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Formal Specification of Scientific Applications Using
Interval Temporal Logic
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Scientific applications simulate any natural phenomena in different scientific domains. Moreover, the problems they solve are
usually represented by mathematical models. Taking that in advance, these problems can be described by using specific formal

notation and mathematical formulas. Scientific applications are usually created by the scientists without using any software

development engineering practices. Our main goal is to include formal methods in the testing process of scientific applications. In
this paper, we adapt Interval Temporal Logic (ITL) as a flexible notation for describing software applications. We use Tempura

framework and Ana Tempura tool for specifying the properties of the scientific software system. The correctness of the code

is verified by comparing the results from the program output and functions written in Tempura. This process is especially
important when some code changes or optimizations are made. To verify this concept we made a formal description of the code

for calculating bound states of the Morse oscillator well.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification —Validation, Formal Meth-
ods; G.4 [Mathematics of Computing]: Mathematical Software—Certification and testing, Documentation, Verification

General Terms: Verification
Additional Key Words and Phrases: Scientific application, Formal Specification, Interval Temporal Logic, Ana Tempura, Morse

Oscillator

1. INTRODUCTION

Scientific applications are widely used nowadays in different scientific domains. Numerical simulations
performed by scientific applications can solve problems in many research fields such as: computational
chemistry, physics, engineering, mathematics, mechanics, informatics, bioinformatics, etc. Scientific
application is defined as a software application that simulates activities from the real world by turning
the objects into mathematical models [Ziff Davis Publishing Holdings 1995]. Simulations of scientific
experiments require powerful supercomputers, high performance computing infrastructures, clusters
or Grid computing [Vecchiola et al. 2009].

The testing process of scientific applications is not the same as testing of the commercial software
applications. Problems related to testing come from the non formal specification of the scientific ap-
plications. Scientists are mostly interested in scientific research achievements and they do not have
any documentation or formal specification for their software [Segal 2008]. When some code changes or
code optimization should be performed it is usually hard to understand the code. According to Kelly
and Sanders [Sanders and Kelly 2008], the risks of developing scientific applications can be divided
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into three categories: complexity of the theory and the difficulty of its validation; implementation risks
(code and documentation) and application usage risk (concerning the use of the application by the
target user groups). Validation is difficult because the results sometimes must be compared with the
results obtained by the physical experiments. Also, scientists usually visually decide whether the re-
sults are satisfactory or not. The survey presented in [Koteska and Mishev 2013] shows that most of
the interviewed scientists do not prefer formal software engineering testing methods, do not use any
testing tools, do not use any specific test case generation technique and some of them do ad-Hoc testing.

To change the current development practices and to improve testing, we propose adapting the method
of formal specification and verification of the scientific applications. We chose Interval Temporal Logic
(ITL) as a powerful and flexible mathematical notation for propositional and First-order reasoning
about periods of time which is used for describing hardware and software systems. We also use the
Ana Tempura tool that is built upon C-Tempura and is used for runtime verification of systems. This
tool uses ITL and the executable subset Tempura which is an interpreter for executable ITL formulas
[Cau et al. 2002]. As a case study, we chose the code for calculating the bound states of the Morse
oscillator well which is described in [Bittner 2009].

The rest of the paper is organized as follows. Related work is given in Section 2. In Section 3, we ex-
plain the importance of using the formal notation for scientific application description and we present
the benefits of using ITL and Tempura. In Section 4, the ITL formal description of the code for calcu-
lating the bound states of the Morse oscillator well is given and the results of the testing process are
shown. The conclusion and future work are specified in Section 5.

2. RELATED WORK

There are several research papers that present some methods for formal description of software sys-
tems and architectures. An overview of how formal (mathematical) methods can be used in the software
development cycle and what methods and tools can support software development is given in [Ostroff
and Paige 1998]. Siegel and Avrunin [Siegel and Avrunin 2004] write about issues related to finite-
state verification techniques when applied to scientific computation software employing the Open MPI
(open source High Performance Message Passing Interface implementation). Siegel and Rossi [Siegel
and Rossi 2008] applied model checking techniques to BlobFlow (MPI scientific program consisted of
10K lines of code that implements a high order vortex method for solving the two-dimensional Navier-
Stokes equations).ITL has been previously used for describing software or hardware systems, state
machines or documents. For example, Sciavicco et al. [Sciavicco et al. 2009] consider the problem of
formalizing a medical guideline in a logical language. These guidelines are documents supporting the
health-care professionals in managing a disease in a patient. Zedan et al. [Zedan et al. 1999] present an
object based formal method for the development of real-time systems which is called ATOM. It is based
on the refinement calculus and also the formal specification contains ITL description of the behaviour
of a real-time system. El-kustaban et al. [El-kustaban et al. 2012] proposed an executable specification
model for an abstract transactional memory (lock-free technique that offers a parallel programming
model for future chip multiprocessor systems). They used ITL and AnaTempura to build and validate
the model. In [Rossi et al. 2004], the authors use temporal logic that combines points, intervals, and
dates to formalize the semantics of UML state machines.

The development of scientific applications does not include software engineering practices or formal
methods which means that no requirements, formal specification or any kind of documentation could
be found. The problems come later when some code modifications or optimization should be performed
and nobody knows what the code function is. ITL is usually used for modeling critical software systems,
but it really helps when some code changes are made. For example, code changes must be made when
some code optimizations are performed which happens very usually while programming scientific ap-
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plications because of the memory lack and CPU performance. The program written in Tempura is one
way to check the correctness of the results of the program. It also helps for understanding the order
of the statements execution at a given moment of time. If no formal program description is used, then
the chances for program errors are bigger and the program is less understandable for people being
included in the development process later.

The research shows that no formal specification of the scientific applications using ITL/ Tempura are
made. Our main goal is to give a formal code description in order to change the current practices, to
give a mathematical representation of the scientific problem and to improve the process of verification.

3. FORMAL METHODS IN SCIENTIFIC APPLICATION DEVELOPMENT

This section presents the benefits of making formal description and verification of scientific applica-
tions by using Interval Temporal Logic and Tempura.

3.1 The Benefits of Using Formal Methods

Some of the most important benefits of using formal methods are given below [Hall 2005; Groote et al.
; Sommerville 2007; Woodcock et al. 2009; van der Poll 2010; Jaeger 2010; Clarke and Wing 1996]:

—The formal software description is abstract and precise description which means that a human
reader can understand the big picture and all ambiguities can be removed.

—Formal description allows users to make rigorous analysis and to determine useful properties such
as consistency or deadlock-freedom.

—Using formal methods when developing complex software results in higher quality, more correct
software, and discovering errors that may not have been discovered through traditional testing.

—Formal specification allows users to find the problems and ambiguities in the system requirements.
—Formal methods are used for code verification which is attempt to prove the theorem that if certain

condition are satisfied the program will achieve the expected results.
—Formal methods facilitate the production of quality and testing. Maintenance phases are shortened.
—The use of formal methods increases the development correctness confidence and has the potential

to eliminate some types of errors in the system.
—Formal methods can increase the understanding of the system by removing inconsistencies, ambi-

guities and incompleteness.

Formal methods are usually applied to the critical systems development, but there are also critical
scientific applications, especially in the bioinformatics research field. These applications have critical
implications for life sciences and require strong quality assurance [Umarji et al. 2009].

3.2 Interval Temporal Logic and Tempura

Interval Temporal Logic (ITL) is a formalism that is an extension to standard predicate logic which
includes time-dependent operators [Moszkowski and Manna 1984]. The key term of ITL is an interval.
An interval is defined as a (in)finite sequence of states where each state is a mapping from the set of
variables to the set of values [Cau et al. 2002].

Expression in ITL is defined as:
exp ::= z | a |A | g(exp1, ..., expn) | ıa : f ,

where z is an integer value, a is a static variable (its value cannot be changed within an interval), A is
a state variable (its value can be changed within an interval), g is a function symbol, f is a formula.

Formula in ITL is defined as:
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f ::= p(exp1, ..., expn) | ¬f | f1 ∧ f2 | ∀v · f | skip | f1; f2 | f∗,
where p is a predicate symbol, ; is a chop symbol.

Formulas are building inductively as follows:

—Equality: exp1 = exp2

—Logical connectives: ¬f and f1 ∧ f2
—Next:© f

—Always: � f

The informal semantics can be represented as follows:

—ıa : f - choose value of a such that f holds
—skip - interval with length 1
—f1; f2 - the interval is decomposed into two intervals (prefix interval such that f1 holds and suffix

interval such that f2 holds) or the interval is infinite and f1 holds.
—f∗ - the interval is decomposable into a finite number of intervals such that for each of them f holds,

or the interval is infinite and it can be decomposed into an infinite number of intervals such that f
holds [?].

For example, this is a valid ITL formula: (I = 2) ∧ ©(K = 3). It can be interpreted as follows: in the
current state I is 2 and in the next state K will be 3.

Interval Temporal Logic provides a basis for the programming language Tempura. The main syn-
tactic categories in Tempura are: expressions (can be boolean or arithmetic), statements (temporal
formulas that can be simple or compound) and locations (places where values are stored) [Moszkowski
1985]. A formula is executable in tempura if the following three characteristics are satisfied: the for-
mula is deterministic, the length of an interval is known and the values of the variables are known
through that interval [De Montfort University 2004].

4. A FORMAL SPECIFICATION OF THE CODE FOR CALCULATING BOUND STATES OF THE MORSE
OSCILLATOR WELL

In this section, we refer to the problem of finding the bound states of Morse oscillator (i.e. solving the
stationary Schrödinger equation for Morse potential) and we present the formal specification of the
code by using ITL and Ana Tempura. The Morse oscillator well have not been modeled yet with ITL
and Tempura. The reason that we chose it for modeling is that code is simple to be understand and it
also can be considered as an example of a simple scientific application.

4.1 Bound States of the Morse Oscillator Well

Calculation of eigenenergies of bound states of Morse oscillator is a prototypical exercise in quantum
mechanics. This is so since the particular potential serves as a model system for studying molecular
vibrations. Morse potential has the following form:

U(r) = De · [1− exp(−β · (r − re))]2 (1)

where De denotes the dissociation energy of the corresponding bond, while re is the interatomic dis-
tance corresponding to the minimum energy of the oscillator. Vibrational Schrödinger equation with
the potential of the form (1) is analytically solvable and the corresponding vibrational eigenenergies
are given by:
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Ev = h · c · [(v + 1

2
) · ωe − (v +

1

2
)2 ∗ ωexe] (2)

In eq. (2), v is the vibrational quantum number (v ∈ 0, 1, 2, ), ωexe is the so-called anharmonicity
constant and is related to the parameter β and the reduced mass of the oscillator µ by:

β = 2 · π · c · ωe ·
√

µ

2 ·De
(3)

All other symbols in (2) have their usual meanings. The fact that the vibrational Schödinger equation
for Morse oscillator is analytically solvable makes this system a rather convenient test case for a
number of numerical methods aimed to solve the quantum vibrational problem.

In our particular application of the formal code specification approach, we solve the vibrational
eigenvalue problem by the discrete variable representation methodology [J. C. Light and J. V. Lill
1985], following closely the approach adopted by Bittner [Bittner 2009]. To solve a problem in quantum
mechanics by using numerical methods, the Hamiltonian operator should be represented in a finite
polynomial basis. In this case, the Tchebychev polynomials are used as a basis.

One of the methods we made a formal specification for is thcheby(...). It returns a set of points
pts[NPTS], the eigenstates the Laplacian operator, (−2∂/∂x2), in the basis ke fb[NPTS] (kinetic en-
ergy in finite basis), set of weights w[NPTS] and a transformation matrix T [NPTS][NPTS]. NPTS is
the number of points. There are two representations: finite basis representation (FBR) and discrete
variable representation (DVR). The transformation matrix carries one from the FBR to a DVR.

double thcheby(double xmin, double xmax, double pts[],double ke_fb[],

double w[],double T[][NPTS])

{

double del, fb;

int i,j;

del=xmax-xmin;

for(i=0;i<NPTS;i++)

{

pts[i]=((i+1)*del)/(NPTS+1)+xmin;

ke_fb[i]=square((i+1)*M_PI/del);

w[i]=del/(NPTS+1);

for(j=0;j<NPTS;j++)

{

T[i][j]= sqrt(2.0/(NPTS+1))*sin(((i+1)*(j+1)*M_PI)/(NPTS+1));

}

}

}

To solve the bound states of the Morse oscillator well we should define the number of points: NPTS=
100, and range: xmin = −3 and xmax = 32. The goal is to construct the Hamiltonian matrix in the
DVR basis and then diagonalize it to determine the eigenvalues and eigenvectors. The eigenvalues
(energies) below 0 are bound states. We use the eigenvectors and eigenvalues to plot the wave functions.
We automated the part for checking the correctness of wavefunctions by checking the values of the first
two eigenvectors. A wave function is correct if the difference between two neighbor values is smaller
than 10−3 and the values gradually getting tend to zero.



5:34 • B. Koteska, Lj. Pejov and A. Mishev

5 10 15 20 25 30
x

-3

-2

-1

1
V

Wave functions

Fig. 1. Wave functions

4.2 The ITL Formal Specification using Ana Tempura

We made a formal specification of the code for calculating the bound states of the Morse oscillator
well by writing a Tempura code and making tests to compare the output results from the .exe version
of the C program and Tempura code. In order to establish communication between the tempura file
and the .exe version of the C program assertions must be added in the C code. We will explain the C
and Tempura code where the checking of the values in the ke fb[] array is performed. The code for
checking the other arrays and values is similar.

int i=0;

double ke_fb_i=0.00000;

assertion1 ("ke_fb_i", ke_fb_i);

assertion ("i", i);

while (i<NPTS) {

ke_fb_i=square((i+1)*M_PI/del); assertion1 ("ke_fb_i", ke_fb_i);

i=i+1;assertion ("i", i);

}

The assertion functions are used for checking the values of the variables after each performed
change. The values of the variables are compared to the values obtained from the Tempura code.

Here is the function for calculating the Y -th value of the ke fb[] array written in Tempura language.
The function itof returns the float corresponding to an integer number and del = xmax− xmin.

define calc_ke_fb(Y) = {

if Y>=0 then {((itof(Y)+$1.0$)*M_PI/del)*((itof(Y)+$1.0$)*M_PI/del)

}

else empty

}.

Here is the test we defined to check the results:

/* run */ define test1() = {
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exists ke_fb_i, Y :

{

check($0.00000$,ke_fb_i,Y);

while (Y<NPTS) do

{

check(calc_ke_fb(Y),ke_fb_i,Y)

}

}

}.

The function check compare the results from the calc ke fb function and the C program. If they are
identical, test passed. The results from the first two iterations when a test is run by the Ana Tempura
tool are shown in 2. These test cases pass successfully.

Fig. 2. Execution of test1 in Ana Tempura

5. CONCLUSION AND FUTURE WORK

In this paper we presented the importance of using formal methods for testing and specification of
scientific software. A formal specification of the code for solving the bound states of the Morse oscil-
lator well by using ITL and Ana Tempura was described. Also the implementation details and steps
were given. Formal specification and description of the scientific software will improve its correctness
by reducing the number of errors, especially when a code change is made. The testing also will be
more accurate and mathematical model will be provided for the software. We chose ITL and Tem-
pura as a powerful description language and extension to standard predicate logic which includes
time-dependent operators. The programs written in Tempura and executed in Ana Tempura tool can
communicate with .exe version of the programs. At this moment, there are examples of program codes
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written in C and Java. There are no limitations of the number of test cases that can be covered. Tem-
pura language is similar to predicate logic and it is easy to be learned. There are only several rules
and categories such as expressions, statements and locations. The hard part for the scientists could be
the programming with recursion.

We plan to make a formal specification of the scientific application which is developed within the
HP-SEE (High-Performance Computing Infrastructure for South East Europe) project. We want to
automate the testing process by creating and running tests using the Ana Tempura tool.
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