
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280014125

Simplifying parallel implementation of algorithms on Hadoop with Pig Latin

Conference Paper · April 2015

CITATIONS

5
READS

228

5 authors, including:

Some of the authors of this publication are also working on these related projects:

LDA: Linked Data Authorization View project

AAL technologies View project

Eftim Zdravevski

Ss. Cyril and Methodius University in Skopje

157 PUBLICATIONS   1,437 CITATIONS   

SEE PROFILE

Petre Lameski

Ss. Cyril and Methodius University in Skopje

102 PUBLICATIONS   930 CITATIONS   

SEE PROFILE

Andrea Kulakov

Ss. Cyril and Methodius University in Skopje Macedonia

85 PUBLICATIONS   763 CITATIONS   

SEE PROFILE

Sonja Filiposka

Ss. Cyril and Methodius University in Skopje

139 PUBLICATIONS   745 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Eftim Zdravevski on 13 July 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/280014125_Simplifying_parallel_implementation_of_algorithms_on_Hadoop_with_Pig_Latin?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/280014125_Simplifying_parallel_implementation_of_algorithms_on_Hadoop_with_Pig_Latin?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LDA-Linked-Data-Authorization?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AAL-technologies?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Kulakov?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-2f479c543708847729a69e7bca72ed23-XXX&enrichSource=Y292ZXJQYWdlOzI4MDAxNDEyNTtBUzoyNTA3NjE4NTg3NzcwODhAMTQzNjc5NzY5NDcxNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Simplifying parallel implementation of algorithms on
Hadoop with Pig Latin

Eftim Zdravevski
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: eftim.zdravevski@finki.ukim.mk

Petre Lameski
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: petre.lameski@finki.ukim.mk

Andrea Kulakov
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: andrea.kulakov@finki.ukim.mk

Sonja Filiposka
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: sonja.filiposka@finki.ukim.mk

Dimitar Trajanov
Faculty of Computer Science and Engineering

Ss.Cyril and Methodius University, Skopje, Macedonia
Email: dimitar.trajanov@finki.ukim.mk

Abstract—In this paper we present a general technique for
parallelizing regular algorithms with the tools the Hadoop ecosys-
tem offers: MapReduce, HDFS, HBase and Pig. This framework
can be applied for parallelizing algorithms for feature selection,
clustering, machine learning etc. It consists of several steps: load
the datasets in HDFS, apply some transformations if they are
needed, store the datasets in HBase, and implement the algorithm
in Pig with the help of User Defined Functions.

Keywords—Hadoop, MapReduce, HBase, Pig, parallel algo-
rithms, distributed algorithms

I. INTRODUCTION

IN the recent years companies, organizations and govern-
ments collect, process and analyze enormous volumes of

data. For most of them the data is not only generated from
their normal work, rather it a prerequisite for their success. As
a result many companies have followed different ideas on how
cope with the Big Data challenge. One idea was to scale-up
hardware so it has more processing power that can handles
the larger volumes of data, and it has proven to work up to
a certain point. However, after this point is reached, this idea
can not work. That lead to the other idea of distributing the
computation and data storage to clusters. Even though this is
not so new idea in general, it was not until about ten years that
it started to gain popularity. Inspired by Google’s approach
described in the 2004 MapReduce [1] and 2006 Big Table
[2], many other companies and open-source projects followed
similar pathways developing different distributed systems. One
of the most popular such systems is Apache Hadoop. It is
open-source software that contains a set of algorithms for
distributed processing, scheduling and storage of large datasets
on computer clusters. It is well established framework and
Hadoop Wiki [3] lists some of its prominent users like Yahoo,
Facebook, Ebay, Adobe etc.

This work was partially financed by the Faculty of Computer Science and
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The MapReduce programming paradigm [1] [4] is essen-
tial to the distributed computation and storage that Hadoop
achieves. It consists of two phases: map and reduce. The first
phase, map, threats the data processing problems as embarrass-
ingly parallel by splitting the data into distinct subsets that can
be processed in parallel. The reduce phase is second and final
aggregates the output from the map phase and produces the
final result. In other words, the map procedure can perform
variety of operations like: reading, projecting, filtering and
sorting data. The output from this phase is an intermediate
result usually comprised of a list of keys and values. These
are mandatory for the reduce phase. Hadoop makes sure that
the output gets to the reduce procedures in proper order so
it can perform some summary or aggregate operation. Even
though the MapReduce model is fairly restricted, its simplicity
is making it very suitable and efficient for extremely large-
scale implementations across thousands of nodes.

Hadoop with its different services schedules, distributes, or-
chestrates and monitors communications, data transfers, while
providing redundancy and fault tolerance. There are many
services (i.e. subsystems) in Hadoop that aid accomplishing
the previous goals, but three of them are most notable: YARN
(MapReduce2), HDFS and HBase [5] [6] [7].

The fundamental idea of YARN (i.e. Yet Another Resource
Negotiator) [8] is to take care of resource management and
job scheduling/monitoring, by splitting these responsibilities
into separate daemons: a global ResourceManager and per-
application ApplicationMaster. The ResourceManager is the
ultimate authority that arbitrates resources among all the appli-
cations in the system. The per-application ApplicationMaster
is responsible for negotiating resources from the Resource-
Manager and working with the NodeManagers to execute
and monitor the component tasks. In other words, YARN is
responsible for allocating resources to the MapReduce jobs,
distributing them to the most appropriate nodes, etc.

Hadoop Distributed File System (HDFS) [9] is a file



system that provides scalable, fault-tolerant, distributed stor-
age system that works closely with MapReduce which was
designed to span large clusters of commodity servers. The
combined resources of the servers within the cluster can
easily grow with the demand. An HDFS cluster is comprised
of a NameNode which manages the cluster metadata and
DataNodes that store the data. The file content is split into
large blocks (typically 128 megabytes), and each block of the
file is independently replicated at multiple DataNodes. The
blocks are stored on the local file system on the DataNodes.

HBase is an open source, non-relational, distributed
database modeled after Google’s BigTable. It runs on top of
HDFS (Hadoop Distributed Filesystem), providing BigTable-
like capabilities for Hadoop [10] [11] [12]. In other words,
it provides a fault-tolerant way of storing large quantities of
sparse data. HBase is a NoSQL (Not Only SQL) database
and is not a direct replacement for a classic Relational SQL
databases [13]. Unlike traditional databases where normal-
ization of data and splitting it into related tables is the sub-
stance of the design, designing HBase tables takes a different
approach which analyzes the usage patterns. Motivations for
this approach include simplicity of design, horizontal scaling,
and finer control over availability. The data structures used
by NoSQL databases, including HBase, differ from those
used in relational databases, making some operations faster in
NoSQL and others faster in relational databases. The particular
suitability of a given NoSQL database depends on the problem
it must solve. Tables in HBase can serve as the input and
output for MapReduce jobs run in Hadoop. In the parlance of
Eric Brewers CAP theorem, HBase is a CP type system (i.e.
Consistent and Partition tolerant) [14].

Because of its simplicity the MapReduce programming
model has become popular. By some users this model is
preferred over the traditional SQL which is a high-level
declarative approach. Be that as it may, the extreme sim-
plicity of MapReduce leads to much low-level hacking to
deal with the many-step, branching dataflows that arise in
practice. Furthermore, users must repeatedly code standard
operations such as join by hand. These practices increase
development time, introduce bugs, harm readability, and may
obstruct optimizations [15]. A group at Yahoo motivated by
these repeatable tasks on daily basis, has developed a scripting
language called Pig Latin. Pig is a high-level dataflow system
that is a compromise between SQL and MapReduce. Pig
offers constructs for data manipulation similar to SQL, which
can be integrated in an explicit dataflow. Pig programs are
compiled into sequences of MapReduce jobs, and executed in
the Hadoop MapReduce environment [16].

II. RELATED WORK

This section describes some of the most recent work on
parallelizing different algorithms with MapReduce.

The authors in [18] address the problem of efficient feature
evaluation for logistic regression on very large data sets.
Here they present a new forward feature selection heuristic
that ranks features by their estimated effect on the resulting
model’s performance. They test the method on already avail-
able datasets from UCI, but also generate artificial datasets for
which they know the logistic regression coefficients. They use
that to evaluate the selected features.

By using the MapReduce paradigm in [21] a data intensive
parallel feature selection method is proposed. In each map
node, a method is used to calculate the mutual information
and combinatory contribution degree is used to determine the
number of selected features.

In [26] an implementation based on the MapReduce
programming model of Naive Bayes is proposed. During the
map phase all counts needed for calculating the conditional
probabilities are emitted, and during the reduce phase they are
aggregated.

A parallel implementation of the SVM algorithm for
scalable spam filtering using MaprReduce is proposed in
[22]. By distributing, processing and optimizing the subsets
of the training data across multiple participating nodes, the
distributed SVM reduces the training time significantly.

In [23] the authors propose a method for reducing the
dataset to a small but representative subset that can be later
on used for faster machine learning. Also here the speedup is
being calculated against a cluster with 1 node or with minimal
number of nodes so that the computation finishes in reasonable
time.

In [24] an approach based on MapReduce for distributed
column subset selection is proposed. In this approach each
node has access to a random subset of features.

A wrapper approach for parallel feature selection is pro-
posed in [25]. Here with features are added to the selected set
if after their addition, the performance of the classifier does
not degrade. Then in a second phase from the subset obtained
in the previous step, features are removed if their discarding
does not degrade the classifier performance.

III. FRAMEWORK DESIGN

Writing parallel computer programs is more difficult than
writing sequential ones, because parallelization introduces
several new types of potential software bugs of which most
common are race conditions, communication and synchro-
nization between the different subtasks. Choosing Hadoop as
environment for parallelization of algorithms overcomes many
of those challenges without needing the programmer to put
much effort for solving those kinds of challenges.

The framework that we propose in this paper consists of
several phases, as shown on Fig. 1, and each of them is
described in the following subsections.

Fig. 1. Data flow phases based on MapReduce and Hadoop

A. Load data into HDFS

This is the first and most simple phase. This phase should
be performed once or multiple times, depending on how the
dataset is structured. The most common formats for datasets
are:



• CSV (comma separated values). This format is usually
used to store dense datasets.

• ARFF (Attribute-Relation File Format). Also used to
store dense datasets.

• EAV (Entity Attribute Value). Used to store sparse
matrices that have a lot of zeros and some non-zero
elements.

If the dataset is only one file then this it will be copied from
the Linux File System to HDFS using a simple command. This
means that for this step cannot have parallelism. However if
the dataset is dispersed into multiple files, then all of them
can be copied simultaneously to HDFS. Be that as it may, this
step usually is very fast compared to the following steps for
machine learning, so its parallelization is not necessary at all.

B. Transformation and loading data into HBase

After the previous step III-A is finished the dataset files
reside on HDFS. As it is extensively described in [9], each file
in HDFS is replicated across several nodes for reliability. A
typical file in HDFS is gigabytes to terabytes in size, splitted
in blocks of 128 MB by default. If the files are too small than
that could degrade the performance of the system and limit
the level of parallelism. Map tasks usually process a block of
input at a time. If the file is very small and there are a lot
of them, then each map task processes very little input, and
there are a lot more map tasks, each of which imposes extra
bookkeeping overhead. Ideally the dataset that we have loaded
to HDFS is one large file dispersed on multiple blocks so while
we load it, transform it and store it in HBase we can have
greater parallelism. Nevertheless, this step again is usually
very fast especially compared to the step that performs the
actual machine learning algorithm, so we do not recommend
to spend too much time on optimizing the file sizes for better
parallelism.

Even though we can achieve parallelism while processing
files stored on HDFS, the control of degree of parallelism
is difficult, more involved and at very low-level. On the
other hand, HBase offers many other services built on top
of HDFS, among which is a much better control of the
degree of parallelism. This is due to the fact that the data
in HBase is stored in a structured manner, while having
various mechanisms that simplify random reads and writes
from rows and columns. Namely, HBase tables are divided
into potentially many regions, while one or more regions are
serviced by a region server. The tables can be horizontally
and vertically segmented while they are physically stored in
HBase. Because many machine learning applications access
the data by rows, in this paper we will continue to discuss
only horizontal segmentation. As HBase was designed with
very large tables in mind, a common use case is the following.
A table at creation has only one region, which is serviced by
one region server (a physical node in the Hadoop cluster).
When this table is loaded with data it gets bigger and at some
point it will become too big, so HBase will split its region
into two regions. Then the new region will be assigned to the
same region server or can be moved to another region server.
The default splitting threshold is 10 GB. There are numerous
reasons why HBase was designed that way, and we will not
go into details about that. From parallelization perspective,

this can pose a challenge, because for the automatic splits
there are no guarantees that every region will contain equal
amount of data, when are the splits going to occur exactly,
are the regions going to be served by different region servers
(nodes) etc. Further more, if one is using Hadoop for research
purposes only then the dataset may not be that large, thus
never overcoming the threshold for splitting. To overcome this
challenge we can pre-split the tables on creation. This in turn
means that the table can be configured at creation time to be
stored on as many-regions as needed. Usually the number of
regions is a multiple of the number of HBase region servers.
The logic for having more region servers than acutal nodes is
because the nodes are multi-core machines, so different threads
on the same node can service different regions.

Before loading the dataset in HBase, we need to define
the table structure and create it. Column names and data types
are provided when storing data in each row, so at creation
time we need to only specify a table name and a column
family. There are some advanced configuration features that
can be specified, but they are not topic of this discussion. Be
that as it may, there is one very important decision that we
need to make before loading data in the table. Because HBase
tables, unlike SQL tables, cannot have secondary indexes, the
primary key (row key) needs to be designed according to the
usage patterns of the table. There are many considerations
when designing the row key and they are very important for
production use of HBase tables. However, for scientific use
and for parallelizing machine learning algorithms, we need
a simple design that allows uniform data distribution across
nodes. In most scientific datasets the data instances (i.e. rows)
do not have ids for their instances, or if they do they are not
used for the actual machine learning. Nevertheless, in order
to store a row in a HBase table, it needs a row key. For flat
flies like CSV, ARFF the row key can be the line number
of the instance. However, sequential row keys are very bad
choice for HBase tables because the inserts will always be
on the last region, therefore having no parallelism during the
load, a problem called Region Server hotspotting. There are
multiple ways of overcoming this problem, and one of them is
a technique called salting. With this technique each sequential
id is salts row keys with a prefix. The prefix is usually the
modulo number between the original sequential id and the
number of regions. Even though, this is very important topic,
the step of loading the datasets in HBase is not the primary
field of interest in this paper.

Once the dataset files are loaded into HDFS we need to
transform them if needed and store them in HBase. If we have
totally N rows in the dataset, and M regions, then we would
like to distribute the data uniformly so each region gets N/M
rows. This in turn means that we need to specify M − 1 split
points when creating the table. If we use sequential ids for
the row key (like the line number in the file), than these split
points would be: N/M, 2N/M, 3N/M, ..., (M − 1)N/M . If
we use a more sophisticated row key design, then the split
points should reflect that design. For instance, if we take the
modulo number of the id and the number of regions, then
each region would get almost the same number of rows. This
design of the row key allows fast random reads and writes, and
additionally it facilitates addition of new data to the table at
a later time without needing to redesign the table for equally
dispersed load across regions. The following example shows



how a table can be pre-splitted on creation. The row key design
is described with the function in listing 1. It returns a tuple
in which the first element is the padded modulo number and
the second part is the padded sequential id.

1 (pad(seq_id % num_regions), pad(seq_id))

Listing 1. Row key design

The numbers are padded with zeros so that they are
lexicographically sorted. For instance if the ids vary from 1
to 100000 and we have 5 regions, then the Id 123 would be
encoded to the following row key: 123%5 = 3, pad(3) =
3, pad(123) = 000123 => row key = (3, 000123). The
create statement for a table that has one column family ’r’
and has 4 split points is shown in listing 2.

1 create ’dataset5’, {NAME=>’r’,
COMPRESSION=>’gz’, VERSIONS=>’1’},

2 {SPLITS=>[ "(1,", "(2,", "(3,", "(4," ]}

Listing 2. Crating HBase table with pre-split regions

Once the HBase table that will contain the dataset is
created with appropriate split points for even data distribution
across the cluster, the data can be loaded. One can write pure
MapReduce jobs in Java or Python. If we choose that path, then
we need to write a separate map and reduce function for each
task. However, by using a scripting language called Pig Latin
[15] we can write scripts from a higher-level perspective. These
Pig scripts generate MapReduce tasks in the background so the
programming effort is simplified and the development time is
reduced. The downside of using Pig is that when Pig scripts
are compiled into MapReduce jobs, there is some overhead but
for longer running MapReduce tasks is insignificant because
it adds up to 1 minute to the executing time. The listing 3
shows how we can load EAV files with Pig Latin. All variables
starting with $ are parameters that are passed to the script on
execution time.

1 register ’$udf_path’ using jython as
paddingUDF;

2 eav_data = LOAD ’$hdfs_data_path’ USING
PigStorage(’,’) as (id:int, feature:int,
value:int);

3 eav_data_pad = FOREACH eav_data GENERATE
4 paddingUDF.generate_rowkey(id,

$padding_digits_id, $modulo_number) as
idPad,

5 paddingUDF.pad_number(feature,
$padding_digits_feature) as featurePad,

6 value;
7 eav_data_final = FOREACH eav_data_pad GENERATE
8 idPad,
9 [featurePad,value] as values;

10 STORE eav_data_final INTO ’$table_dataset’
USING

11 org.apache.pig.backend.hadoop.
hbase.HBaseStorage(’r:*’);

Listing 3. Loading EAV files in HBase with Pig

The above script when compiled into MapReduce jobs
would have only a map phase which will read the data from

the HDFS file and store it in HBase. Because there is no
grouping of keys needed, a reduce phase will not be generated.
It uses two user-defined functions (UDFs) that are written in
Python, but in order to be compatible with Pig and the rest
of Hadoop, are compiled into Java byte code using Jython.
The generate rowkey function, shown in listing 4 calculates
the row key according to the design shown in listing 1. With
the function pad number, shown in listing 5, the numbers are
padded with zeros.

1 @outputSchema("padded:chararray")
2 def pad_number(number, numZeros):
3 f = ’%0’ + str(int(numZeros)) + ’d’
4 paddedNumber = f % int(number)
5 return paddedNumber

Listing 4. Python UDF for generating row keys

1 @outputSchema("rowkey:(id_mod:chararray ,
id:int)")

2 def generate_rowkey(id, id_num_digits,
mod_number, mod_number_digits=3):

3 prefix = int(id) % int(mod_number)
4 return (pad_number(prefix,

mod_number_digits), pad_number(id,
id_num_digits))

Listing 5. Python UDF for padding numbers with zeros

During this step we can add various methods for data
preprocessing like discretization, transformation and other
methods that rely only on the values. But if the transformations
need something like normalization that need the mean value
for the whole dataset, then a separate step would be needed.

C. Processing HBase tables

After the dataset is loaded in a HBase table we can
continue implementing machine learning algorithms. In gen-
eral, this phase can be comprised of several substeps of data
processing, depending on the nature of the algorithm that
is being implemented. In this subsection we show how the
mean value of each feature can be calculated. This is a simple
task, but nevertheless, it illustrates this step of the framework.
Listing 6 shows the Pig Latin script that calculates mean
values. All parameters that start with $ can be passed to
Pig script when invoking it. Such parameters are the table
names, number of features, index of the class value, number
of padding digits etc. Lines 2 through 6 load the data from the
table ’$table dataset’. In line 3 ’r:*’ denotes that all columns
in the column family r will be loaded and line 6 denotes
that they will be available as a dictionary (map) in the Pig
script. Then at line 8 the UDF expandFeatures is invoked
which accepts these arguments: r -the dictionary (map) of pairs
(featureIndexPadded, featureValue), the number of features in
the dataset $num features, maximum number of padding digits
$num features digits, and the index of the class value $label.
The UDF code is shown in listing 7. It will process the passed
dictionary of feature indexes and values and will generate a list
of triplets (featureIndex, featureValue, class). The great thing
about HBase is that it doesn’t need to store the empty features
from the dataset and each row can have different number of



columns. However when a row is loaded, like in the UDF
expandFeatures, we can generate the zero-valued cells so they
can be used for calculation of the mean value of the feature.
In lines 10 and 11 the rows are grouped by feature index and
we calculate the average of their values. Lines 15 through 17
store the mean values in a table that can be created in a similar
manner as explained in III-A. We could easily export the
calculated data in CSV files to HDFS.

What happens in the background for the script 6, is very
peculiar. Pig will determine the number of regions of the table
’$table dataset’ and it will start that number of map tasks.
The number of reduce tasks is by default 1, but this can
be also manually specified and does not depend of the table
structures. During the map phase happen these statements:
loading of data (lines 2-6), expanding each row to a list of
tuples, merging (union) the list of tuples generated from each
row into a final list (the FLATTEN operator in line 8) and
it will emit the grouping key featureIndexPadded in line 10.
Then in the reduce phase the rows will be grouped by the
featureIndexPadded key, the mean value will be calculated
(lines 12-14) and finally the result will be stored in the
table $table feature mean value. In this table the row key is
featureIndexPadded and the mean value is stored in column
family r and column featureValueMean. We can easily change
this statement to export the results in a CSV file to HDFS.

1 register ’$udf_path’ using jython as
paddingUDF;

2 dataset = LOAD ’$table_dataset’ USING
org.apache.pig.backend.hadoop.

3 hbase.HBaseStorage(’r:*’,
4 ’-loadKey=true’) AS
5 (rowkey:tuple(prefix_padded:chararray,

id_padded:chararray, id:int),
6 r:map[]);
7 dataset_expanded = FOREACH dataset GENERATE
8 FLATTEN(paddingUDF.expandFeatures(r,

$num_features, $num_features_digits,
’$label’));

9

10 feature_value_class_group = GROUP
dataset_expanded BY (featureIndexPadded);

11

12 feature_value_class_mean = FOREACH
feature_value_class_group GENERATE

13 group as featureIndexPadded,
14 AVG(dataset_expanded.featureValue) as

featureValueMean:double;
15 STORE feature_value_class_counts INTO

’$table_feature_mean_value’ USING
16 org.apache.pig.backend.hadoop.
17 hbase.HBaseStorage(’r:featureValueMean’);

Listing 6. Pig script for calculating mean value of features

The code in listing 7 shows how UDF expandFeatures is
implemented. Lines 1 and 2 describe the output format of the
data that is being returned. In this the function will return
a bag (Pig Latin equivalent of a unordered list) of tuples.
Each tuple is a triplet containing the featureIndex (padded
with zeros), the featureValue and the class. For the calculation
of the mean values of the features the class is not needed,
but for many other algorithms and metrics it will be. Line 5

calls a function for decoding the input arguments from byte
representation to appropriate types - string and dictionary. The
in the loop in lines 8 through 11 from the dictionary of pairs
feature index and feature value, we generate a list of triplets,
which the function returns at line 12. The interesting thing
that this function does is that from a row of the HBase table it
generates a list of tuples, so in a way it’s transposing a row into
multiple rows with one composite column (i.e. the triplets).
Then in the Pig script in listing 6, with the FLATTEN operator
merges those rows into a common set of rows of triplets, thus
transposing the whole dataset. Having all features, values and
class as triplets in separate rows is useful and allows us to
leverage the SQL-like capabilities of Pig Latin. Further on in
separate scripts we can normalize the values of the dataset
by joining to the set of mean values and doing appropriate
normalizations.

1 @outputSchema("feature_value_class:bag{
2 t:(featureIndexPadded:chararray ,

featureValue:double, class:chararray)}")
3 def expandFeatures(featureValuePairs,

numFeatures, numDigits, classKey):
4 currentClass =

featureValuePairs.get(classKey, 0)
5 (currentClassFinal,

featureValuePairsFinal) =
decodeBytes(currentClass,
featureValuePairs)

6

7 feature_value_class = []
8 for featureIndex in range(1,

int(numFeatures) + 1):
9 featureIndexPadded =

pad_number(featureIndex, numDigits)
10 featureValue =

featureValuePairsFinal.get(
featureIndexPadded, float(0))

11 feature_value_class.append(
(featureIndexPadded, featureValue,
currentClassFinal))

12 return feature_value_class

Listing 7. UDF for expanding a HBase row into a list of tuples

D. Exporting results

After the main work is performed during the previous step
III-C, the results need to be exported. Using Pig Latin, the
output from the Pig scripts can be stored in HDFS files or
HBase tables. In the Hadoop ecosystem there are advanced
services like Flume or Sqoop that facilitate connectivity with
RESTful web services, various SQL databases etc. The most
simple way is however to export the results in HDFS files in a
common format like CSV, and then to export the HDFS files
to the Linux file system.

IV. CONCLUSION AND FUTURE WORK

In this paper we have proposed a framework for paral-
lelization of machine learning algorithms by using the Apache
Hadoop platform including its services HDFS, Yarn MapRe-
duce and HBase, and Pig Latin as a scripting language. We
have demonstrated how can we manually set the degree of
parallelism by pre-splitting the HBase tables so they have



optimal number of regions and even data distribution across
regions. We have also provided exemplary user-defined func-
tions written in Python for transforming and formatting the
data while it’s being loaded, and also a way to efficiently
decode the sparse matrix for which we only keep the non-zero
elements. We have provided an exemplary script that calculates
the mean values of each feature.

In order to affirm the proposed framework, we will im-
plement various machine learning algorithms with it, measure
the impact of the parallelization with different cluster con-
figurations on different datasets. The performance should be
evaluated in terms of speedup vs the sequential versions of the
algorithms.
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