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Abstract—In physical sciences, when condensed matter systems
(e.g. solids or liquids) are modeled with an explicit inclusion
of dynamical effects, often the following computational problem
arises. A given property of an embedded atomic/molecular
system within condensed phase should be computed either at
different possible structural arrangements and further average
over configurations, or alternatively, it is possible to generate
an averaged configuration of the dynamical surrounding that
the system experiences and further compute the property of
interest at that configuration. The problem of solving the average
vibrational potentials of large number of oscillators in vari-
ous condensed-matter environments (sampled from a statistical
physics simulation) can be placed in the category of problems
with large data sets. In this paper, a distributed and parallel
processing of the large data sets needed for the generation of
the averaged vibrational potential is efficiently performed by
using the MapReduce programming model and Hadoop software
library. Some of the reasons for choosing the Hadoop software
library are: It is able to work on data pieces in parallel; The
computing solutions enabled by Hadoop are scalable and flexible;
The distributed file system enables rapid data transfer among
nodes; Hadoop is fault-tolerant which means that if a node fails
the job is redirected to another node. The main goal of this paper
is to perform an efficient processing of the large data sets used
in the scientific applications.

Index Terms—Hadoop, Average vibrational potentials, Anhar-
monic oscillator, Condensed-matter environments, Schrödinger
equation

I. INTRODUCTION

Theoretical models in physical sciences are often used to
understand the experimentally observed behavior of certain
physical systems or to predict their behavior under specific
circumstances which are relevant to the actual or potential
technological applications of the systems in question. Besides
getting a more enlightening view of the systems behavior, the-
oretical models may be quite useful in discriminating among
various factors leading to observation of certain physical phe-
nomena or in quantifying the contribution of various factors to
a certain physical observable. Most of the experimental data
are, however, collected at finite temperatures, usually quite
above absolute zero.

A reliable theoretical model aiming to provide a realistic
description of the system in question therefore has to account

for the dynamical effects on a certain time-scale. Most of the
models based on quantum mechanical description of many-
particle physical systems are based on explorations of the
potential energy hypersurfaces (or certain cuts through these
surfaces), which means that they do not conform to the previ-
ously mentioned criterion. To explicitly include the dynamical
behavior of the studied quantum system, one has to treat it
within the framework of quantum dynamics. However, a fully
exact quantum dynamical treatment of multi-particle systems
is prohibitively computationally expensive. At the same time,
luckily, such full quantum dynamical treatment is mandatory
only in certain specific cases, usually when the focus of the
study is put on light particles (such as e.g. hydrogen atoms).

An acceptable alternative which has been exploited to some
extent in the literature is to first carry out a classical dynamics
(or statistical physics, such as e.g. Monte Carlo) simulation
of the time-evolution (or evolution in imaginary time) of the
system in question, then to pick up a reasonably small number
of configurations (snapshots from the classical simulation)
and perform rigorous quantum mechanical simulations only
on these configurations. Though the previously mentioned
dynamical simulations are classical in a rigorous sense, note
that the interaction potentials used throughout the simulations
may be even derived from high-level quantum mechanical
calculations.

II. RELATED WORK

There are several papers in which MapReduce paradigm has
been used for solving problems in the scientific domain. In
[1], the authors applied MapReduce model to perform High
Energy Physics data analyses and Kmeans clustering. They
also made a streaming-based MapReduce implementation and
compared its performance with Hadoop. Their conclusion is
that most of the scientific analyses that has some form of the
SMPD algorithm can benefit from the MapReduce model and
can achieve scalability and speedup.

In [2], the authors present the MapReduce implementation
in Google inc. The implementation is highly scalable and it
processes terabytes of data on thousands of machines. Also,
upwards of one thousand MapReduce jobs are executed on
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Google’s clusters every day. MapReduce model is used for
sorting, data mining, machine learning, generation of the data
of the web server, etc.

In his thesis [3], the author propose a novel solution for
molecular dynamics simulation based on Hadoop MapReduce.
The solution can predict the execution time of a given size
molecular dynamics simulation system. He also presents the
performance and energy consumption improvement of the
solution which is implemented in a hybrid MapReduce en-
vironment.

Bunch et al. [4] explore which scientific computing prob-
lems can be solved by using MapReduce and which can
not. They implement different non-trivial algorithms with
MapReduce and measure their performance. The authors found
out that the MapReduce framework is not suitable for iterative
algorithms where each iteration runs a number of MapReduce
jobs.

In their paper [5], the authors propose architecture for a
configuration implemented in a scientific private cloud pro-
totype and they use Hadoop to achieve scalability and fault
tolerance. The experiments showed the effectiveness of the
proposed model. In [6], the authors describe the development
of the Hadoop-based cloud scientific computing application
that processes sequences of microscope images of live cells.

A Hadoop plugin that allows scientists to specify logical
queries over array-based data models is presented in [7]. It
executes queries as MapReduce programs defined over the
logical data model. The goal of this paper is to reduce total
data transfers, remote reads and unnecessary reads.

III. AVERAGE VIBRATIONAL POTENTIALS OF

OSCILLATORS IN CONDENSED-MATTER ENVIRONMENTS

In physical sciences, when condensed matter systems (e.g.
solids or liquids) are modeled with an explicit inclusion of
dynamical effects, often the following computational problem
arises. A given property of an embedded atomic/molecular
system within condensed phase should be computed either at
different possible structural arrangements and further average
over configurations, or alternatively, it is possible to generate
an averaged configuration of the dynamical surrounding that
the system experiences and further compute the property of
interest at that configuration.

For example, if one is interested in an anharmonic oscillator
embedded in a solid or liquid, the vibrational potential of the
form:

V (r) = V0 + 1/2k2r
2 + k3r

3 + k4r
4 + k5r

5 (1)

may be computed at n configurations and then the vibrational
Schrödinger equation solved for each particular Vi(r). In
previous equation, r is an appropriately chosen vibrational
coordinate, k2 is the harmonic force constant, while k3, k4 and
k5 are cubic, quartic and quintic anharmonic force constants
respectively [8][9]. In these papers this approach and generated
the vibrational density of states for a number of X-H oscillators
embedded in a variety of liquid environments have been
exploited. Though such approach is computationally feasible,

in some cases, especially if one is interested only in the
average frequency (or frequency shift), it would be desirable
to avoid explicit computation of vibrational frequencies by
solving the vibrational Schrödinger equation for all Vi(r).
Instead, one could use a single computation of this type, for
an averaged configuration or averaged potential within the
condensed phase medium. In the present study, we further
elaborate the previous two ideas, by considering the averaged
vibrational potential instead.

Alternatively to the averaged configuration or averaged envi-
ronmental potential approaches, one can generate an averaged
vibrational potential of the form:

<V (r)>=<V0> +1/2 <k2> r2+ <k3> r3+

<k4> r4+ <k5> r5 (2)

(where <> denotes ensemble averaging or averaging over
time configurations) and subsequently solve the vibrational
Schrödinger equation for such averaged potential energy func-
tion. To illustrate the concept and consider a particular physi-
cal system, we consider the fluoroform-dimethylether dimer
embedded in liquid krypton, which has been a subject of
attention in our recent paper. The main interest for this sys-
tem, which has previously been studied by cryospectroscopic
techniques, is driven by the peculiar behavior of the C-H
vibrational mode of the fluoroform moiety upon complexation
with dimethylether, that exhibits C-H stretching frequency blue
shift (instead of the expected red shift by ”chemical intuition”).
The details concerning the mechanism behind the blue shift
and many other aspects in this context have been discussed in
details in our previous work.

In the present paper, we focus on the development of
method, based on the map-reduce computational approach,
to extract the ”solvent-averaged” X-H stretching vibrational
potential. We have therefore computed the vibrational potential
energy functions for at least 50 C-H stretching oscillators of
the CF3H moiety within the CF3H - (CH3)2O dimer at B3LYP,
HF and MP2 levels of theory. The 6-31++G(d,p) basis set
has been used for orbital expansion in all calculations. The
positions of the C and H atoms in the course of ”excitation”
of the C-H stretching vibration have been generated by fixing
the center-of-mass of the C-H bond fixed, as explained in
details elsewhere. 20-point grids were used to scan the C-H
stretching potential energy function, spanning a suitable range
of C-H distances, so that the potential is sampled in the areas in
which the wavefunctions corresponding to the ground and the
first excited vibrational states are already decayed to zero. The
data generated in such way were further interpolated by a fifth-
order polynomial in the C-H distance r (Eq. 1) . The functions
of the form Eq. 1 were further cut after the fourth-order
term, transformed into Simons-Parr-Finlan type coordinates
ρ = r − re/r (where re is the equilibrium value of the C-
H distance), and the vibrational Schrödinger equation was
solved by the variational method (the linear variant). For that
purpose, harmonic oscillator eigenfunctions were used as an
orthonormal basis set. To generate the averaged potential of the
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form Eq.2 by the map-reduce technique, we have averaged the
values of molecular potential energies (in Born-Oppenheimer
sense) at each r(C-H) value. The resulting average vibrational
potential energy function of the form Eq.2 was further also
cut after fourth order, transformed into SPF-type coordinates,
and subsequently the vibrational Schrödinger equation was
solved in a variational manner. The map-reduce approach, as
implemented in Hadoop, was used as explained below.

IV. THE MAPREDUCE MODEL

MapReduce is a programming model for processing large
data sets in parallel [10]. The partitioning of the input data
and the scheduling of the program’s execution across multiple
machines are responsibilities of the run-time system. The user
should specify a map function (mapper) which processes key-
value pairs and a reduce function (reducer) which merges all
the intermediate values associated with the same intermediate
key [2].

The MapReduce model can be divided into rounds, each
containing three phases: Map, Shuffle and Sort and Reduce.
The Map phase maps each single pair of (key, value) to
the machines in the run-time system as a new multiset of
(key,value) pairs where the value in each new pair is a
substring of the original value. The Shuffle phase is responsible
for sorting and transferring the map outputs to the reducers.
The Reduce phase computes some function on the data on
each machine [11].

A MapReduce program consists of finite sequence of rounds
specified as 2-tuples (tuples of two elements), each tuple
containing a map and a reduce function. Formally, this can be
written as: ((M1, R1), (M2, R2), ..., (Mn, Rn)) where Mi is a
mapper, Ri is a reducer, i is an integer number and 1 ≤ i ≤ n.
A 2-tuple is defined as (Mi, Ri). Let the program input that
is a multiset of (key;value) pairs be denoted by U0 and the
output that is a multiset of (key;value) pairs of the i-th round
by Ui.

The program executes for r = 1, ....n. For each r, the
Map, Shuffle and Reduce phase are performed. The Map phase
feeds each (key;value) pair (k; v) in Ur−1 to the mapper
Mr and runs it. The output of the mapper Mr will be a
sequence of (key;value) pairs (k1; v1), (k2; v2),... and it can
be defined as: U ′

r = ∪(k;v)∈Ur−1
Mr((k; v)). The Shuffle phase

constructs Vk,r (values such that (k; vi) ∈ U ′
r ) from U ′

r for
each k. The Reduce phase feeds the k and some arbitrary
permutation of Vk;r to the separate instance of the reducer
Rr and runs it for each k. The output of the reducer is a
sequence of 2-tuples (k; v′1), (k; v

′
2),... and Ur that is a multiset

of (key;value) pairs produced by the reducer Rr is defined as
Ur = ∪kRr((k;Vk,r)) [12] [13].

Programs that use the MapReduce model implement the
Mapper and Reducer interfaces to provide the map and reduce
functions. The map and reduce methods can be represented
as shown below. The values with the same key are reduced
together [14].
method Map(key k, value v) → EMIT( key k′, value v′)

method Reduce(key k, value v) → EMIT (key k′, value
[v′, v2, v3...]

The MapReduce model automatically supports parallel pro-
gramming and it shields the programmer from writing code
about data distribution, scheduling and fault tolerance. The
programmer should only specify the map and reduce functions.
This also can be considered as a disadvantage of the model
since the programmer cannot affect the efficiency of the paral-
lelism. Thus, it is not always clear which kind of problems are
suitable to be solved using the MapReduce model and which
not [13]. The scientific data volumes and clustering algorithms
used in chemistry, biology, physics are computing intensive
operations and the use of parallelization techniques is key in
order to achieve efficient data analyzes. MapReduce model
is suitable when processing of the data should be split into
smaller independent computations and the intermediate results
should be merged after some post-processing in order to get
the final result. It provides simplicity, robustness and has less
synchronization constraints which supersede the additional
overheads [1].

Hadoop (Apache Hadoop) is an open source software data-
processing library which allows distributed and parallel pro-
cessing of large data sets. The Hadoop project includes four
different modules: Hadoop Common (utilities that support
the other Hadoop modules), Hadoop Distributed File System
(distributed file system that provides high-throughput access
to data), Hadoop YARN (framework for job scheduling and
cluster resource management) and Hadoop MapReduce (A
YARN-based system for parallel processing of large data
sets) and it is used by many companies including Facebook,
Cloudera, Amazon, Microsoft, Yahoo, etc. The data processing
in Hadoop can be implemented in MapReduce directly or by
using high-level languages and translating into Map-reduce
jobs later [15][16]. Hadoop can be also used for building
data warehousing solutions. An example is Hive which sup-
ports queries expressed in a HiveQL (SQL-like declarative
language). The queries are compiled into map-reduce jobs and
executed on Hadoop [17].

V. COMPUTING AVERAGED VIBRATIONAL POTENTIALS

ENERGIES BY USING HADOOP

The purpose of the our algorithm is to compute the average
vibrational potential energies for at least 50 C-H stretching
oscillators of the CF3H moiety within the CF3H - (CH3)2O
dimer at B3LYP, HF and MP2 levels of theory. Calculating the
average values, in our case the average vibrational potential
energies, is a typical map-reduce problem. Each document
that describes the same C-H stretching oscillator in a different
environment has two columns, one containing the distances
r(C-H) and the other containing values of molecular potential
energies (U). The pseudo code of the Map and Reduce
methods used in our algorithm is given below.

Method Map(String r, String U):

// r: input key r(C-H)

// U: input_value
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for each r in all documents:

EmitIntermidiate(r,ParseDouble(U));

Method Reduce(String r, Iterator interm_vals):

// r: key, same as input_key

// interm_vals: intermediate values-

// list of all U-s group by r

double sum=0,result=0;

for each v in interm_vals:

sum += v;

result=sum/length(interm_vals);

Emit(AsString(result));

The algorithm is implemented in Java and it was performed
three times, once for each level of theory (B3LYP, HF and
MP2).

The main results from the present study are summarized
in Fig. 1 a-c. In Fig. 1, the vibrational density-of-states
(DOS) histograms generated from the computed vibrational
frequencies of the |0 >→ |1 > C-H stretching vibrational
transition are presented, together with the delta-like func-
tion (with dashed lines) representing the frequency of the
|0>→ |1> transition obtained for an averaged C-H stretching
potential. In the same figure, also the numerical values of the
corresponding frequencies are given. As can be seen, if one is
interested solely in the average vibrational frequencies, and not
in the corresponding distributions, our ”averaged vibrational
potential” approach gives excellent results. The matching
between average vibrational frequencies computed from the
DOS distributions, and the single vibrational frequency values
computed from only a single averaged vibrational potentials is
excellent, regardless on the level of theory. No biasing effects
are present.

VI. CONCLUSION

In this paper we have presented the benefits of using
the MapReduce model and Hadoop framework in scientific
domains. The average vibrational potentials of oscillators in
condensed-matter environments were computed only by spec-
ifying map and reduce functions implemented in Hadoop. The
vibrational potential energy functions were computed for at
least 50 C-H stretching oscillators of the CF3H moiety within
the CF3H - (CH3)2O dimer at B3LYP, HF and MP2 levels of
theory. The results show that there is an excellent matching
between average vibrational frequencies computed from the
DOS distributions, and the single vibrational frequency values
computed from only a single averaged vibrational potentials.
By using the results, the vibrational Schrödinger equation was
solved in a variational manner. Since there are many big-data
oriented problems in the scientific domains, the MapReduce
paradigm and Hadoop can be suitable for their solving, espe-
cially when some reduction of the data should be performed.
Our future work is oriented to solving more difficult problems
in the scientific domains by using the MapReduce method and
Hadoop framework.
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CF3H - DME

Fig. 1. Vibrational Density-of-states (DOS) Histograms Generated from the
Computed Vibrational Frequencies together with the Delta-like Function
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