential
energy operator, are calculated approximately by using Gaussian quadrature accuracy. The Gaussian
quadrature gives the most accurate approximation to an integral for a given number of points and
weights and it contributes to the DVR method accuracy and efficiency [Szalay et al. 2003].

Discrete variable representation (DVR) methods are widely used because they can solve efficiently
numerical quantum dynamical problems. DVR’s provide simplification of the kinetic energy Hamilto-
nian matrix elements calculation and potential matrix elements which represent the potential of the
DVR. In a case of multi-dimensional systems, the Hamiltonian matrix is sparse matrix and the opera-
tion of the Hamiltonian on a vector is fast when DVR’s product is calculated [Light and Carrington Jr
2000].

The goal of this paper is to test a scientific application for solving 1D and 2D Schrödinger equation
which is developed in increments. A description of the testing process in each increment is given in the
following subsection.

3.3 Testing Process

At the beginning of each increment we have specified the functional requirements. We have identified
13 functional requirements in the first increment and 4 in the second increment. Our application is
decomposed in independent modules and functional requirements are tightly connected to modules.

The following modules were developed in the first increment: addition of two matrices, multiplication
of two matrices, multiplication of scalar and matrix, printing of matrix elements, matrix transposition,
making a diagonal matrix, division of vector by scalar, multiplication of matrix by scalar, making an
identity matrix, reading of a file content, comparing two rows of an input file, sorting content in a
file, calculation of eigenvalues and module for calculating: arrays of x and y (only in 2D) points in
finite basis representation (FBR), transforming matrices for transforming x and y points from FBR to
discrete value representation (DVR).

In the second increment, we have developed 4 modules: interpolation function (Hooke method), mod-
ule for finding the local minimum near given point (x,y), module for transforming the input file of points
and function values in those points and module for solving the 1D and 2D Schrödinger equation which

Scientific Software Testing: A Practical Example • 4:31

outputs the frequencies of various vibrational transitions and vibrational wavefunctions on 1D or 2D
grid of points.

Next stage connected to testing is the designing of test cases for each functional requirement. We
have used the following template for defining test cases as shown in Tables I and II. Both test cases
are written in the first increment before testing.

Table I. An Example of Test Case Definition - Module for Making Diagonal Matrix
Test Case Id 06

Test Case Name Diagonal Matrix

Short Description

A module for making a diagonal square matrix from an array of numbers.
If array is denoted by A, and matrix by M, then M[i][i]=A[i], where n
is the size of A and M.
The elements which not lie on the main diagonal are 0’s. The return element is the matrix M.

Pre - conditions An array of n double elements must be provided as an input and size n must be a integer number.

Step Action Expected Result Status (Pass/Fail) Comments

1 Initialization of a 2D
array M of size n x n

Allocated memory for M with
size n x n. Elements are of
double type

Pass A dynamic allocation is used

2 Assigning elements to
the matrix M

Elements of the array A
are assigned to matrix main
diagonal, the other elements
are 0’s. M[i][i]=A[i], M[i][j]=0, i!=j

Pass /

The next phase is the unit and integration testing of the application. The well specified test cases are
very useful for the testing process. In order to perform automatic testing, we use a system for writing,
editing and running unit tests in C, called CuTest [CuT 2015]. The testing of a system functionality is
finished when the statuses for all steps of the test case which describes that functionality are ”pass”.

An example of testing function is shown in Figure 1. This test function is connected to test case 13
which is described above. The values of elements of arrays ptsx, fbrtx and matrix Tx are tested. We are
comparing the actual and expected results of variables.

One way to evaluate the final results is to test the convergence of the results with increasing the
density of grid points which is equivalent to increasing the number of basis functions or to compare
them to results obtained for existing application written in another programming language.

4. CONCLUSION AND FUTURE WORK

In this paper, a testing process of scientific applications is described. It is shown that the require-
ment specification and test cases design phases are tightly connected to the testing phase because we
specified test case for each functional requirement and there is a test designed for each test case. We
provide an example and identify challenges for scientific application development. We have tested the
application for solving 1D and 2D Schrödinger equation by using the DVR method. We specified test
cases for each application module and write tests by using the CuTest framework. The testing process
is automated since all tests are executed continuously. It is a good practice to repeat the testing of a
given function if some code changes are performed inside the function. The most important lessons
learned by this research are that current scientific software testing practices must be changed and the
software engineering practices can be successfully included in the scientific application testing.

4:32 • B. Koteska, Lj. Pejov and A. Mishev

Table II. An Example of Test Case Definition - Module for Generating Arrays of x Values and y Values, Arrays of x and y
Values in FBR and Transformation Matrices for Transforming x and y values from FBR to DVR (thcheby).

Test Case Id 13

Test Case Name Generating Arrays of x Values and y Values, Arrays of x and y Values in FBR and
Transformation Matrices for Transforming x and y values from FBR to DVR.

Short Description

This module has five input arguments:
nx (number of x values - integer) , xmin (minimum value of x - double),
xmax (maximum value of x - double), ny (number of y values - integer),
ymin (minimum value of y - double), ymax (maximum value of y - double).
First, the differences between the maximum and minimum x values (deltax) and the maximum and minimum
y (deltay) values are calculated.
Next, the array of x values (ptsx) and array of y values (ptsy) are generated by calling the function
make array ptsxy(nx,nx+1,xmin,deltax) for x values and make array ptsxy(ny,ny+1,ymin,deltay) for y values.
Then, the elements of arrays of x values(fbrtx) and y values (fbrty) in FBR are calculated by calling the function
make array fbrtxy(deltax,nx) for x values and make array fbrtxy(deltay,ny) for y values.
At the end the transformation matrices Tx and Ty are created by calling the function
make matrix Txy(nx,nx+1) for x values and make matrix Txy(ny,ny+1) for y values;

Pre - conditions The number of x and y values must be known (nx and ny).
Also the minimum and maximum values of x and y must be initialized (xmin, xmax, ymin, ymax).

Step Action Expected Result Status
(Pass/Fail) Comments

1
Calculation of difference
between the maximum
and minimum value of x.

deltax=xmax-xmin
Elements are of
double type

Pass /

2
Calculation of difference
between the maximum
and minimum value of y.

deltay=ymax-ymin
Elements are of
double type

Pass /

3 Generating the elements
of the array ptsx.

ptsx[i]=((i+1)*deltax*1.0)/(nx+1) +xmin
Elements are of double type Pass

The results are tested
by testing the function
make array ptsxy
(nx,nx+1,xmin,deltax)

4 Generating the elements
of the array ptsy.

ptsy[i]=((i+1)*deltay*1.0)/(ny+1) +ymin
Elements are of double type Pass

The results are tested
by testing the function
make array ptsxy
(ny,ny+1,ymin,deltay)

5 Generating the elements
of the array fbrtx.

fbrtx[i]= (((i+1)*Π)/deltax)2
Elements are of double type Pass

The results are tested
by testing the function
make array fbrtxy
(deltax,nx)

6 Generating the elements
of the array fbrty.

fbrty[i]= (((i+1)*Π)/deltay)2
Elements are of double type Pass

The results are tested
by testing the function
make array fbrtxy
(deltay,ny)

7 Generating the elements
of the matrix Tx.

Tx[i][j]=
√

2.0/(nx + 1)

∗ sin((i + 1) ∗ (j + 1) ∗ Π/(nx + 1))
Elements are of double type

Pass
The results are tested
by testing the function
make matrix Txy(nx,nx+1)

8 Generating the elements
of the matrix Ty.

Ty[i][j]=
√

2.0/(ny + 1)
∗ sin((i + 1) ∗ (j + 1) ∗ Π/(ny + 1))
Elements are of double type

Pass
The results are tested
by testing the function
make matrix Txy(ny,ny+1)

Scientific Software Testing: A Practical Example • 4:33

Our further aim is to propose a software development process for scientific applications. Our future
work will be directed in empirical research and number of case studies that would be defined with goal
to develop software development process and all supporting guidelines, methods and techniques. Also,
we will focus on development of more complex and critical scientific applications where the inclusion
of software formal engineering practices is indispensable.

void Test_thcheby(CuTest *tc)

{

struct return_objects result=thcheby(10, 1, 5, 10, 2, 6);

double *actualptsx=result.ptsx;

double *actualfbrtx=result.fbrtx;

double **actualTx=result.Tx;

int i,j;

double *expectedptsx=malloc(10*sizeof(double));

double *expectedfbrtx=malloc(10*sizeof(double));

double **expectedTx=malloc(10*sizeof(double));

for(i=0; i<10; i++)

{

expectedptsx[i]=((i+1)*(5-1)*1.0)/11+1;

expectedfbrtx[i]=square(((i+1)*M_PI)/(5-1));

CuAssertTrue(tc, abs(expectedptsx[i]- actualptsx[i])<0.0000001);

CuAssertTrue(tc, abs(expectedfbrtx[i]- actualfbrtx[i])<0.0000001);

expectedTx[i] = malloc(10*sizeof(double));

for(j=0; j<10; j++)

{

expectedTx[i][j]=sqrt(2.0/11)*sin((i+1)*(j+1)*M_PI/11);

CuAssertTrue(tc, abs(expectedTx[i][j]- actualTx[i][j])<0.0000001);

}

}

}

Fig. 1. Function for Testing the method ”thcheby”

REFERENCES

2015. CuTest: C Unit Testing Framework. (March 2015). http://cutest.sourceforge.net/
Dr. Ghazy Assassa. 2015. Software Engineering Test Case Template and Examples. (May 2015). [Online]. Available:

http://faculty.ksu.edu.sa/ghazy/CSC342 Tools/Test%20Case%20Template.pdf.
Susan M Baxter, Steven W Day, Jacquelyn S Fetrow, and Stephanie J Reisinger. 2006. Scientific software development is not

an oxymoron. PLoS Computational Biology 2, 9 (2006), e87.
MG Cox and PM Harris. 1999. Design and use of reference data sets for testing scientific software. Analytica Chimica Acta 380,

2 (1999), 339–351.
Les Hatton. 1997. The T experiments: errors in scientific software. Computing in Science and Engineering 4, 2 (1997), 27–38.
Daniel Hook and Diane Kelly. 2009. Testing for trustworthiness in scientific software. In Software Engineering for Computa-

tional Science and Engineering, 2009. SECSE’09. ICSE Workshop on. IEEE, 59–64.
Diane Kelly, Stefan Thorsteinson, and Daniel Hook. 2011. Scientific software testing: analysis with four dimensions. Software,

IEEE 28, 3 (2011), 84–90.

4:34 • B. Koteska, Lj. Pejov and A. Mishev

Bojana Koteska and Anastas Mishev. 2013. Software Engineering Practices and Principles to Increase Quality of Scientific
Applications. In ICT Innovations 2012, Smile Markovski and Marjan Gusev (Eds.). Advances in Intelligent Systems and
Computing, Vol. 207. Springer Berlin Heidelberg, 245–254. DOI:http://dx.doi.org/10.1007/978-3-642-37169-1 24

Bojana Koteska, Ljupco Pejov, and Anastas Mishev. 2015. Framework for Developing Scientific Applicatons- Solving 1D and 2D
Schrodinger Equation by using Discrete Variable Representation Method. In The First International Conference on Advances
and Trends in Software Engineering SOFTENG 2015, in print.

John C Light and Tucker Carrington Jr. 2000. Discrete-variable representations and their utilization. Advances in Chemical
Physics 114 (2000), 263–310. http://dx.doi.org/10.1002/9780470141731.ch4

Rebecca Sanders and Diane Kelly. 2008. Dealing with risk in scientific software development. IEEE software 25, 4 (2008),
21–28.

Judith Segal. 2005. When Software Engineers Met Research Scientists: A Case Study. Empirical Software Engineering 10, 4
(2005), 517–536. DOI:http://dx.doi.org/10.1007/s10664-005-3865-y

Viktor Szalay, Gábor Czakó, Adám Nagy, Tibor Furtenbacher, and Attila G Császár. 2003. On one-dimensional discrete variable
representations with general basis functions. The Journal of chemical physics 119, 20 (2003), 10512–10518.

The Institute of Electrical and Electronics Engineers. 2015a. IEEE Standard Glossary of Software Engineering Terminol-
ogy. The Institute of Electrical and Electronics Engineers, New York, NY, USA. (March 2015). [Online]. Available:
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf.

The Institute of Electrical and Electronics Engineers. 2015b. Test Case Specification Template (IEEE 829-1998).
The Institute of Electrical and Electronics Engineers, New York, NY, USA. (May 2015). [Online]. Available:
http://www.ufjf.br/eduardo barrere/files/2011/06/SQETestCaseSpecificationTemplate.pdf.

C. Vecchiola, S. Pandey, and R. Buyya. 2009. High-Performance Cloud Computing: A View of Scientific Applications. In Proceed-
ings of the 10th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN 2009). IEEE Computer
Society.

Inc. Ziff Davis Publishing Holdings. 1995. PC Magazine. (1995). http://www.pcmag.com/encyclopedia/term/50872/
scientific-application

View publication statsView publication stats

https://www.researchgate.net/publication/278244149

