
computers

Review

A Systematic Investigation of Models for Color Image
Processing in Wound Size Estimation

Filipe Ferreira 1, Ivan Miguel Pires 2,3,4,* , Mónica Costa 1 , Vasco Ponciano 1,5 , Nuno M. Garcia 2 ,
Eftim Zdravevski 6 , Ivan Chorbev 6 and Martin Mihajlov 7

����������
�������

Citation: Ferreira, F.; Pires, I.M.;

Costa, M.; Ponciano, V.; Garcia, N.M.;

Zdravevski, E.; Chorbev, I.; Mihajlov,

M. A Systematic Investigation of

Models for Color Image Processing in

Wound Size Estimation. Computers

2021, 10, 43. https://doi.org/

10.3390/computers10040043

Academic Editor: Antonio Celesti

Received: 5 March 2021

Accepted: 30 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 R&D Unit in Digital Services, Applications and Content, Polytechnic Institute of Castelo Branco,
6000-767 Castelo Branco, Portugal; filipemiguel2801@gmail.com (F.F.); monicac@ipcb.pt (M.C.);
vasco.ponciano@ipcbcampus.pt (V.P.)

2 Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal; ngarcia@di.ubi.pt
3 Computer Science Department, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
4 UICISA: E Research Centre, School of Health, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
5 Global Delivery Center (GDC), Altranportugal, 1990-096 Lisbon, Portugal
6 Faculty of Computer Science and Engineering, University Ss Cyril and Methodius,

1000 Skopje, North Macedonia; eftim.zdravevski@finki.ukim.mk (E.Z.); ivan.chorbev@finki.ukim.mk (I.C.)
7 Laboratory for Open Systems and Networks, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; martin@e5.ijs.si
* Correspondence: impires@it.ubi.pt; Tel.: +351-966-379-785

Abstract: In recent years, research in tracking and assessing wound severity using computerized
image processing has increased. With the emergence of mobile devices, powerful functionalities
and processing capabilities have provided multiple non-invasive wound evaluation opportunities
in both clinical and non-clinical settings. With current imaging technologies, objective and reliable
techniques provide qualitative information that can be further processed to provide quantitative
information on the size, structure, and color characteristics of wounds. These efficient image analysis
algorithms help determine the injury features and the progress of healing in a short time. This paper
presents a systematic investigation of articles that specifically address the measurement of wounds’
sizes with image processing techniques, promoting the connection between computer science and
health. Of the 208 studies identified by searching electronic databases, 20 were included in the review.
From the perspective of image processing color models, the most dominant model was the hue,
saturation, and value (HSV) color space. We proposed that a method for measuring the wound area
must implement different stages, including conversion to grayscale for further implementation of the
threshold and a segmentation method to measure the wound area as the number of pixels for further
conversion to metric units. Regarding devices, mobile technology is shown to have reached the level
of reliable accuracy.

Keywords: wound measurement; image processing; mobile devices; medicine; size; technology

1. Introduction

The treatment, care, and prevention of wounds represent high costs for health ser-
vices [1]. In [2], Landi et al. showed that mortality rates associated with specific wound
pathologies have increased in the last few years. This has significant consequences for
health, especially for populations at risk, such as older adults.

Accurate wound assessment is critical to determine the correct diagnosis and assign
treatment. Ordinarily, this evaluation is performed by visual inspection, using standardized
scales or indexes. Nevertheless, this approach has been shown to be an inaccurate method
to deal with wound diagnosis [3,4].

Information and communications technology (ICT) advancements, particularly in
mobile technology, have led to new applications in health and medicine [5,6]. Mobile
development has led to various applications in health [7], such as teaching and learning
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in clinical medicine [8], documenting medical findings using eyewear devices [9], and
applying markerless augmented reality in forensic medicine [10], among others. Within
this scope, a specific class of novel applications related to wound analysis has emerged
that leverages the capabilities of mobile devices’ cameras. By utilizing the continuous
improvements in processing power and battery capacity, these applications are used to
assess and evaluate the wound’s different characteristics.

Novel approaches in wound diagnosis are critical, as wound healing can be highly
demanding in many diseases such as diabetes, tuberculosis, allergies, or ulcers [11,12].
The challenges of working with wound images lie in their very heterogeneous colorations
related to the patient’s skin color and anomalies such as erythema and striations. Addition-
ally, the tissue segmentation process’s complexity is increased further, as the boundaries
between different tissue regions are often vague and highly irregular. Hence, image pro-
cessing and computational intelligence techniques have been applied in several studies to
address various aspects of wound diagnosis.

The main focus of wound-related approaches is on non-intrusive or less-intrusive
telematic procedures for measurement and monitoring [13]. In [14], Pal et al. proposed
early detection and monitoring of chronic wounds using low-cost, omniphobic, paper-
based smart bandages. Alternatively, the authors proposed predicting and monitoring the
chronic dermal wounds’ therapeutic responses [15]. Another class of problems is related to
wound area identification. It has been tackled with different techniques such as contour
detection with histogram segmentation [16], active contours modeling [17], clustering
approaches [18], and skin texture models [19]. It is further extended to the classification
and triage of identified wounds [20]. The applications rely on optical character recognition
to characterize and measure injuries, depending on multispectral images capturing the
color, temperature, and geometry of the wounds [21].

With the exponential growth of smartphone and tablet devices, these processes have
become even more reliable and agile, especially in techniques that utilize mobile devices
for wound measurement [22] and wound area assessment [23]. Furthermore, in [24], Gupta
presented a method for providing real-time mobile wound segmentation and management.
Additionally, mobile devices have been used for performing 3D wound imaging [25] or
using machine learning within a pipeline relying on mobile images [26]. Within the context
of machine learning, deep learning approaches for image segmentation have been proven
to be successful [27] and versatile, as well as applicable to different learning tasks with
adaptable learning rates [28].

It is essential to perform research in which the color model qualities of image process-
ing techniques are evaluated to enable adequate wound size estimation methods in the
future. Furthermore, it would provide information on whether the particular technique
and subsequent results can be trusted. Although other systematic reviews were performed
previously, these reviews did not consider the application of image processing techniques
in wound size estimation. Therefore, this review aims to analyze the technological ad-
vances and the dissemination of new solutions that allow for the automatic identification
of wound sizes using image processing techniques. In addition, mathematical formulas
enable establishing a border between the healthy skin and the part that contains the wound
area. The main contribution is providing a summary and best evidence synthesis on each
technique’s properties by presenting different levels of research.

The structure of this paper follows with Section 2, where we present the strategy
used to conduct this systematic review, the description of the research questions, and
the literature selection criteria. Subsequently, in Section 3, we present the results with a
detailed discussion and classification of the retrieved studies. The results are discussed
and placed within Section 4 before concluding the paper with Section 5.
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2. Methods
2.1. Research Questions

This review’s leading research questions were the following: (RQ1) Which are the
techniques that can be applied in a mobile application to measure a wound’s area? (RQ2)
What are the most significant features to define a method for the automatic calculation
of a wound’s size? (RQ3) What are the benefits that this kind of study can bring to the
medical profession?

2.2. Inclusion Criteria

The inclusion criteria of studies and assessing methods for this review were as fol-
lows: (1) studies that focus on measuring the size of a wound; (2) studies using a mobile
application and image processing to detect and calculate the area of a wound; (3) studies
that present methods of segmentation and the use of color to identify the area of a wound;
(4) studies that seek to present the medical evolution for the detection of features from a
chronic wound through a photo; (5) studies that utilize at least motion or magnetic sensors;
(6) studies that were published between 2010 and 2020; and (7) studies written in English.

2.3. Search Strategy

The team searched for studies meeting the inclusion criteria on the following electronic
databases: IEEE Xplore, ScienceDirect, Google Scholar, and PubMed Central. The research
terms used to write this systematic review were as follows: wound, measurement, size,
image processing, and mobile device. Four reviewers independently evaluated every
study, and their suitability was determined with all parties’ agreement. The studies were
examined to identify the different approaches relative to measuring a wound’s size using
mobile devices and image processing methods.

2.4. Extraction of Study Characteristics

After examining the different studies, the following data were presented in Table 1:
year of publication, population, purpose, devices, methods, and analyzed diseases. As
some studies did not show some data, we contacted the different corresponding authors
of each study by email, asking about the implemented methods. The contact with the
various authors was also related to the source code’s request in the different studies. All of
the studies were analyzed to measure the different methods used for the measurement of
wound size.
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Table 1. Study analysis.

Paper Year of Publication Population Purpose of the Study Devices Dataset Availability Methods Diseases

Casal-Guisande et al.
[29] 2020 N/A

Monitor and analyze
the chronic wound
treatment process

Desktop Not available
Segmentation,

threshold, color
detection

Pressure ulcers

Zahia et al. [30] 2020 N/A

Measure the depth,
area, volume, main
axis, and secondary

axis of chronic wounds

Smartphone
MS COCO [31] and

ImageNet [32]
datasets

Mask recurrent
convolutional neural

networks (RCNN)
model

Chronic wounds

Cazzolato et al. [33] 2020 People with chronic
wounds

Segment and measure
skin ulcers Smartphone Datasets from [34,35]

Rule-based ulcer
segmentation and

measurement
(URule) framework

Pressure ulcers

Wu et al. [36] 2019 Voluntary people
Detection of wounds

with image processing
techniques

Smartphone Not available
Segmentation,

threshold, color
detection

N/A

Liu et al. [37] 2019 54 patients
Detection and

measurement of the
wound area

Smartphone Available by request
Least squares

conformal map
(LSCM) algorithm

N/A

Huang et al. [38] 2018 N/A Measurement of
wound size Smartphone Not available

Enhance local
contrast (CLAHE)

algorithm
Chronic wounds

Naraghi et al. [39] 2018 People with
tuberculosis

Detection of wounds in
people with
tuberculosis

Smartphone Not available Photogrammetric
reconstruction

Tuberculosis
infection

Chen et al. [40] 2018 N/A Evaluation of a
surgical wound Smartphone Dataset available in

[41]

Segmentation,
threshold, color

detection
Surgical wounds

Gupta et al. [24] 2017 20 wound images

Mobile system for the
segmentation and
identification of a

wound

Smartphone Not available
Segmentation,

threshold, color
detection

Chronic wounds
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Table 1. Cont.

Paper Year of Publication Population Purpose of the Study Devices Dataset Availability Methods Diseases

Sirazitdinova et al.
[25] 2017 N/A Automatic wound

reconstruction Smartphone Not available Color correction,
tissue segmentation Skin Lesions

Tang et al. [42] 2017 N/A Analysis of the
evolution of wounds Smartphone Not available Scaling method Chronic wounds

Zapirain et al. [43] 2017 24 clinical images of
pressure ulcers

Segmentation and
identification of
chronic wounds

Desktop Not publicly
available

Linear combination
of discrete gaussians

(LCDG) model
Chronic wounds

Dendere et al. [44] 2017 10 subjects Measure the size of a
wound Smartphone Not available Tuberculin skin test

(TST)
Tuberculosis

infection

Yee et al. [45] 2016 N/A
Measurement, tracking,

and diagnosis of
wounds

Smartphone Not available Seymour wound
model 0910 Chronic wounds

Satheesha et al. [46] 2015 People with skin
cancer

Segmentation and
analysis techniques of

wounds for the
detection of the shape

Smartphone Not available

PH2 dermoscopy
image information,

D-quick Fourier
rework

Melanoma

Cheung et al. [47] 2015 N/A
Diagnosis and

treatment of chronic
wounds

Smartphone Not available Photogrammetric
reconstruction Melanoma

Pires et al. [23] 2015 N/A Calculation of the
wound area Desktop Not available

Segmentation,
threshold, color

detection
N/A

Bulan et al. [48] 2014 36 patients with
allergic diseases

Identification of a
wound in images Desktop Not available Linear discriminant

analysis (LDA) Allergic diseases

Hettiarachchi et al.
[22] 2013 20 patients

Measurement of
wound area with

segmentation
techniques

Smartphone Not available
Segmentation,

threshold, color
detection

Chronic wounds

Kanade et al. [49] 2010 Wide range of people
Restore, detect, and

track cells and cellular
tissues

Desktop Not available HCRF model N/A
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3. Results

As illustrated in Figure 1, our review identified 208 articles that included nine dupli-
cates, which were removed. The remaining 199 studies were evaluated in terms of title,
abstract, and keywords, resulting in the exclusion of 161 papers. The remaining 38 studies
were analyzed in terms of the purpose of the study. Full-text evaluation was performed,
resulting in 18 studies that did not match the inclusion criteria. The remaining 20 papers
were included in the qualitative synthesis and quantitative synthesis. In summary, we
examined 20 scientific articles.
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Figure 1. Flow diagram of the identification and inclusion of papers.

To analyze the different studies and get more relevant information regarding wound
measurement in the different studies, the interested reader must read the original works.
Based on the results presented in Table 1, the analyzed studies were published between
2010 and 2020, reporting three studies in 2020 (15%), two studies in 2019 (10%), three
studies in 2018 (15%), five studies in 2017 (25%), one study in 2015 (5%), three studies in
2016 (15%), three studies in 2015 (15%), one study in 2014 (5%), one study in 2013 (5%),
and one study in 2010 (5%). Regarding the studies that reported the number of images
used in the study, the average reported was approximately 27 images. For the devices used,
five studies used desktop computers (25%), and fifteen studies used mobile devices (75%).
None of the studies published a proprietary dataset regarding the dataset availability of
the images used for the different experiments. Three studies (15%) used datasets already
published in other studies, as mentioned in Table 1. The studies considered different types
of diseases that corresponded to the different types of wounds. All studies referenced
in Table 1 used supervised learning and were model-based approaches. The presented
analyses only summarize the results of each research paper. The interested readers must
read the full text for more detailed information.

Casal-Guisande et al. [29] analyzed pressure ulcers to measure the size and evolution
of wounds using the hue, saturation, and value (HSV) model. The population studied
had chronic wounds. The proposed system used MATLAB software (R2020a, MathWorks’,
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Natick, MA, USA), which implemented different image processing algorithms as a decision
support system with concurrent fuzzy inference engines. After analyzing the various
points, the decision factor’s growth was reversed, reporting that the corrections prevented
abnormal behaviors. For the measurement of the wound, the steps performed were
selecting the saturation plan, the inversion and filtering of saturation values, and the
performance of segmentation with a threshold.

Zahia et al. [30] also calculated the size of a wound. They used the mask recurrent
convolutional neural network (RCNN) model to classify chronic wounds, reporting results
with an accuracy of around 87%. The authors used Python 3.6 with Keras 2.0 [50] and
TensorFlow 1.3 [51] for the segmentation of the images and measurement of the different
features, which were processed with MATLAB software (R2018b, MathWorks’, Natick,
MA, USA). Internally, the proposed system extracted all quantitative information by
matching the 2D image with its 3D mesh. Finally, they captured the depth, volume, area,
and major and minor axes of each wound. The final method was achieved by applying
the mask recurrent convolutional neural network (RCNN) model to segment the injury.
In continuation, the 3D mesh was rasterized, generating a top view image and the matrix
of face indices. The expectation–maximization (EM) approach was implemented, and a
projective transform matrix of the image was calculated. Next, the image was segmented,
and the RANdom SAmple Consensus (RANSAC) algorithm was used to calculate the best
fitting hyperplane. Finally, the authors calculated the faces and the wound’s boundary,
computing its depth, area, volume, and axes. For example, one of the images available in
the authors’ dataset was tested in grayscale and is presented in Figure 2.
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In [33], Cazzolato et al. proposed the rule-based ulcer segmentation and measurement
(URule) framework for the segmentation and measurement of the wound area. The
results obtained reported an F-measure of 0.8 in the measurements performed with ulcer
wounds. The method was implemented in the URule app, which included capturing and
processing the images with a mobile device. The method starts with dividing a mobile
application into a matrix, continuing with the interior seed region’s estimation considering
the user’s annotation. Next, the threshold is applied to the areas, and the pixels are
filled. Sequentially, the different mathematical models are used for the measurement of
the wound area. Thus, the implemented method is composed of the segmentation of RGB
images into the foreground and background. After that, the minimum bounding rectangle
(MBR) of the region of interest is cropped. Next, the image is binarized and converted to
grayscale. After that, the ISODATA algorithm was used to find a threshold for the image,
and the line segment detector (LSD) approach was implemented to find the ticks of the
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measurement tool. Initially, the ticks were grouped by angle. Next, the authors considered
the segments with angles greater than or equal to five degrees of difference for the group
with more elements. Finally, the wound area was measured by the computation of the
distance between ticks in pixels, which were converted to centimeters. For example, one of
the images available in the authors’ dataset was tested in grayscale, and it is presented in
Figure 3.
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Wu et al. [36] also used the HSV color model to detect the wound area in images
captured by a Redmi6A smartphone with volunteers. The authors also used the grabCut
algorithm in four images, reporting an accuracy of 50%, and the color threshold approach
in the same images, reporting an accuracy of 100%. The color threshold approach was also
more efficient than the other algorithms. Thus, the OpenCV library was used to apply a
coin detection algorithm. After that, the image was segmented, and a rectangle was created
around the wound. Next, the grabCut algorithm was used to measure the wound area.
Still, the intensity values of colors with the OpenCV histogram were calculated. Finally,
the coin detection algorithm was implemented to improve the wound area measurement.

Liu et al. [37] proposed a system to perform 3D measurement of wounds with mobile
device images. The smartphone collected 2D images, and a 3D model was constructed
with these images. With these images, the authors unwrapped the texture coordinates,
transforming the 3D model to a 2D plane with the least squares conformal map (LSCM)
algorithm, segmenting and scaling it to extract and measure the wound area with the con-
version between pixels and the actual length. After analyzing 118 wounds on 54 patients,
the implemented method reported an accuracy of 97%. The implemented method was
constituted by the 3D reconstruction of the body’s wound part, and they mapped the
3D model to the 2D plane. After applying the image segmentation techniques, the scale
conversion algorithm was implemented to measure the wound area.

Huang et al. [38] implemented a python-based user interface to measure a wound’s
size with the enhance local contrast (CLAHE) algorithm’s implementation. The system
reported a reliable accuracy in estimating the size of chronic wounds, but it needed the
correct definition of each pixel’s size. The proposed system implemented different tech-
niques, including white balance, anti-glare, the enhance local contrast (CLAHE) algorithm,
the level set algorithm to find the wound’s boundary, and the snakes model algorithm to
define an energy function of the image and detect the size of an injury.

Naraghi et al. [39] proposed photogrammetric 3D reconstruction, induration segmen-
tations, and segmented depth maps to measure the wound size with a mobile application
to measure tuberculosis infections. The authors started with the scaling of the image and
photogrammetric 3D reconstruction. Next, the position and orientation of each image in the
3D space were estimated. With these features, the authors performed the feature matching
process. In continuation, the authors evaluated the surface of the object by a dense point
cloud. After applying histogram equalization, the Otsu’s thresholding algorithm was used
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to enhance the image’s contrast. The induration was cropped for the identification of the
margin of the rough. Finally, the elliptical approximation of the induration margins was
calculated, and the wound area was measured. In general, the proposed system reported
reliable accuracy.

Chen et al. [40] also used the HSV color space when measuring the wound size in
surgical wounds, reporting an accuracy of 91%. The system was implemented with a
non-professional system that identified the injury in an image, distinguished the state of
the surgical wound, and assessed the symptoms. It combined machine learning techniques
with image processing techniques to compare the textures of the skin and wounds. Thus,
the authors normalized the images. After that, they applied the SEED algorithm for
superpixel segmentation to identify the superpixels that were skin. The skin area was
reconstructed with superpixels, and the area was detected.

In [24], Gupta converted the image to the HSV color model while measuring a chronic
wound area. Next, they performed the segmentation. Next, they extracted the saturation
space from the color space and implemented the threshold to enhance the image’s contrast
with Otsu’s thresholding algorithm and the dilation operation. After that, the implemented
method found the contours from the binary image using the Suzuki85 algorithm. The
number of black pixels inside the segmented image was calculated to design a healing
curve plot. Thus, the results reported an accuracy of 70% in the tests performed with
20 photos from various healthcare centers.

Sirazitdinova and Deserno [25] measured the size, depth, volume, rate of healing,
color, presence of necrosis, and types of a skin lesion with several techniques. Initially, the
authors started with color correction and color calibration on the original 2D images to
measure the wound area. Next, 3D reconstruction, color correction, tissue segmentation,
and HSV were applied to compute the wound perimeter. Finally, the authors designed the
contour in a 2D plane, calculated the area as the number of pixels between the outlines,
and translated the measured pixels to real-world measurement units. The system reported
a reliable accuracy.

Tang et al. [42] used a scaling method to measure chronic wounds’ sizes with a mobile
device, reporting reliable results. The scaling method included calculating the approximate
size of an injury and inserting and adjusting a rectangular box in the image.

In [43], Garcia-Zapirain et al. mainly implemented the linear combination of discrete
Gaussians (LCDG) model to measure the sizes of the wounds, reporting an accuracy of
90.4% in the tests with 24 clinical images of pressure ulcers. Thus, the authors’ images
of injuries were segmented in the ulcer region, with image decomposition using the
parametric equations that defined the toroidal geometry. After that, the resulting image
was decomposed in different contrast levels. Next, the threshold technique was performed
to enhance the contrast of the image with Otsu’s thresholding algorithm, and the contours
of the wound were detected. In continuation, the resulting image was transformed from
RGB to grayscale, creating an appearance model using linear combinations of discrete
Gaussians (LCDG) and minimizing the noise with a generalized Gauss–Markov random
field (GGMRF) image model for the calculation of the areas of the wounds.

Dendere et al. [44] proposed a mobile system to evaluate the sizes of wounds from
tuberculosis infection with the Mantoux tuberculin skin test (TST), reporting an accuracy
of 96.5%. The TST method performs the round-off of the induration size to the nearest
millimeter. It starts with the application of a mask to select the relevant part. Next, the
matching of common points to the input images is found, estimating each image’s camera
positions. In continuation, the camera calibration parameters are refined, building the
point cloud model, a polygonal mesh, and the texture. Finally, the 3D reconstruction is
performed for the measurement of the wound area.

Yee et al. [45] implemented a mobile application for remote wound measurement,
tracking, and diagnosis which implemented the Seymour wound model 0910 with gran-
ulating, necrotic, and slough, reporting an accuracy of 99.13%. The core of the method
includes the extraction of images from videos, and they compute the absolute scale of the
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wound with optics equations. Finally, the methods trace the contour with wound boundary
detection for the calculation of the wound area. The authors tested different known areas
from a constant distance of 20 cm from the wound to the smartphone, various specialized
tissue types within wounds with known areas, and actual wound simulations.

Saathesha et al. [46] implemented PH2 dermoscopy image information and a D-quick
Fourier rework to measure shape geometry asymmetry, border irregularity, color, and the
diameter of a melanoma, reporting reliable accuracy. Thus, the authors started with the
extraction of RGB channels from images, extracting the blue channel. Next, histogram
equalization was performed. Before the application of segmentation techniques, the picture
was converted from RGB to grayscale. Next, the average low pass filter was applied, and
the threshold was calculated. In continuation, the degree intensity image was converted
to a binary image, and Otsu’s thresholding algorithm was used to enhance the contrast
of the picture. After that, the asymmetry, border irregularity, color, and diameter were
extracted, and the image was denoised for the extraction of the region of interest (ROI) of the
wound. Finally, the support vector machine (SVM) was implemented for the classification
of the wounds.

Furthermore, Cheung et al. [47] estimated the wound size. They classified the tissue
with color variation, asymmetry, maximum distance, texture, and border irregularity, based
on a 3D model using structure from light, photogrammetry, or motion. The implemented
methods were for feature extraction and segmentation.

Pires et al. [23] used the OpenCV library for the measurement of the sizes of wounds.
The implemented method consisted of three stages, including preprocessing, segmentation,
and wound area measurement, implementing the HSV color model with a Gaussian
filter 31 × 31 in size, reporting reliable results. The OpenCV library was used for the
implementation of segmentation, threshold, and color detection techniques.

Bulan [48] used a method for detecting wounds in 36 patients with allergic diseases
that included the HSV color space and linear discriminant analysis (LDA) with a reported
accuracy of 94%. This paper presented the detection of a wound. Initially, the authors
inserted calibration marks to identify the localization of the region of the injury. Next,
the image was converted to grayscale, and it was transformed from an RGB to YCbCr
color space. After that, principal component analysis (PCA) was performed on the Cb
and Cr color channels. Thus, it was possible to find the fly’s subspace with the maximal
contrast between the wheel and the surrounding erythema. The authors performed the
dimensionality reduction by finding an orthogonal projection of the high-dimensional data
into a lower-dimensional subspace. The implementation finished with the median filtering,
the threshold to enhance the contrast of the image with Otsu’s thresholding algorithm, the
erosion operation on the binarized image, and the suppression of the structures connected
to the image border dilation operation.

Hettiarachchi et al. [22] also implemented the HSV color space while measuring
the wound size based on segmentation, camera distance, angle, and lighting conditions.
It implemented preprocessing techniques to reduce errors from artifacts and lighting
conditions, reporting an accuracy of 90%. The method started with the crop of the center
of the wound and removed the unnecessary artifacts. Next, the image was resized and
resampled to extract the saturation plane of the HSV color model. In continuation, the
authors calculated the contour with the contrast between infected and normal skin, and
the authors smoothed the image with a Gaussian filter. After that, the authors applied the
snakes model algorithm to define the image’s energy function, and they transformed it
into a grayscale image. The grayscale image was segmented, building the contour of the
wound for further measurement of the wound size.

Kanade et al. [49] measured the cell population, cell cycle, mitotic cell rate, and tree
synchrony with microscopic images and performed segmentation of the images. Thus, they
performed several actions, including the detection of small, bright rectangular regions in
each image using thresholding and convolution, overlapped areas combined into one patch,
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the detection of candidate patch sequences based on intensity change, and segmentation to
analyze the wound images.

4. Discussion

This systematic analysis shows the importance of using technology in the health sector.
Once again, and in the wake of what we have witnessed, the emergence of new methods,
systems, and applications for the health sector has taken advantage of the development of
mobile systems exponentially in recent years, as shown in Figure 4.
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With the improvement of the camera resolution’s processing capacity and quality,
there is an evident increase in the number of studies and applications related to this
integration of health and informatics, especially in recent years, as shown in Figure 5.
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The analysis of chronic wounds and their calculation and monitoring appear in this
context. According to the analysis of this systematic analysis’s different studies, they
have made firm steps because they present a very high accuracy at 90%. The most-used
method in this set of studies was the HSV method, used in 7 of the 20 selected studies,
demonstrating its usability and usefulness in these studies. As other recent studies [27,28] in
image segmentation show, deep learning has great potential to improve feature extraction.
Adaptative learning rates can help speed up the convergence process while achieving better
predictive performance [28]. In turn, these approaches might overcome traditional issues
in object segmentation related to variable lighting conditions, which might be particularly
common when attempting to segment wounds [52].

The number of articles that consider different diseases is shown in Figure 6, and
apparently, chronic wounds are in the focus of seven studies.

Computers 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

The analysis of chronic wounds and their calculation and monitoring appear in this 
context. According to the analysis of this systematic analysis's different studies, they have 
made firm steps because they present a very high accuracy at 90%. The most-used method 
in this set of studies was the HSV method, used in 7 of the 20 selected studies, demon-
strating its usability and usefulness in these studies. As other recent studies [27,28] in im-
age segmentation show, deep learning has great potential to improve feature extraction. 
Adaptative learning rates can help speed up the convergence process while achieving bet-
ter predictive performance [28]. In turn, these approaches might overcome traditional is-
sues in object segmentation related to variable lighting conditions, which might be partic-
ularly common when attempting to segment wounds [52]. 

The number of articles that consider different diseases is shown in Figure 6, and ap-
parently, chronic wounds are in the focus of seven studies. 

 
Figure 6. Number of studies per disease. 

The use of cameras embedded in mobile devices gives a more commodity-based 
measurement in different places. However, it may report less accuracy than other meas-
urements performed with more powerful cameras. As this review is more focused on mo-
bile devices, Tables 2 and 3 present the features with more relevance in various studies to 
measure the wound area and contours with mobile devices and desktop techniques. The 
use of a desktop computer was not the main focus of this research, and other methods 
may be applied for the measurement of the wound area, as presented in Table 3. Initially, 
due to the more high-power processing, we can think that the desktop techniques may 
allow the more accurate detection of wounds. As presented in Table 2, the mobile devices 
include other sensors that may increase the accuracy of the wound area's measurement. 
The mobile devices currently embed more powerful cameras to capture the different 
wound images with quality to measure the wound area. These devices now include high 
capabilities for various measurements' performance, and they can perform more accurate 
measurements. Table 4 complements this analysis with the presentation of the comparison 
of mobile devices and desktop computers. 

  

Figure 6. Number of studies per disease.

The use of cameras embedded in mobile devices gives a more commodity-based
measurement in different places. However, it may report less accuracy than other mea-
surements performed with more powerful cameras. As this review is more focused on
mobile devices, Tables 2 and 3 present the features with more relevance in various studies
to measure the wound area and contours with mobile devices and desktop techniques. The
use of a desktop computer was not the main focus of this research, and other methods may
be applied for the measurement of the wound area, as presented in Table 3. Initially, due to
the more high-power processing, we can think that the desktop techniques may allow the
more accurate detection of wounds. As presented in Table 2, the mobile devices include
other sensors that may increase the accuracy of the wound area’s measurement. The mobile
devices currently embed more powerful cameras to capture the different wound images
with quality to measure the wound area. These devices now include high capabilities for
various measurements’ performance, and they can perform more accurate measurements.
Table 4 complements this analysis with the presentation of the comparison of mobile
devices and desktop computers.
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Table 2. Implemented methods in mobile devices.

Action Occurrences

Perform segmentation with threshold 11
Measure the wound area as the number of pixels 5

Convert image to grayscale 4
Perform 3D reconstruction 4

Crop the center of the wound 3
Extract saturation space from color space 3

Perform the histogram equalization 3
Perform threshold to enhance the contrast of the image 3

Adjust the size of the rectangle to the wound 2
Apply snakes model algorithm to define an energy function of the image 2

Apply the level set algorithm to find the boundary of the wound 2
Convert associate degree intensity image to a binary image 2
Extract asymmetry, border irregularity, color, and diameter 2

Extract superpixels which are skin 2
Find contours of the wound 2

Implement support vector machine (SVM) to classify the skin 2
Insert rectangular box in the image 2

Perform dilation operation 2

Table 3. Implemented methods in desktop computers.

Action Occurrences

Measure the wound area as the number of pixels 4
Perform segmentation with threshold 4

Find contours of the wound 3
Perform threshold to enhance the contrast of the image 3

Convert image to grayscale 2
Detect the wound 2

Table 4. Mobile devices vs. desktop computers.

Mobile Devices Desktop Computers

Measure the wound area anywhere at anytime Measure the wound area in a static place
Mobile devices are currently embedding

high-quality cameras
The measurement depends on the external

cameras that are dispendious
Mobile devices embed other sensors that may

allow the calibration of the cameras
The calibration of the cameras depends on

other external devices
The resources available are not unlimited The resources available can be expanded as

needed with costs.

Based on the methods applied in the different studies analyzed, the ranking of the
most-applied methods is presented in Table 5 to check the most-implemented strategies
and further propose of a method to be implemented as future work.

The use of deep learning methods to improve the feature extraction of the different
images’ image segmentation was used in two of the studies analyzed. This subject is
recent and exploiting [27,30]. Other studies in the literature have been about using deep
learning techniques for these steps that will improve the results [53,54]. However, using
these techniques requires more hardware resources that may not be available in standard
mobile devices.
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Table 5. Implemented methods.

Action Occurrences

Perform segmentation with threshold 15
Measure the wound area as the number of pixels 13

Convert image to grayscale 6
Perform threshold to enhance the contrast of the image 6

Find contours of the wound 5
Perform 3D reconstruction 4

Perform the histogram equalization 3
Crop the center of the wound 3

Perform dilation operation 2
Detect the wound 2

Extract saturation space from color space 3
Insert rectangular box in the image 2

Adjust the size of the rectangle to the wound 2
Apply the level set algorithm to find the boundary of the wound 2

Apply snakes model algorithm to define an energy function of the image 2
Convert associate degree intensity image to a binary image 2
Extract asymmetry, border irregularity, color, and diameter 2

Implement support vector machine (SVM) to classify the skin 2
Extract superpixels which are skin 2

From the analysis of the methods for wound area measurement with a mobile device,
one important finding is that they need to be more lightweight to have practical applications.
Finally, when considering implementing a mobile application for Android devices, the
OpenCV library allows the implementation of the different methods locally in the Java
programming language. As presented in Figure 7, it must start with the image’s capture,
and it must be converted to grayscale for further implementation of the threshold. Next, a
segmentation method is to be implemented to measure the wound area as the number of
pixels for the conversion to metric units.
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Figure 7. Proposed method to be implemented in a mobile application.

The most critical challenge of this work was the conversion of the measured pixels
to metric units. Thus, the mobile devices’ proximity sensors can be used to increase the
accuracy, measuring the distance to the wound and extrapolating the real area of the injury.
The comparative analysis of the studies shown in Table 1 revealed that the smartphone
with the operating system was predominant.
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No incompatibility was found in the studies analyzed for confidentiality or data
protection in the different experiences. We performed a rigorous evaluation of each study
to verify the existence of a validation of the study protocol by a human subject research
ethics committee, but the information was not conclusive. Thus, we contacted the authors
and research groups to obtain more clarification about each study’s data protection, but
we have not yet received the responses. For the different features in this context, the most
common were studies that sought to calculate the wound area, size, and color.

5. Conclusions

In conclusion, this systematic review analyzed, verified, and identified studies that
aimed to investigate the size, structure, and area of wounds using open-source systems
and most mobile devices. The use of image processing methods for this type of study
has grown with the development of smartphones. Still, for the methods to have practical
application, the accuracy and robustness of the methods need to be improved. Twenty
studies were examined, and the main findings are summarized as follows:

• (RQ1) Which are the techniques that can be applied in a mobile application to measure
a wound area? A mobile application can capture different pictures related to different
situations, including wounds. The mobile application commonly applies preprocessing
techniques, segmentation, threshold, and other methods to measure the wound area;

• (RQ2) What are the most significant features to define a method for the automatic
calculation of a wound’s size? The most notable feature related to the wound’s size is
measuring the different pixels and the different points of each wound’s contour. The
processing techniques and artificial intelligence techniques may be powerful in the
measurement of the wound’s size;

• (RQ3) What are the benefits that this kind of study can bring to the medical sector?
This kind of study’s benefits consist of the correct measurement of the evolution of
a wound’s treatment and the medicine’s adaptation according to its changes. It is
especially important in patients with diabetes.

For future work, we intend to develop a mobile system to measure the wound size
anywhere for a non-specialist. It must have acceptable accuracy for implementing the
segmentation, threshold, and identification of the wound size, measuring the distance
between the camera and the wound for the accurate measurement of the wound size.
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