The 9" Conference for Informatics and Information Technology (CIIT 2012)

RECENT AND FUTURE TRENDS AND CHALLENGES OF SOFTWARE TESTING

Bojana Koteska
Faculty of Computer Science and Engineering

Skopje, Macedonia

ABSTRACT

In the modern information based world, software testing is an
important element of software quality assurance. In order to
satisfy new and more complex software systems requirements
we need to improve the ways of software testing by adding
software automation and different software methods. Better
software testing helps increasing the software quality,
decreasing testing time and development cycle time. In this
paper we review the trends in software testing and we propose
some methods for improving the software testing. The paper
concentrates on recent and future trends in software testing,
automation of software tests and new testing suggestions.

I. INTRODUCTION

All software and each change made in any piece of software,
no matter how unimportant it may seem at first bring up the
possibility of error. These potential errors raise the chance
that the software will not accomplish its intended outcome.
Software testing can be used in order to lower this risk. It can
help to determine error issues and to prevent and resolve
them.

Among the most important goals of testing is to see how the
application behaves under normal load and in stress. Stress
can be defined differently for distinct software behold on the
software’s requirements.

Regarding the fact that there is no method to accredit that
software is free of error the process of testing can be used to
reduce its number. If the process of testing is constantly
included in the development process, it can be very useful in
moving from one development phase to another. The software
can be run in observed environment to check its performance
in order to evaluate if the project is ready for the next phase.

Software testing depends on the approach applied in the
process of testing. It is recommended that the testing process
is implemented during the process of development since it
can decrease the number of further errors in the software.
Each phase of development is properly tested before the next
one depending on it is developed. However in most cases, the
process of software testing is only assigned at the end of
development.

II. IMPORTANCE OF SOFTWARE TESTING
EVOLUTION

Computer software is the main driving force in today rapid
changing information world. Because of this, its reliability is

©2012 Faculty of Computer Science and Engineering

334

Bisera Dugalic
Faculty of Computer Science and Engineering

Skopje, Macedonia

one of the most important things in organization’s software
development. Making quality software products requires
testing in all phases of software development: analysis,
design, coding, testing and integration. [1]

Since it is very common for software systems to evolve,
software testing must adapt to these changes rapidly.
Software correction and adaptation to new platforms results in
new systems’ releases and software engineers must find a
way to test them. The correlation between software evolution
and software testing is often difficult to achieve. [2]

The process of software evolution requires tests that evolve at
the same time. That makes the evolution more complex,
difficult and time-intensive. On the other hand, the new
software operations cannot be added without previously
created tests. [2]

Time

Figure 1: Gap between new features and tests.

Writing tests to understand the software before it is released is
good approach for developing software systems.

III. RECENT TRENDS OF SOFTWARE TEST
TECHNOLOGIES

Considering the fact that software testing does not stand alone
but is a closely dependant on the developing process, it draws
greatly on the development practices. The following test
practices are considered to be among better when it comes to
software testing. [13]

A. Functional Specifications

Functional Specification is meant to describe the external
view of the matter usually indicating the options by which a
utility could be requested. It can be very useful as basis for
generating test oracle to help determining if the observed
input/output is consistent with the specification. This practice
brings the benefit of alongside generation of the tests and the

The 9" Conference for Informatics and Information Technology (CIIT 2012)

development of the code. This can be very convenient from
many aspects. Among important advantages is parallelism in
execution process which helps in eliminating serialisation
obstruction in development. This way developer can spare
time because when the software code is finished, the tests are
also ready to be run against the code. Another important
feature is that it brings a level of clarity from the aspect of the
designer and the architect that is necessary for the general
completeness of the development process.

With formal specification the chance for errors is reduced
because it excludes uncertainty. There is an enduring concern
about getting a specification that agrees with the right
customer requirements considering the possibility for stated
requirements to change during the development process. The
formal specification ought to be analyzed in order to find
potential mistakes and consequences regarding the
specification. Once this is finished, there is a higher certainty
that the system is tested against its actual requirements. [16]

B. Formal Entry and Exit Criteria

The concept of this software testing method is that every step
in the testing process, no matter whether that is observation or
software design of functional test, it has a particular entry and
a particular exit criteria. Although with the decrease of the
emphasis development, the usability of the process of entry
and exit criteria may have been out of currency but it still
allows very careful management of the software development
process. The entry and exit criteria are defined in the
development process and later are observed by the
management to gate the movement from one stage to another.
It is considered as stand-alone testing and is most useful in
Unit Testing. With each test based on technical design
documents and built to carry out a certain task, a single
module is validated with the assumption it will operate in a
particular way or give particular result.

The tests are performed in a test environment before the
particular module is integrated into the system. When a bug is
detected during the testing, depending on the proportion of
the bug, it is decided if the module will be fixed before being
approved. [17]

C. Functional Test-Variations

The point with this software testing approach is to make
specific combination of input condition which will give a
specific output. The process of making functional tests
implies writing different variations of input and output in
order to cover as much of the state as resolved important. The
practice of writing the variations is considered to involve a
factor of art, regarding the fact that there is no measure of
coverage for functional tests. The essential part is to
understand how to write the variations and gain coverage to
sufficiently test the function.

According to previous experience, software may be tested by
bringing together a group of familiar programmers, assigning
their goals in broad terms, and then letting them differ on the

way to these goals as their individual preparation, curiosity
and biases demand. The basis of this approach is the
persuasion that testing is an art. There is no initial mapping of
the field to be analyzed and no precise assignment of field
assignment. As a result to this, there is no way of prevent
redundant analysis, no way of limiting analysis to fields with
the higher probable payoffs and no curtain way to measure
the analyzed field. Briefly, there is little manipulation over
the testing process itself and few detached measures of test
coverage. [18]

D. User Scenarios

The scenario is a story about someone trying to accomplish
something with the product under test. Positive aspect of
using user scenarios is that it tests the software in the way that
is most likely to manifest on customers using it. Another
important thing is that it reduces the complexity of writing
test cases by moving to testing scenarios rather than features
of application. Nevertheless, the process of developing user
scenarios and using enough of them to get the necessary
coverage at a functional level still presents a demanding task.
The best practice when it comes to user scenarios is to capture
methods of recording user scenarios and developing test cases
according to them. Furthermore it could consider potential
summary methods when characteristic failure scenarios
happen.

Scenarios can also be appropriate to attach to documented
software requirements, particularly requirements modeled
with use cases because more complex tests are built up by
designing a test that runs through a series of use cases. Also
scenarios can be used to expose failures to deliver aimed
advantages whether or not the company creates use cases or
other requirements documentation. Scenario test provides a
check on a benefit the program is supposed to deliver. Tests
of separate units and mechanical combination tests of related
units or their input variables are not designed to provide this
kind of check. [19]

IV. AUTOMATION OF SOFTWARE TESTS
A. Automated test execution

The purpose of automated test execution is to minimize the
quantity of manual work involved in test execution and to
gain higher coverage with greater number of test cases. This
way of testing has a big influence on the tools sets used for
test execution and how the tests are designed. It is very
convenient and very used in some segments of software
testing but not in all of them. It needs to take advantage of
what is already known and develop the practices for fields
where it is not entirely performed.

Another important thing about this is that some tests cannot
be carried out using manual testing efforts like memory leak
detection, stress testing, high test coverage with a large
amount of test data input etc. [20]

B. Automated test generation

335

The 9" Conference for Informatics and Information Technology (CIIT 2012)

Writing of the tests can be almost a third of testing task. Since
the technology for automation has not advanced as expected,
the automated test generation tools sometimes generate too
large test set which reduces the gains of automation. Anyway,
there are some good techniques and tools that are recognized
as fine methods for the task. It is necessary to understand
which of them are appropriate in what environments. [20]

3000
5 2500 LAmEveg
o Re-Test Interval: (Twice Yearly * 3 Vendor Baselines) Manual
% 2000
E 45 Days to Complete Each Manual Re-test
¢ 1500 97%
- Reduction
i) in Test
2 1000 L
£ ;
S 500
v Automated

: . omated
Yro Yl Yr2 Yr5 Yr10
Time (Years)

Figure 2: Example Automated Software Testing Savings
over time

V. FUTURE OF SOFTWARE TESTING
A. Future trends in software development

Modern business logic requires new types of development
approaches such as web based services and applications,
wireless and mobile technologies, service oriented
architecture, agile development methods and cloud
computing. [3]

Worldwide IT Cloud Services Spending* by Product/Service Type
2008, 2012

Storage
5%

Storage
13%

Business
Applications
§7%

Business
Applications
52%

App Deva

Deployment
1% App Deva

Deployment!
9%

Infrastructure
Software
18%

Infrastructure
Software
18%

2008
$16.2 billion

2

012

$42.3 billion

Systems infrastructure Software. Application Development

Figure 3: Worldwide IT Cloud Services Spending* by
Product/Service Type 2008, 2012.

B. Future trends in sofiware testing

New trends in the software industry suggest new trends in
software testing. These trends must follow the rapid system,
application development and new development strategies and
technologies.

336

When the organization wants to develop quality software the
testing should start from analysis and design phases. Stating
testing must be ‘“robotized”. It means that all testing
techniques should be a part of the analysis and design
automated checking tools.

The automation combined with early detection test
simulators, just-in-time test cases, self-testing and self-
monitoring will result in better defect and error founding in
carly stages of software development lifecycle. [3][4]

1) Agile software testing

Agile software testing follows the principles of agile software
development. It means that agile software methodologies are
based on incremental and iterative development, where
everyone in the team works together towards a single goal.

Agile software product can be represented as:

Sprintn
Product , = j TW(IDD + PP+ > R). (1)

Sprintl

In (1) SW means software, TW is a teamwork, 7DD is a Team
Driven Development, C/ is a continuous integration, PP is a
Pair Programming and R is refactoring.

Agile testing is about future testing on newly developed code
so agile testers must adapt to fast changes in testing and rapid
development. Testing during different stages is not only
responsibility of testers, but also on developers and users.

The story testing (testing against user stories) and the story-
level regression testing (regression test that is build up from
the story testing from the previous iteration) are the main
responsibilities of the testers. They are also involved in
business analysis and story writing to ensure that all stories
are testable.

Test automation is the main driving force in agile testing.
Automated builds and regression testing in all development
phases all rely upon automation and story-level regression
testing and acceptance testing are automated in most of the
agile projects.

Agile testing requires the team to develop a set of metrics and
consistent analyzed data. The testing benefits are: short time
for defect fixes and only few new defects.

Size metrics in agile testing can be defined as a number of
regression test steps that run at each of the iterations because
test size is more correlated with complexity and only features
that have full regression testing at each of the iterations are
counted as delivery product size.

Agile testing has a simple rule to fix every defect as soon as it
is discovered. This is required because the released version to
the customers in each of the iterations should not contain
known bugs. Fixing bugs early helps developers to work on

The 9" Conference for Informatics and Information Technology (CIIT 2012)

clean and stable code that makes new development faster.

[51[6]
2) Cloud software testing

Cloud testing is primary intended for dynamic, distributed
and component-based application that are flexible and more
connected to real-time data. Cloud testing is a new approach
where cloud computing environments simulate real-world
user traffic. It is based on software-as-a-service (SaaS) model.

This online service provides daily operation and testing
support across the internet and it can be accessed through
web-based browsers and servers. [7][8][9]

Let Ti be the set of clouds needed for testing the software
products Pi. T can be defined with this equation.

ey tCiy),
tein = (tsiany Sicazy o ESicikgy)s
Tp; = { tCiz = (tSi(zn' tSi(22) ""tSi(Zkiz))’

(Smi‘ tcil’ tCin
2)

ltciy = (tsiy1), tSiy2y ""tsi(ykiy))

In (2) sm; means service manager of the product Pi belongs
to the Application Services, and H is the number of products
that have to be tested, (0 <i < H).

tc;; is one of the testing cloud of 7i , while ts;(j,, is one of
the testing services of t¢;jand 0<j <y, O <u<k-1.yis
the number of clouds and number of testing clouds for
product Pi. k;; is the total number of testing services available
in the testing clouds “j” of the Pi.

Because the scalar type test environment is provided,
T; N T; = @, where 0< iy, i, < H and i; # i,. It means that at
any specific service duration, Testing Cloud or a Testing
product cannot be shared by more than one product.

Three main component of this system are: Service Manager
({smysm, ..,sm,}), Testing clouds ({tcytc, ,tc, }) and
clones of Testing Services ({tS11, tS1z, ., tS1k)fs oo >
18Sx1, tSxz, -, Sy, }) that each runs on different machines
on the network.

The Service manager is responsible for tracking and
coordination of core activities and each cloud is responsible
for providing a specific output standard that every task must
conform to. [8]

Cloud online service has some benefits such as: minor
investments in installing and maintaining testing
environments for customers, online market for testing
providers and customers and software testing as an online
service that can be made for about ten working days that leads
to saving time and money. [7][9]

3) Search-based software testing

Search-based software testing is a meta-heuristic optimizing
search method where the testing task is automated and the
data are generated automatically.

The simplest algorithm is random search where input data is
generated randomly until the test requirements are satisfied.
Random search is very poor method when the input domain is
big because it provides only few inputs compared with the
size of the input domain.

Better way for meta-heuristic searching is a problem-specific
fitness function and it needs to be defined different for every
new problem. The inputs closer to the test requirements are
signed with higher fitness value. High climbing is an
algorithm that utilizes this function and it starts at random
point in the search space and continues with the point with
higher fitness value in the space neighbourhood. [10][11]

The main problem with search-based software testing is
handling the execution environment where the software under
testing exists. For example, the network file system or
operation system interactions may not be handled.

For solving the “flag” problem, when a branch predict
consists of Boolean value the “flag” and has only two branch
distance values: true and false, there is “Testability
Transformation” method. It produces a temporary version of
the software program that is being tested and it removes the
unwanted features for Searched-Based test data generation.
For example, a Boolean variable can be replaced with a
condition that leads to making the flag value true. [10][11]

Testing Transformation usually improves the reliability of test
data generation. When there is a program with complex data,
then search is performed with both transformed and
untransformed program’s versions. There is no limit to the
number of transformed versions so it can be used for
improving the reliability of the program. [10][11]

i
1
=40

50

80

Figure 4: Results with testability transformation. The success
of test data generation improves the success of test data
generation

.......-------------«u-----muuullIIIII|||||l||||||"||||||“||

Change in success rate after applying
transformation (%)

Nested branches

337

The 9" Conference for Informatics and Information Technology (CIIT 2012)

VI. EDUCATION OF TEST ENGINEERS AND TEST
DESIGNERS

Today, the need of professional software testers is huge.
However, there is no real support from universities and
colleges in realising courses for professional testers.

ITSS (IT skill standard) has a “testing skill” as an item in its
function skills required for IT specialist, but the testing
category has no job for testing specialists.

Since test engineers are important category in embeded
software testing, ETSS (Embedded software skill standard)
listed “test engineer” as a job category.

Japan Electronics College offered a Software Test Design
course for becoming a test specialist. This is 2-year course
and it provides skills such as testing environment
development skill, test management skill, performance
evolution skill, quality management and case studies.
Required skills for this course include computer knowledge in
general, programming and network skills. Results show that
many companies are interested in graduate students who
finished this course.

The most important thing for test engineers is to understand
the product and also global organization perspective and
strategy. Since resources in software testing are one of the
main factors for evaluation the quality risks of products, it
will be necessary to include these kinds of courses in
universities and graduate schools. [12]

VII. SUGGESTIONS AND NEW TESTING SOFTWARE
IDEAS

Regarding the fact that software testing is a mental activity
and software can be experimented, in the future the existing
automation tools can have an artificial intelligence, i.c. robots
can help the software testing.

Future testers must be more technically professional to
develop test stubs and drivers that interact with more
programming languages that will work with more complex
data sets and will be integrated with agile teams. Tools must
be highly complex to support the testing of these data sets.

Testers in the future must be professionally educated and
accredited with computer science degree and even with some
additional courses. They must be concentrated on adding
value to the business software development lifecycle.

Software testers will operate in position where the
combination of their knowledge, creativity and ability for
decisions about testing criteria will be the main reason for
company success.

The role of professional testers will become more essential.
Testing and quality assurance will take part of modern
technologies to satisfy the goals regarding the new products
quality on the market rapidly and at minimal risk. This kind

338

of system interaction will lead to minimizing the risks and
increasing the benefits of business processes in the companies
that is also the main reason for their existence.

REFERENCES

[1] Mark N. Frolick and Brian D.Janz, ” Cycle Time Reduction in Software
Testing”, The University of Memphis.

[2] Tom Mans and Serge Demeyer, “ Software evolution”. Verlag Berlin
Heidelberg, 2008.

[3] AppLabs, “Future of software testing”, 2008.

[4] Nick Jenkins, “A Software Testing Primer, An introduction to software
testing”, Creative Commons, 2008.

[5] The Magazine for Professional Testers, Testing experience- Agile
Testing, Germany, 2009.

[6] David Talby, Arie Keren, Orit Hazzan and Yael Dubinsky, “Agile
Software Testing in a Large-Scale Projects, IEEE Computer Society, 2006.
[7] Leah Muthoni Riungu, Ossi Taipale, Kari Smolander, “Software Testing
as an Online Service: Observations from Practice”, IEEE, 2010.

[8] T. Vengattaraman, P. Dhavachelvan, R. Baskaran, “A Model of Cloud
Based Application Environment for Software Testing”, IJCSIS, 2010.

[9] Jerry Gao, Xiaoying Bai, Wei-Tek Tsai, “Cloud Testing- Issues,
Challenges, Needs and Practice”, an international Journal (SeiJ), Vol. 1, no.
1,2011.

[10] Phil McMinn, “Search-Based Software Testing: Past, Present and
Future”, University of Sheffield, Department of Computer Science Regent
Court, 211 Portobello, Sheffield, S1 4DP, UK, 2009.

[11] Giuliano Antoniol, “Search Based Software Testing for Software
Security: Breaking Code to make it Safer”, SOCCER Laboratory — DGIGL
"Ecole Polytechnique de Montr’eal, Qu’ebec, Canada

[12] Toshiaki Kurokawa, Masato Shinagawa, “Technical Trends and
Challenges of Software Testing”, Quarterly Review No. 29, 2008.

[13]IBM Research Technical Report RC 21457 Log 96856 4/26/99
“Software testing Best Practices” Ram Chillarege, Center for software
engineering IBM Research

[14] Toshiaki Kurokawa, Masato Shinagawa, “Technical Trends and
Challenges of Software Testing”, April, 2008

[15] Corina S. Pasareanu, Willem Visser, “A survey of new trends in
symbolic execution for software testing and analysis”, 30 August 2009

[16] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A. J. H.
Simons, S. Vilkomir, M. R.-Woodward, and H. Zedan, “Using Formal
Specications to Support Testing”

[17] John E. Bentley, Wachovia Bank, Charlotte N, “Software Testing
Fundamentals—Concepts, Roles, and Terminology”

[18] W. R. Elmendorf “Evaluation of the Functional Testing of Control
Programs”

[19] Cem Kaner, Florida Tech, “An Introduction to Scenario Testing”, June
2003

[20] Bernie Gauf, Elfriede Dustin, “The Case for Automated Software
Testing”

