
Big Data Research 25 (2021) 100203

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Cost Optimization for Big Data Workloads Based on Dynamic 

Scheduling and Cluster-Size Tuning

Marek Grzegorowski a,∗, Eftim Zdravevski b,c, Andrzej Janusz a, Petre Lameski b, 
Cas Apanowicz c, Dominik Ślęzak a

a Institute of Informatics, University of Warsaw, Poland
b Faculty of Computer Science and Engineering, Sts Cyril and Methodius University, Skopje, Macedonia
c CogniTrek Corp., Toronto, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 May 2020
Received in revised form 20 September 
2020
Accepted 15 January 2021
Available online 2 February 2021

Keywords:
Big Data
ETL
Cloud computing
Spot price prediction
ARIMA
Spark

Analytical data processing has become the cornerstone of today’s businesses success, and it is facilitated 
by Big Data platforms that offer virtually limitless scalability. However, minimizing the total cost of 
ownership (TCO) for the infrastructure can be challenging. We propose a novel method to build resilient 
clusters on cloud resources that are fine-tuned to the particular data processing task. The presented 
architecture follows the infrastructure-as-a-code paradigm so that the cluster can be dynamically 
configured and managed. It first identifies the optimal cluster size to perform a job in the required time. 
Then, by analyzing spot instance price history and using ARIMA models, it optimizes the schedule of the 
job execution to leverage the discounted prices of the cloud spot market. In particular, we evaluated 
savings opportunities when using Amazon EC2 spot instances comparing to on-demand resources. 
The performed experiments confirmed that the prediction module significantly improved the cost-
effectiveness of the solution – up to 80% savings compared to the on-demand prices, and at the worst-
case, 1% more cost than the absolute minimum. The production deployments of the architecture show 
that it is invaluable for minimizing the total cost of ownership of analytical data processing solutions.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The ability to analyze the available data is a valuable asset for 
any successful business, especially when the analysis yields mean-
ingful knowledge. To represent the data in a format suitable for 
such analysis, several steps need to be performed first. Extract-
Transform-Load (ETL) is recognized as the most time-consuming 
and expensive among them. The recurring nature of this process, 
usually at daily intervals, justifies the effort of cost optimization. 
It is a common practice in the industry to use the cloud compu-
tation resources for performing repetitive ETL tasks. On the other 
hand, cloud providers aim to optimize server utilization to avoid 
idle capacity and significant peaks [1]. This led to the emergence of 
cloud spot markets on which service providers and customers can 
trade computation power in near real-time. The number of avail-
able pricing models on the cloud markets is overwhelming, but it 

* Corresponding author.
E-mail addresses: m.grzegorowski@mimuw.edu.pl (M. Grzegorowski), 

eftim@finki.ukim.mk (E. Zdravevski), a.janusz@mimuw.edu.pl (A. Janusz), 
lameski@finki.ukim.mk (P. Lameski), cas@cognitrek.com (C. Apanowicz), 
slezak@mimuw.edu.pl (D. Ślęzak).
https://doi.org/10.1016/j.bdr.2021.100203
2214-5796/© 2021 Elsevier Inc. All rights reserved.
is worth paying special attention to two of them, in particular: the 
on-demand and spot markets. The first one represents the pay-as-
you-go cloud model, and today is the most common way the re-
sources are provisioned. The second one allows customers to save 
up to 90% of costs by using the cloud data centers’ idle servers.

One of the evident concerns regarding the spot model is that 
prices fluctuate along with changes in supply and demand. Fur-
thermore, cloud providers may terminate provisioned instances 
with a minute notice due to outbidding. The ability to forecast 
future spot prices in a time horizon necessary to complete ETL 
tasks would be a game-changer allowing to decrease total costs 
of operation of data processing pipelines significantly and to min-
imize the risk of resource terminations. In practice, typical ETL 
tasks have a degree of temporal flexibility - they need to be done 
before a specific deadline, however, it is often possible to defer 
the computations if it could lead to overall cost reduction due to 
price fluctuation. With a reliable forecasting model that provides 
accurate spot price prediction for a given time horizon, and re-
liable estimation of resources required to perform the task, one 
could recommend an efficient and cost-effective cluster configura-
tion. Currently, there is no comprehensive cloud-based architecture 
that meets such requirements.

https://doi.org/10.1016/j.bdr.2021.100203
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100203&domain=pdf
mailto:m.grzegorowski@mimuw.edu.pl
mailto:eftim@finki.ukim.mk
mailto:a.janusz@mimuw.edu.pl
mailto:lameski@finki.ukim.mk
mailto:cas@cognitrek.com
mailto:slezak@mimuw.edu.pl
https://doi.org/10.1016/j.bdr.2021.100203


M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203
In our study, we propose a novel method to build resilient 
clusters on the cloud resources that are fine-tuned to the individ-
ual data processing task. The presented architecture follows the 
infrastructure-as-a code paradigm so that the cluster configuration 
could be dynamically managed [2]. We evaluate savings opportuni-
ties due to the utilization of Amazon EC2 spot instances comparing 
to the on-demand ones. We also enhanced the architecture pre-
sented in [3] with the spot price prediction module. The performed 
experiments confirmed that our solution selects an appropriate 
and cost-effective cluster configuration to execute the scheduled 
tasks. On the one hand, accurate price forecasting allows us to esti-
mate the required budget reliably. On the other hand, we minimize 
the risk of losing resources due to the potential outbidding of the 
provisioned cloud resources.

In this paper, we thoroughly extend our previous research on 
cluster-size optimization within a cloud-based ETL framework for 
Big Data [4]. In several production deployments of our previously 
introduced solution, we noticed that it is imperative to extend it 
with cost optimization abilities. Therefore, we investigated meth-
ods suitable for sport price prediction, we evaluated them exper-
imentally, and we proposed an elegant way to embed them into 
the appropriately adjusted architecture of our solution. The main 
contributions of this paper, compared to the previous study, are as 
follows:

1. We extended the cloud architecture with a possibility to dy-
namically schedule resources from various cloud pricing mod-
els.

2. We trained several spot price prediction models to forecast fu-
ture prices.

3. We performed an extensive experimental study on real data 
from the AWS cloud to confirm the feasibility of short-term 
spot price prediction.

4. We extended the cluster-size optimization mechanism with a 
module based on machine learning (ML) that recommends the 
most cost-effective EC2 resources, taking into account current 
on-demand prices and predicted spot prices.

5. We performed a broad cost analysis that confirmed the cost-
effectiveness of the described solution

The rest of the paper is organized as follows. In Section 2, 
we review the related approaches to resource management and 
scheduling, topics related to ETL in cloud, big data, as well as prac-
tical price forecasting applications on various markets. In Section 3, 
we describe the architecture of the solution. Subsequently, we de-
scribe the methods in Section 4. Next, the experimental results are 
shown and discussed in Section 5. Finally, in Section 6 we conclude 
the paper and discuss future directions for research.

2. Related work

There are various challenges in delivering efficient, cost-effec-
tive, scalable, and reliable ETL frameworks for Big Data. The so-
lution involves an interdisciplinary study, associated with a wide 
range of topics – from infrastructure and software related to data 
processing and machine learning applications. Therefore, in this 
section, we briefly review recent research results and appropriate 
technologies associated with the related challenges. We first dis-
cuss ETL challenges and solutions for Big Data. Then we focus on 
distributed storage and processing solutions. Further, we shift our 
focus on the cost-effectiveness challenges on the cloud. Finally, we 
review approaches that apply ML-based forecasting of prices.

In classical Business Intelligence (BI), the ETL process loads data 
into warehouse servers [5]. For reasonable data volumes, there are 
ETL tools that were successfully used in organizations throughout 
the years, such as Informatica, IBM Infosphere Datastage, Ab Ini-
2

tio, Microsoft SQL Server Integration Services (SSIS), Oracle Data 
Integrator, Talend, Pentaho Data Integration Platform (PDI), etc. 
Cloud-native frameworks for ETL, such as Amazon Glue, Microsoft 
Azure Data Factory, Panoply, and Snowflake, also emerged. Big Data 
ETL processes, and recently Data Lake solutions, rely on distributed 
storage for effective processing of often semi-structured or un-
structured data. The Hadoop Distributed File System (HDFS), Ama-
zon S3, Azure Blob Storage, and Google Cloud Storage are the most 
popular distributed file systems used today. Traditional ETL deploy-
ments do not consider data partitioning [6] that the distributed 
file systems offer, but recent cloud solutions such as Amazon Red-
shift [7,8], Amazon Athena [9], Azure Synapse Analytics [10], Hive 
[11], HBase [12], Amazon Redshift [8], or Infobright [13], leverage 
the distributed file systems and have the capability to execute ad-
hoc queries. It is important to note that the execution of queries 
against such databases relies on MapReduce, Spark, or Tez [14]
jobs. Furthermore, the synchronous dataflow execution model of 
MapReduce and Spark limits the use of asynchrony for complex 
analytics. Approaches, such as [15], attempt to bridge this gap by 
proposing asynchronous architectures.

Once the data is processed and loaded into a data warehouse, 
it needs to be available for reporting and interactive visualization 
even for large data sets [16,17]. Likewise, analytics and decision 
support [18,19] are critical approaches. The typical applications 
of the state-of-the-art machine learning techniques also require 
proper data pre-processing, ranging from clustering [20], and in-
cluding the expensive process of representation learning or feature 
extraction [21–24]. A cost-effective approach to scale this process 
for Big Data [25] is crucial for the efficiency of applications in 
many domains [26,27].

Apache Spark focuses on the class of applications that reuse 
a working set of data across multiple parallel operations and al-
lows all ETL processes to be distributed across various nodes and 
all transformations to be performed on distinct portions of data 
[28,29]. It includes libraries and components for data processing, 
machine learning, or data mining [30]. Additionally, it hides the 
complexities related to parallelism, fault-tolerance, and cluster set-
ting from end-users and application developers [31].

Cloud computing has emerged as an essential paradigm offering 
convenient Big Data solutions related to scalable storage, process-
ing, and sophisticated business analytics. Simultaneously, because 
of the distributed architecture, it also raises new challenges [32]
related to synchronization, replication, scheduling, or security [33]. 
Due to the growth of Big Data over the cloud, cost-effective alloca-
tion of appropriate resources has emerged as a significant research 
problem [34].

The proper allocation of cloud resources is a challenging task, 
particularly for computationally cumbersome processes of data 
transformation. There are quite a few examples of cluster size 
optimizations for Big Data analytics that focus on resource man-
agement for sustainable and reliable cloud computing [35]. One 
of the approaches could rely on initial estimations of data stream 
characteristics expressed in a vector termed Characteristics of Data 
(CoD). Clusters of cloud resources could then be created dynami-
cally with the help of, e.g., Self-Organizing Maps [34,36]. Another 
approach – presented in [37] – focuses on the optimization of 
short-running jobs. Authors in [38] propose a query-like environ-
ment where developers can query for the required cluster size. The 
proposed approach requires, however, implementation-specific de-
tails. The evaluation of historic executions and metrics, for each 
step of the ETL scenario, is one of the prominent methods that 
leads to proper cluster size optimization, resulting in the timely 
processing of data [3].

Some of the frameworks for cluster size optimization, to mini-
mize the deployment cost, consider allocating server time to spot 
cloud resources. For that purpose, a fine-tuned heuristic to auto-



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203
mate application deployment and a Markov model that describes 
the stochastic evolution of the spot price and its influence on vir-
tual machine reliability are proposed [39]. In [40], the authors de-
scribe an integral framework for sharing time on servers between 
on-demand and spot services. This is one way to guarantee that 
on-demand users can be served quickly while spot users can sta-
bly use servers for an appropriately long period. This is a critical 
feature in making both on-demand and spot services accessible. 
However, guaranteeing timely cloud job execution on a spot in-
stance is a very challenging task, and existing strategies may not 
fulfill requests in case of outbidding.

Changes in supply and demand are the primary factor that im-
pacts the price of a given service. This behavior is well-known in 
the stock exchange or commodity markets [41,42]. Among many 
available methods for time series regression [43] – which are the 
most suitable for modeling the problem of price prediction – one 
of the most popular and broadly used are autoregressive integrated 
moving average (ARIMA) models [44,45]. Results obtained in this 
study confirmed that the ARIMA has a strong potential for short-
term spot prediction.

The ability to accurately forecast future spot prices is essential 
to minimize the risk of resource terminations. A number of models 
have already been applied for that task [1]. For example, in [46], 
the authors evaluated a model to predict EC2 spot prices based 
on long/short-term memory recurrent neural networks. The prob-
lem of forecasting EC2 spot prices one day and one week ahead 
was also evaluated with random forest regressors [47]. Because of 
the similarity between cloud spots and financial markets [42], we 
decided to assess ARIMA models [44], which are known to be ro-
bust and efficient in short-term time series forecasting on stock 
exchanges or commodity markets [41,48].

The proposed cluster-size optimization algorithm works with-
out the need for implementation details. Furthermore, our archi-
tecture facilitates data processing in different ETL scenarios, mak-
ing it more versatile and applicable in many practical cases [21,49]. 
The proposed mechanism facilitates an optimal selection of cloud 
computing resources available in the spot pricing model yielding 
outstanding cost-savings. Our experimental study confirmed that 
the ARIMA forecasting models have a strong potential for short-
term spot price prediction. The simulations carried out proved that 
any further optimization in this area could improve the achieved 
cost-effectiveness by at most 1%.

3. Architecture of the framework for ETL of Big Data

Fig. 1 shows the architecture of the utilized ETL system, which 
is capable of processing data from a variety of data sources. It 
handles relational database management systems (RDBMS), struc-
tured and semi-structured data from internal or third-party data 
providers, that generate reasonably-sized data. This kind of low-
volume data can be processed using traditional Data Integration 
Tools to store it in the Data Warehouse (marked with light gray 
arrows in Fig. 1).

The traditional ETL approach is not applicable in Big Data cases 
with high volume, velocity, or versatility. Therefore, the architec-
ture can utilize Distributed Streaming Platforms (DSP), such as 
Apache Kafka and Amazon Kinesis, to efficiently collect and pro-
cess Big Data streams [50]. Because of retention policies, data on 
DSPs can only be present for a limited time (usually up to two 
weeks), which is not suitable for long-term storage. Accessing data 
on a DSP queue can be performed by either push or pull mecha-
nisms [51]. With the pull mechanism, each DSP consumer manages 
its read pointer.

The proposed architecture allows the consumption of DSP 
queues by the three most common and widely used types of 
consumers. The first two types of consumers are redundant al-
3

ternatives for reliable and permanent storage of the incoming data 
in raw format. First, with Push Lambda Functions (Stream-based 
model), event sources publish events on DSP, which trigger the 
lambda function multiple times per second as data arrives on the 
queue. The lambda function processes the events [52,53], and the 
unprocessed raw data can be stored in the original format on Ob-
ject Storage Services (OSS), such as, Amazon S3 or Windows Azure 
Blob Storage. This scenario of storing the raw data is commonly 
referred to as Data Lake. Second, Storage Stream Pullers as con-
sumers have more control in fetching records from DSPs because 
they manage their read pointer independently, and therefore, can 
reprocess events if needed (e.g., for recovering after failures). Third, 
Analytics Stream Pullers, such as Spark Streaming and Apache 
Storm, are typical consumers that perform stream processing and 
provide near real-time analytics [52].

Very complex algorithms can be implemented with these tech-
nologies to provide valuable business insights and near real-time 
analytics, and can also store data in the warehouse. Be that as it 
may, Analytics Stream Pullers can execute algorithms that use only 
recent data because of DSPs’ data retention policies. To comple-
ment this, the proposed architecture employs dynamically provi-
sioned Spark clusters for implementing more sophisticated algo-
rithms for ETL and feature engineering. They can analyze dynamic 
trends over more extended time periods (e.g., week-by-week or 
month-by-month comparisons of various metrics) or find the time 
since some particular event happened (e.g., “the time since the last 
occurrence of event X”, “the time since the user’s last login”, “last 
bought or viewed product”, “last used service”, etc.). Such metrics 
are not computable with Analytics Stream Pullers.

The Cluster Launcher module, located on the same instance, 
hosts the Data Integration Tool (DIT) and orchestrates the start 
of Spark clusters, which can be triggered manually, based on a 
predefined schedule based on a dynamic schedule leveraging spot 
instance price analysis. After the Spark cluster is created, it down-
loads the source code from a release branch of a code repository 
and automatically executes it. Each Spark cluster during its lifetime 
runs only a specific ETL job. If the organization requires multiple 
ETL processes of unrelated data, then multiple Spark jobs can be 
defined, and for each of them, a separate workflow can be man-
aged (i.e., different code repositories, execution schedules, destina-
tion data warehouses, etc.).

Apache Spark applications process Big Data stored on the Data 
Lake (OSS), while also considering the dimensional data from the 
data warehouse. Generally, the dimensional data does not have 
to be processed by Spark because usually, it is with considerably 
lower volumes compared to the transactional data. Consequently, 
traditional ETL tools can be used for it. However, while processing 
the transactional data, which is to be stored as fact tables, the di-
mensional data is still required. If the fact tables are wide, then the 
dimensional data is a prerequisite for the denormalization. Other-
wise, it is needed for setting up foreign keys to the dimensions.

The proposed architecture makes it possible to handle high-
velocity Big Data thanks to its three components. First, DSPs apply 
sharding techniques allowing processing of thousands of events per 
second. For instance, each Amazon Kinesis shard can process up to 
1000 writes per second, and we could add new shards without any 
downtime. Therefore, the high-velocity data can be transformed 
into static data stored in OSS with either of the two mechanisms 
(i.e., pull or push). Second, after the data is on the DSP stream, it 
is reliably retained up to a predefined period (e.g., up to a week on 
Amazon Kinesis). Third, different vendors offer reliable and persis-
tent OSS, providing necessary metadata information (such as a list 
of files, timestamps of creation and modification, object size, etc.) 
through APIs.

In general, the architecture of production systems could be 
quite different than the described. For example, Relational Data-



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Fig. 1. Architecture of scalable Cost-optimizing cloud-based Big Data Warehouse.
bases, Low Volume Data Producers or Data Integration Tool could 
be irrelevant, and therefore removed from the architecture. The re-
sult of the processing, instead of being kept in a Data Warehouse, 
could be passed on to another system or stored again in Object 
Storage Service. In any case, spot prediction methods described 
later in this paper are independent of the used architecture. There 
are, however, two major considerations for any prospective archi-
tecture that uses the spot instances. First, the data storage layer 
should be separated from the compute resources, such as in the 
proposed architecture. Second, to make economical sense of using 
spot instance predictions, the task needs to be repetitive and di-
visible between multiple machines.

4. Methods

4.1. Algorithm for cluster size cost-optimization

The proposed architecture consists of multiple components. 
Some of them, including database machines, Distributed Streaming 
Platforms and Data Lake storage capacity, mostly depend on the 
volume of data, so arguably there is little room for cost optimiza-
tion there. However, the inappropriate choice of Hadoop clusters 
can result in considerably higher costs. To minimize this cost, two 
aspects of the ETL process are used. First, we are considering the 
fact the data volume and maximum time by when the process has 
to successfully complete are known upfront before the ETL starts. 
4

This assumption is realistic because the OSS APIs can be used to 
estimate the number and size of objects to be processed. Likewise, 
the end time by which the ETL process has to finish is a business 
requirement, and it is also known upfront. Second, Hadoop clusters 
can be dynamically launched when they are needed. In particular, 
there are two ways of doing that – using on-demand clusters with 
known up-front cost, or using spot clusters with dynamic cost. 
The choice depends on customer bids and machine availability, as 
described in subsection 4.2. This paper primarily focuses on pre-
dicting future spot prices in a short time horizon and finding the 
optimal time to execute the ETL job for overall cost optimization.

Regarding the estimation of the right cluster size for a specific 
Hadoop job, we refer to our algorithm introduced in [3]. In a nut-
shell, it considers two parameters: the size of data that needs to 
be processed in one run, and the maximum time in which this 
data needs to be fully processed and loaded into the warehouse. 
The main output of the algorithm is the estimated duration, the 
number and the type of nodes that the cluster needs. In other 
words, this can be translated to the number of optimal vCPUs and 
RAM capacity, and the corresponding duration. To make this op-
timization, the algorithm analyzes collected logs about processed 
data volumes and the duration of previous ETL jobs. Again, having 
such logs is also a reasonable assumption for the following reason. 
Any organization adopting any Hadoop-based ETL architecture will 
need to verify that the setup can successfully process the required 
data. During this verification, and even production use of the archi-



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Fig. 2. Histogram of discount rates for the Linux/UNIX spot machines compared to on-demand pricing. The values are computed based on the data described in Section 5.1.
tecture (but without cluster-size optimization), these logs will be 
collected. Considering that the details of the cluster-size optimiza-
tion algorithm and the experimental results are described in [3], 
the remainder of this article focuses on the second aspect, namely, 
predicting when the spot prices will be minimal for the suitable 
workload.

4.2. Spot instances

Spot instances can be regarded as spare compute capacity 
in the cloud. They are offered as one of the three ways cloud 
providers sell their computing capacity – the other two are on-
demand and reserved instances. In terms of the servers, there is 
no difference between the three. The difference is in the business 
model. On-demand instances represent the pay-as-you-go model, 
while reserved instances facilitate long-term renting of comput-
ing resources with a discount. However, spot instances allow cus-
tomers to save up to 90% of costs by using the cloud’s unused 
servers (see Fig. 2, described in section 5.1). The two most pop-
ular cloud providers, Amazon AWS1 and Windows Azure,2 have 
such spot instance offerings. Even though both Windows Azure and 
Amazon AWS offer spot instances, there are years of spot instance 
price history available for AWS. Therefore, most of the discussion 
in this paper revolves around AWS types of spot instances.

With spot instances, customers never pay more than the maxi-
mum price specified in the bid. However, the evident concern with 
the spot model is that the cloud provider may terminate these in-
stances with literally last-minute notice. To understand how spot 
instances can be utilized for ETL workloads, the reasons for inter-
ruptions and behavior during them need to be understood first. 
The following are the possible reasons that Amazon EC2 might in-
terrupt Spot Instances3: Price, the Spot price is greater than the 
customer’s maximum price; capacity, if there are not enough un-
used EC2 instances to meet the demand for Spot Instances, Ama-
zon EC2 interrupts Spot Instances; and constraints, if the customer’s 
request includes a constraint such as a launch group or an Avail-
ability Zone group, these Spot Instances are terminated as a group 
when the constraint can no longer be met.

AWS offers various options to configure interruption behavior 
of Spot instances and Spot Fleets (a set of spot instances), in-
cluding hibernation and automatic restarting. When the AWS Spot 

1 aws.amazon.com/ec2/spot/.
2 azure.microsoft.com/en-us/pricing/spot/.
3 docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html.
5

service determines to hibernate a Spot Instance, an interruption 
notice is issued as a CloudWatch event, but the customer does not 
have time before the Spot Instance is interrupted, and hibernation 
begins immediately. To prevent interruptions, the best practices 
suggest using the on-demand price for bidding, storing necessary 
data regularly at persistent storage (e.g., Amazon S3, Amazon EBS, 
or DynamoDB), and dividing the work into small tasks while using 
checkpoints.

For the current use case, we are interested in performing ETL 
with deterministic latency. In other words, the assumption is that 
even though ETL can be delayed later, there is a deadline by 
which the ETL has to successfully complete. Therefore, the pro-
posed framework can tune the cluster size and predict the optimal 
start time of a cluster, but once a cluster starts, we want to avoid 
interruptions, even at a higher cost (up to the cost of on-demand 
instances). In addition to the proper budgeting, this is one of the 
reasons that make an accurate price prediction in the upcoming 
periods very important.

4.3. Spot price prediction

Naive predictions Considering the use-cases of interest, a reason-
able approach in many business scenarios would be to run the ETL 
process daily. As in many short-term forecast problems, the last 
known value is a reasonably good indicator of the next value. Thus, 
such predictions are commonly used as a baseline. In this section, 
we refer to it as Naive prediction model – that refers to the last 
known spot price of a particular instance type in the given avail-
ability zone. With this approach, at the time when we need to 
predict future spot price of a particular instance, we simply use 
the current price and predict that all future prices are going to be 
equal to it. Obviously, this is a very naive assumption, completely 
ignoring the dynamic demand for spot instances. As the predic-
tion is about values further away in the future, the expectation 
is that the quality of such a forecast would significantly decrease. 
Still, the motivation to include this approach in the evaluation is 
derived from the preliminary exploratory analysis of the dataset 
showing that the spot prices of some instances were infrequently 
changing.

Autoregressive integrated moving average ARIMA form a class of 
time series models that are widely applicable in the field of time 
series forecasting. ARIMA models are known to be robust and ef-
ficient in short-term time series forecasting, with some prominent 
results in financial and commodity markets [44,48]. In the ARIMA 

http://aws.amazon.com/ec2/spot/
http://azure.microsoft.com/en-us/pricing/spot/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html


M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203
model, the future value of a variable is a linear combination of past 
values and errors after removing the trend – by differencing. Given 
a time series data Yt where t is an integer index, an ARMA(p,q) 
model is given by:

Yt = c + εt +
p∑

i=1

ϕi Yt−i +
q∑

i=1

θiεt−i

where Yt and εt are the actual value and error at time period t, 
respectively. Whereas, c is a constant, θi and ϕi are model parame-
ters to be estimated in the process of model training. ARIMA(p,d,q) 
model is an extension of ARMA that aims to model non-stationary 
processes. When the observed time series has a trend, the differ-
ence between consecutive observations is computed d times until 
the observed process becomes stationary.

To provide high-quality spot price forecasts, we trained ARIMA 
models separately for each AWS instance type in each availabil-
ity zone. To adjust price prediction to still changing environment 
on the AWS spot market, hence minimizing the effect of so-called 
concept drifts [54], models were iteratively re-trained after each 
day in data. The more detailed analysis of spot price prediction is 
provided further in Section 5.3.

4.4. Cluster configuration strategy

The configuration strategy should consider several factors. First, 
the deadline by when the ETL process has to successfully complete 
(e.g., 5 AM EST, each day). Second, the estimated duration and re-
quired CPUs (n_vC P U ) and memory capacity (R AM), with can be 
done with the approach described in section 4.1. Third, the ability 
to obtain the desired cluster capacity by picking different instance 
types from the same instance family and availability zone before 
the ETL process is initiated.

To illustrate the third factor, let us consider the following ex-
ample. Let us assume that the total required capacity is denoted by 
(n_vC P U = 96) and memory capacity (R AM = 768 GB). To achieve 
this, there are multiple options. On AWS, as the instance size in-
creases, both the RAM and vCPUs also increase proportionally to 
the size multiplier. For example, an r5.2xlarge instance has 64 GB 
RAM and 8 vCPUs, whereas an r5.12xlarge instance has 384 GB 
RAM and 48 vCPUs, or exactly 6 times more computing capacity 
for 6 times the on-demand cost while having the same network 
performance. Therefore, to achieve the same computing capacity 
of 768 GB RAM and 96 vCPUs, within the r5 instance family the 
are 6 options (i.e., 24 × r5.xlarge, 12 × r5.2xlarge, 6 × r5.4xlarge, 3 
× r5.8xlarge, 2 × r5.12xlarge, or 1 × r5.xlarge). This assumes all in-
stances are of the same type, which is a recommended practice for 
Hadoop clusters. In [4] the experimental evaluation showed that in 
most cases, the total computing capacity is what matters and that 
the ETL duration is marginally affected by choice of instance types 
within the same family and network speed.

To formalize this, let us first define the following parameters. 
An instance family Fi consists of all instance defined by AWS, 
except the ones that have smaller network speed. In some in-
stance families, the smallest instances have lower network speed, 
in which case, they are excluded. This assumption makes sure that 
the network does not impact the subsequent estimates. For each 
instance x ∈ Fi , we denote the on-demand cost costondemand(x), 
spot instance cost at time t as costspot(x, t) and normalized spot 
cost as

costn
spot(x, t) = costspot(x, t)/costondemand(x)

Next, we can compare two arbitrary instances x and y that have 
the same network speed from the same instance family Fi in terms 
of computing capacity and cost with
6

capacity_ratio(x, y) = compute_power(x)

compute_power(y)

and

cost_ratioondemand(x, y) = costondemand(x)

costondemand(y)

Similarly for spot instances, we can define

cost_ratiospot(x, y, t) = costspot(x, t)

costspot(y, t)

scaleup(x) = compute_power(x)/min
F

compute_power(y)

For on-demand prices, the following holds

capacity_ratio(x, y) = cost_ratioondemand(x, y),∀x ∈ Fi,∀y ∈ Fi .

This means that the ratios of price and computational capacity of 
different instances are equal – for example – the twice more pow-
erful machine, costs twice more. However, our exploratory analysis 
showed that this is not always true for spot instances, meaning 
that in general the following holds

∃t, capacity_ratio(x, y) �= cost_ratiospot(x, y, t)

If we can predict which instance is the cheapest at those times 
t , this provides an opportunity to create a cluster with the same 
capacity composed of cheaper instances. We can always chose the 
instance with lowest costn

spot(x, t) for the same instance family Fi

at time t . This means that for the same computing power that we 
need, we’ll always pay the cheapest price. The highest price we 
would pay, by choosing spot instances would be defined as

max_cost(t) = max costn
spot(x, t) f or x ∈ Fi .

We can also define the predicted cost using the proposed predic-
tion methods as predicted_costspot(x, t). So for each time period t
we can either chose a machine

minx
t = min

x
predicted_costspot(x, t) f or x ∈ Fi

By choosing the appropriate xt , we would actually get a

predicted_instance_cost(t) = costn
spot(x = minx

t , t)

If we chose a random spot machine, we would risk having the

worst_case_cost(t) = max_cost(t)

In order to evaluate the success of the strategy, we compare 
the costn

spot(x, t) with the worst_case_cost(t) which is the worst 
case cost for spot instances and with the costondemand(x) which 
is the same for the needed processing power, regardless of 
which machine within the same family we choose. If we define 
the Dynamically-selected spot instance price as the predicted_
costspot(x, t) then we can calculate the ratio between this and the 
worst case cost and the on demand cost.

on_demand_cost_ratio = cost_ondemand(x)

predicted_costspot(x, t)

and

most_expensive_spot = worst_case_cost(t)

predicted_costspot(x, t)
.

To get a better estimation of the prices difference we set the 
dynamically-selected spot price as

dynamically_selected_cost(t) = predicted_costspot(x, t)

predicted_cost (x, t)
= 1
spot



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Table 1
The most popular spot machines.

Region AZ Machine N Bid freq. (h) Bid price ($)

Avg StDev Avg StDev

ap-northeast-2 a r4.8xlarge 513 5.609858 1.850305 0.61898109 0.032847797
ap-south-1 c m5.4xlarge 511 5.646654 2.098600 0.26793268 0.049972972
ap-south-1 a m4.10xlarge 510 5.664042 1.919549 0.64866667 0.065327196
us-west-1 a r4.8xlarge 509 5.679289 1.691382 0.68227269 0.042938466
us-west-1 a r5.4xlarge 507 5.697051 1.577393 0.56153195 0.082851776
sa-east-1 c m4.4xlarge 505 5.718381 2.680653 0.33331168 0.022590959
us-west-2 b c5n.4xlarge 504 5.720918 1.442650 0.40579861 0.031436667
us-west-1 b m5d.4xlarge 504 5.730931 1.736511 0.37877837 0.071149562
eu-central-1 c c5d.9xlarge 504 5.732888 1.632358 0.64598294 0.032545920
ap-south-1 b c5.2xlarge 504 5.740978 1.712241 0.19892956 0.022324986
5. Results and discussion

Contributing to the popularity in industry and research com-
munity of the Amazon Web Services (AWS), and the hardware 
heterogeneity offered in various instance types [52], AWS was used 
for the experimental evaluation of the proposed architecture, in-
cluding the experiments with spot instances. AWS cloud consists 
of geographically dispersed regions around the world, each with 
multiple availability zones (AZ’s).4 In each of the regions, AWS of-
fers a broad number of cloud services, among which the Elastic 
Cloud Compute (EC2) is the essential one.

5.1. Dataset

The analyzed spot price data set was collected from 11 AWS re-
gions5: ap-northeast-1 (427309), ap-northeast-2 (303113), ap-south-
1 (322593), ap-southeast-1 (459592), ap-southeast-2 (382703), ca-
central-1 (206218), eu-central-1 (453457), eu-west-1 (546474), sa-
east-1 (280076), us-east-1 (1061429), us-west-1 (285975), us-west-
2 (661369) over the period between November 11, 2019 and 
March 11, 2020. It consisted of a total of 5.4M records, each corre-
sponding to a particular bid for one of the AWS spot instances. 
After the preliminary data filtering, we left only those records 
which referred to the EMR compatible machine types6 working 
with Linux/UNIX operating system. In particular, we were only in-
terested in ETL related servers, that is: the memory oriented ma-
chine types – m and r series; the computation oriented – c series, 
and g and p series which are popular for the data analysis and ma-
chine learning. The remaining instance families were ignored. For 
spot instances there is also a constraint that the root volume must 
be an Elastic Block Store (EBS) volume, not an instance store vol-
ume, which eliminated some of the instances for this study. The 
spot price time series for each machine type may differ between 
regions and availability zones.

Concerning the savings that could be made with spot instances 
compared to the corresponding on-demand prices, the experimen-
tal results indeed show the advertised claim of savings up to 90% 
is indeed true, as shown in Fig. 2, based on the analysis of the time 
period and instance types described in section 5.1.

In Table 1, we present a brief overview of 10 spot price time 
series for the most popular (i.e., with the most frequent spot price 
changes) machine types.

4 See AWS global cloud infrastructure at aws.amazon.com/about-aws/global-
infrastructure.

5 Numbers in brackets indicate the amount of bids. We may notice that in the 
most active region – North Virginia (us-east-1) – there were recorded over two 
times more bids than in the second most active one.

6 See docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-
instance-types.
7

5.2. Spot prices exploratory analysis

To verify the feasibility of short term spot price prediction, we 
decided to limit the scope of analysis further and to focus on the 
time series with non-trivial price change characteristics. Therefore, 
we discarded machines with infrequent bids (less than 100 bids in 
the entire data set), as well as the time series with almost constant 
prices in the analyzed time range (with the standard deviation of 
prices σ < 0.01). The final data set contained 854 time series for 
85 different machine types aggregated in non-overlapping candle-
sticks – a standard tool in financial stock market analysis [55]. 
Candlestick charts are often used together with various machine 
learning models, like SVM or DNN [56]. In the performed exper-
iments, each candlestick contained volume of operations as well 
as open, high, low and close price during one day. The exemplary 
candlestick charts for two popular machine types in North Virginia 
(us-east-1) region are depicted in Fig. 3.

5.3. Spot price predictions

Having the data aggregated in one-day candlesticks, for a give 
day (tx), we aim to predict the highest price during the next day 
(tx+1). The models are evaluated with two commonly used error 
metrics, namely, root mean square error (RMSE) and mean abso-
lute percentage error (MAPE). However, to make the prediction and 
obtained error rates comparable between various machines, the 
prices were scaled – they were divided by the on-demand price 
of the same machine type in the corresponding region. This allows 
providing an estimation of a budget needed for the data processing 
task. The preliminary analysis showed that even the Naive model, 
which used as a prediction the last day price, achieved a rela-
tively good quality. The highest MAPE of 5.49% was recorded for 
the m5d.16xlarge machine type in ap-northeast-2 region (see Fig. 5
(a)). The median and macro average of MAPE over all 854 evalu-
ated time series was 0.66% and 0.87%, respectively. These results 
mean that in the worst case, we can expect a budget overrun of 
ca. 5.49% in the event of a rapid price change (as shown in Fig. 5). 
However, on average, the error will be much smaller. The results of 
Naive model performance aggregated over all 854 time series are 
presented in Table 2 in the row signed Naive. The median RMSE, 
in Table 2, refers to median value of 854 experiments. Similarly, 
in the table, we also report macro average, 3rd quantile, and max 
value for RMSE and MAPE.

In the performed study, we trained ARIMA models for each 
of 854 time series in data. Similar to the Naive model’s case, 
the evaluation was performed on the last two months in data 
(60 days). Before each assessment (at time tx) of next day price, 
the ARIMA model was re-trained on all available historical data 
(t0...tx). The aggregated performance of the ARIMA model trained 
on all available history is presented in Table 2 in the row marked 
as “ARIMA(All)”. To further verify the optimal history size for the 
estimation of model’s parameters, that allows more dynamically 

http://aws.amazon.com/about-aws/global-infrastructure
http://aws.amazon.com/about-aws/global-infrastructure
http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types
http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types


M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Fig. 3. Candlestick charts for two popular machine types in N. Virginia region, both in AZ: ‘b’.

Fig. 4. Correlation heatmap for the three popular spot machine types: r4.4xlarge, m5.4xlarge, c5.2xlarge. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
8



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Fig. 5. Candlestick charts of two machines troublesome for prediction.

Table 2
Spot price prediction in one day horizon. ARIMA with various sliding window settings (training history length in brackets) 
and the naive model with last known value. The minimal error for all classifiers was equal to zero. The 1st quantile was 
always smaller than 0.001 and 0.15 for R2 and MAPE, respectively. Prediction evaluated on the last two months in data 
(60 days).

Model Hist. size RMSE MAPE

Median MacAvg 3rdQu. Max Median MacAvg 3rdQu. Max

A
RI

M
A

10 0.003541 0.006239 0.006510 0.041954 0.7069 0.9088 1.2520 5.1401
15 0.003147 0.00547 0.00713 0.06168 0.6486 0.8008 1.1552 3.8915
20 0.003252 0.006428 0.007588 0.059637 0.6620 0.8884 1.2644 5.1581
25 0.003125 0.006296 0.007502 0.059256 0.6322 0.8597 1.1928 6.4112
30 0.003045 0.005978 0.007135 0.059093 0.6199 0.8240 1.2005 5.5383
35 0.002986 0.006060 0.007151 0.080333 0.6101 0.8197 1.1622 4.7605
40 0.002928 0.005767 0.006876 0.059086 0.5987 0.8020 1.1433 3.8416
45 0.002864 0.005771 0.007044 0.075629 0.5954 0.8032 1.1157 4.0203
50 0.002861 0.005567 0.006923 0.102551 0.5893 0.789 1.0645 4.9812
All 0.00281 0.005506 0.007388 0.078838 0.5866 0.8051 1.0335 6.5449

Naive 1 0.003135 0.006071 0.005902 0.046476 0.6640 0.8782 1.2556 5.4873
respond to the shifts in characteristics of AWS spot prices, we re-
peated the experiments for various length of training data history 
to fit the ARIMA model (from 10 days to 50 days). In the case of 40 
day long history the maximal MAPE error of 3.84% was recorded in 
us-west-1 region for r5d.16xlarge machine (see Fig. 5(b)). This pro-
vides us with the worst-case estimation of cost under- or over-run 
of spot resource allocation. Still, in the (macro) averaged or mean 
case, we would be far more accurate. In Table 2, the aggregated 
analysis for the Naive model and all ARIMA settings is presented.

For the more in-depth analysis, we decided to select Naive, 
ARIMA(All), ARIMA(40) models. The first one presents a baseline, 
the second achieved lowest average errors, whereas the ARIMA(40) 
minimized the maximal MAPE error, which assures the lowest 
worst-case budget misestimation. The three main parameters to 
be estimated in the ARIMA(p, d, q) model are the number of time 
lags of the auto-regressive model p, degree of differencing d, and 
the order of the moving average model (q). In our experiments, 
these parameters were estimated using the Box–Jenkins approach. 
The analysis of the selected models revealed that for various time 
series and length of available training data, different p and q pa-
rameter values were chosen. In the performed experiments, the se-
ries were most often differenced once - trend components for the 
trained ARIMA models were usually d = 1. The AR parameters were 
typically equal to 1 or 2, whereas MA parameters varied from 0 to 
4. The seasonality test was negative in all examined cases. Hence, 
the trained ARIMA models were of a form ARIMA(1 − 2, 1, 0 − 4).

To validate the statistical significance of observed differences 
between the performance of the selected models, we decided to 
9

employ the Wilcoxon signed rank test – due to a very low p-value 
observed during Shapiro-Wilk normality test on both RMSE and 
MAPE distributions achieved during the tests. In all the cases, p-
value of Shapiro-Wilk normality test was: p-value < 1.0e-15. In 
the case of RMSE, the Wilcoxon signed rank test, with the null 
hypothesis that the errors of the Naive model are not greater 
than those of ARIMA(40) did not allow to reject this hypoth-
esis (p-value = 0.1954). However, when the ARIMA(All) model 
was compared to ARIMA(40) and Naive, the p-values of both 
tests were very low, i.e., 3.786e-08 for Naive and 4.649e − 06
for ARIMA(40), respectively. It allowed us to reject the null 
hypothesis, hence showing the statistical significance of differ-
ences between the models. Slightly different observations were 
made for the MAPE measure. In this case, the Wilcoxon test re-
vealed that ARIMA(40) model was significantly better than Naive 
(p-value = 3.053e-07). However, the ARIMA(All) again performed 
significantly better than both ARIMA(40) (p-value = 0.005515) and 
Naive (p-value = 3.396e-11) models.

In the last part of our study, we attempted to validate the 
feasibility of spot price prediction in a bit longer horizon of two 
and three days ahead. We examined the performance of the three 
selected models from our previous test: Naive, ARIMA(All) and 
ARIMA(40). The results - presented in Table 3 - showed that the 
observed drop of each model performance is significant, and the 
maximal MAPE error exceeds 16% for both ARIMA(All) and Naive 
models. However, we may conclude that prediction is still feasi-
ble two and three days ahead, with a median of MAPE errors 
only slightly exceeding 1.6% for ARIMA(All). Further research on 



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Table 3
A summary of the prediction errors of the selected models for various forecasting horizons (1-3 days).

Model Pred. day RMSE MAPE

Median MacAvg 3rdQu. Max Median MacAvg 3rdQu. Max

A
RI

M
A

(A
ll) 1 0.0028 0.0055 0.0074 0.0788 0.5866 0.8051 1.034 6.545

2 0.0053 0.01 0.0118 0.095 1.15 1.537 2.029 10.73
3 0.0076 0.0146 0.0152 0.142 1.647 2.28 2.948 16.32

A
RI

M
A

(4
0) 1 0.0029 0.0058 0.0069 0.0591 0.599 0.802 1.143 3.842

2 0.0056 0.0105 0.0123 0.079 1.187 1.57 2.18 7.96
3 0.0079 0.015 0.017 0.136 1.72 2.36 3.24 13.98

N
ai

ve

1 0.00314 0.0061 0.006 0.0465 0.664 0.878 1.256 5.487
2 0.00547 0.0112 0.011 0.0887 1.1841 1.6459 2.335 11.01
3 0.0073 0.0157 0.014 0.126 1.609 2.345 3.317 16.48

Fig. 6. Cost ratio compared to the minimum cost per instance families. The last bar is the Micro average of the ratio considering all instances and all availability zones.
more sophisticated regression methods could bring more accurate 
predictions. An interesting approach would be to use multivariate 
methods, mainly due to the observed correlations between various 
time series in multiple regions and availability zones, as shown in 
Fig. 4. This figure is a heatmap with a dendrogram added to the 
left side and to the top where the color of each cell represents the 
correlation between the price of a pair of instance types in differ-
ent availability zones. A dendrogram is a tree-structured graph that 
visualizes the result of a hierarchical clustering calculation. For the 
dendrogram on the left side of the heatmap, the individual rows 
in the clustered data are represented by the right-most nodes (i.e., 
the leaf nodes). Each node in the dendrogram represents a clus-
ter of all rows from the connected leafs. The left-most node in the 
dendrogram is therefore a cluster that contains all rows.

5.4. Cost-effectiveness analysis of dynamic cluster selection

We performed the following experiments to illustrate the prac-
tical benefit of the proposed method for dynamic cluster configu-
ration. Using the same data as described in Section 5.1, we made 
predictions of the spot prices of all instances for the last 60 days 
in data with the best of the analyzed models in the previous sec-
tion, i.e., ARIMA(all). When this model is deployed in a production 
setting to make predictions of the price, it dynamically guides the 
cluster configuration. At the end of each billing period, the im-
10
plications related to actual incurred costs are known, as well as 
whether the predictions were the most optimal. Therefore, Fig. 6
and 7 relate to the actual cost and not the predicted cost. Also, the 
ARIMA-based spot prices cost, the on-demand prices, and the most 
expensive spot-configuration are ratios compared to the cheap-
est instances that could be used for the dame day. Considering 
the parameters defined in section 4.4, lets take for example the 
ap.northeast.1c region and the c5d instance types. Let us assume 
that the task lasts less than 24 hours to complete and that we 
need to repeat this task for the following 60 days. We need one 
4x.large instance or two 2x.large instances to complete the task 
each day. We could choose between several strategies – use one 
4x.large instance each day, use two 2x.large instances every day 
or use the best option using the ARIMAs prediction. The normal-
ized cost we would pay for using the on-demand machine would 
be 60 as we pay the full price for the desired processing power ev-
ery day for 60 days. If we chose two 2x.large every day, we would 
pay normalized spot cost of

total_cost(2x.large) =
60∑

t=1

costn
spot(x = 2x.large, t) = 17.46

and if we opt in for one 4x.large, we would pay normalized spot 
cost of



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203

Fig. 7. Cost ratio compared to minimum cost per region. The last bar is the Micro average of the ratio considering all instances in a region.
total_cost(4x.large) =
60∑

t=1

costn
spot(x = 4x.large, t) = 18.18

These represent the sums of normalized costs. By using the 
ARIMA method and the proposed strategy, the normalized spot 
cost for the full 60 day period would be:

total_cost(AR I M A)=
60∑

t=1

costn
spot(x= predicted_spot, t)=17.23

where

predicted_spot = min
x

(predicted_costspot(x, t)) f or x ∈ Fi

If we use the actual minimum price by knowing it up-front some-
how, we would pay 17.23 for this specific instance type which is 
very close to the ARIMA prediction and if we chose always the 
most expensive option the cost would be 18.41. Based on these 
findings, for the 60 days period we would have:

dynamically_selected_cost = 17.23

17.23
= 1

most_expensive_spot_ratio = 18.41

17.23
= 1.068

on_demand_cost_ratio = 60

17.23
= 3.48

In Fig. 6 and 7, lower is better, and the minimum value is 1, mean-
ing the average cost is the same as the absolute minimum cost 
that could be paid for those days.

In Fig. 6, the cost ratios per instance family are shown. The 
metrics average the cost ratios per instance family, regardless of 
the availability zone and region. Notably, the average on-demand 
cost ranges from 2.5 to almost 5 times more than the absolute 
minimum that could be obtained with a dynamic choice of spot 
instances for the same instance family. Similarly, by choosing sub-
optimal spot instances, the cost ratio ranges from 1.1 to 1.9, mean-
ing one would pay 10% to 90% more. The proposed prediction 
method minimizes this cost, which in most cases, is the optimal 
one, and always is less than 0.2%. It is also worth noting the 
memory-optimized instance families benefit from spot instances 
11
mostly. Likewise, the GPU instance types have substantial cost re-
duction compared to on-demand instances, but see the smallest 
benefit from the dynamic instance size selection.

In Fig. 7, we show the cost ratios per region. The metrics av-
erage the cost ratios per region, regardless of the availability zone 
and instance family. Notably, the average on-demand cost ranges 
from 3.1 to almost 5 times more than the absolute minimum that 
could be obtained with a dynamic choice of spot instances from 
the same instance family in the same availability zone. Similarly, 
by choosing sub-optimal spot instances, the cost ratio ranges from 
1.04 to 1.9, meaning one would pay 4% to 90% more. The pro-
posed prediction method minimizes this cost, which in most cases, 
is the optimal one, and always is <0.1%. It is also worth noting that 
the clusters deployed in the sa.east.1 region would mostly benefit 
from spot instances. Likewise, except for the ap.southeast.2 region, 
in other regions, considerable cost reduction can be achieved with 
dynamic instance size selection compared to having a cluster with 
predefined instance sizes.

5.5. Limitations

One factor worth considering when applying the proposed ap-
proach is the geographical location of the data, and the clusters 
that are ought to process it. Preferably, the data and compute 
resources should be in the same data center to leverage the co-
location for reducing the latency and avoiding unnecessary ex-
penses related to data transfer out of the data center. That being 
said, in some cases, the optimization strategy should be only lim-
ited to consider clusters in the data center where the data is kept. 
However, even in such cases, using the proposed algorithm, it is 
possible to identify the optimal cluster configuration by selecting 
the cheapest instance types in the location of interest.

Another consideration is the sudden termination of VMs by the 
cloud provider. Amazon discloses that it can happen at two-minute 
notice before termination, providing a chance to interrupt running 
jobs. As described in Section 4.2, there are various bidding strate-
gies, and practical guidelines provided by Cloud operators that aim 
at minimizing that risk. Still, it would be valuable to thoroughly 
evaluate those strategies through extensive testing. Cloud providers 
also recommend saving the progress of running jobs in small in-
crements, so in the case of interruptions, only a small part of in-



M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203
complete work is lost. This last recommendation is in line with the 
builtin Spark fault tolerance mechanism, i.e., D-Streams in a system 
called Spark Streaming [57], or Resilient Distributed Datasets [58].

In theory, if multiple cloud customers use the proposed bid-
ding strategy, their actions could result in a spike in demand for 
spot instances, causing the predictions to be invalid. Situations like 
that often occur in the stock markets and are considered as par-
ticularly challenging to address and predict. In that regard, any 
experimental verification of our approach would also be compli-
cated and would require significant resources. The validation of the 
proposed algorithms in real-life scenarios would involve simulta-
neous requests of hundreds, if not thousands, of VMs in a single 
availability zone. With appropriate budgeting, however, this is an 
exciting topic for future research.

6. Conclusions

There are exceptionally reliable and efficient tools that are well-
architected by the cloud providers are easy to combine into highly 
effective processes. By doing so, architects and developers create 
data pipelines and business processes much faster and with better 
quality than the more traditional ways did it. At the same time, the 
resources available are not always the most cost-effective. A given 
process, such as Spark session, may be performed at the prime 
time, when the cost is higher even though, that actual results are 
not needed at that specific time.

This paper proposed a cloud-based architecture for processing 
of Big Data. The proposed framework first identifies the optimal 
cluster configuration to perform the processing. Then, by analyz-
ing the history of spot prices of the needed resources, performs 
intelligent dynamic scheduling so that the cost of the resources 
are minimized. Our experiments showed that we could optimize 
the cluster costs with a reduction of up to 80% compared to 
on-demand clusters. Furthermore, the dynamically selected con-
figuration costs only up to 1% more than the absolute minimum. 
The proposed method could be a valuable method for optimizing 
cloud-computing costs of organizations, while also providing ac-
curate budget planning predictions. In the future, the dynamically 
scheduling system needs to be evaluated in a production setting 
and investigate how often interruptions of spot instances occur and 
whether they can be avoided.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgement

This work was co-financed by the EU Smart Growth Opera-
tional Programme 2014-2020 under the project “Development and 
validation of CogniMarts - an artificial intelligence-based system 
capable of independent, automatic (without human involvement) 
ordering and combining large data sets”, POIR.01.01.01-00-0742/19. 
This work was co-financed by Polish National Science Centre (NCN) 
grant no. 2018/31/N/ST6/00610.

References

[1] R. Keller, L. Häfner, T. Sachs, G. Fridgen, Scheduling flexible demand in cloud 
computing spot markets, Bus. Inf. Syst. Eng. 62 (1) (2020) 25–39, https://doi .
org /10 .1007 /s12599 -019 -00592 -5.

[2] J. Sandobalin, E. Insfrán, S. Abrahão, On the effectiveness of tools to support 
infrastructure as code: model-driven versus code-centric, IEEE Access 8 (2020) 
17734–17761, https://doi .org /10 .1109 /ACCESS .2020 .2966597.
12
[3] E. Zdravevski, P. Lameski, A. Dimitrievski, M. Grzegorowski, C. Apanowicz, 
Cluster-size optimization within a cloud-based ETL framework for big data, in: 
2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, 
USA, December 9–12, 2019, IEEE, 2019, pp. 3754–3763.

[4] E. Zdravevski, P. Lameski, C. Apanowicz, D. Ślęzak, From big data to business 
analytics: the case study of churn prediction, Appl. Soft Comput. 90 (2020) 
106164, https://doi .org /10 .1016 /j .asoc .2020 .106164.

[5] S. Chaudhuri, U. Dayal, V. Narasayya, An overview of business intelligence tech-
nology, Commun. ACM 54 (8) (2011) 88–98, https://doi .org /10 .1145 /1978542 .
1978562.

[6] M. Bala, O. Boussaid, Z. Alimazighi P-etl, Parallel-etl based on the mapreduce 
paradigm, in: 2014 IEEE/ACS 11th International Conference on Computer Sys-
tems and Applications (AICCSA), 2014, pp. 42–49.

[7] M. Cai, M. Grund, A. Gupta, F. Nagel, I. Pandis, Y. Papakonstantinou, M. 
Petropoulos, Integrated querying of sql database data and s3 data in Amazon 
redshift, IEEE Data Eng. Bull. 41 (2) (2018) 82–90.

[8] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, V. Srinivasan, 
Amazon redshift and the case for simpler data warehouses, in: Proceedings 
of the 2015 ACM SIGMOD International Conference on Management of Data – 
SIGMOD ’15 2015-May, 2015, pp. 1917–1923.

[9] Amazon Athena, https://docs .aws .amazon .com /athena/. (Accessed 5 May 2020).
[10] K. Feasel, Polybase in azure synapse analytics, in: PolyBase Revealed, Springer, 

2020, pp. 233–249.
[11] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, R. 

Murthy, Hive - a petabyte scale data warehouse using hadoop, https://doi .org /
10 .1109 /ICDE .2010 .5447738, March 2010.

[12] E. Zdravevski, P. Lameski, A. Kulakov, Row key designs of NoSQL database tables 
and their impact on write performance, in: Proceedings – 24th Euromicro In-
ternational Conference on Parallel, Distributed, and Network-Based Processing, 
PDP 2016, 2016, pp. 10–17.

[13] D. Ślęzak, R. Glick, P. Betlinski, P. Synak, A new approximate query engine 
based on intelligent capture and fast transformations of granulated data sum-
maries, J. Intell. Inf. Syst. 50 (2018) 385–414.

[14] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, C. Curino, Apache tez: 
a unifying framework for modeling and building data processing applications, 
in: Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, ACM, New York, NY, USA, 2015, pp. 1357–1369.

[15] J.E. Gonzalez, P. Bailis, M.I. Jordan, M.J. Franklin, J.M. Hellerstein, A. Ghodsi, I. 
Stoica, Asynchronous complex analytics in a distributed dataflow architecture, 
preprint, arXiv:1510 .07092.

[16] P. Godfrey, J. Gryz, P. Lasek, Interactive visualization of large data sets, IEEE 
Trans. Knowl. Data Eng. 28 (8) (2016) 2142–2157.

[17] P. Godfrey, J. Gryz, P. Lasek, N. Razavi, Interactive visualization of big data, 
in: S. Kozielski, D. Mrozek, P. Kasprowski, B. Małysiak-Mrozek, D. Kostrzewa 
(Eds.), Beyond Databases, Architectures and Structures. Advanced Technologies 
for Data Mining and Knowledge Discovery, Springer International Publishing, 
Cham, 2016, pp. 3–22.

[18] H. Chen, R. Chiang, V. Storey, Business intelligence and analytics: from big data 
to big impact, Manag. Inf. Syst. Q. 36 (4) (2012) 1165–1188.

[19] M. Ceci, R. Corizzo, F. Fumarola, M. Ianni, D. Malerba, G. Maria, E. Masciari, 
M. Oliverio, A. Rashkovska, Big data techniques for supporting accurate pre-
dictions of energy production from renewable sources, in: Proceedings of the 
19th International Database Engineering and Applications Symposium, IDEAS 
’15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 62–71.

[20] P. Lasek, J. Gryz, Density-based clustering with constraints, Comput. Sci. Inf. 
Syst. 16 (2) (2019) 469–489.

[21] D. Ślęzak, M. Grzegorowski, A. Janusz, M. Kozielski, S.H. Nguyen, M. Sikora, 
S. Stawicki, Ł. Wróbel, A framework for learning and embedding multi-sensor 
forecasting models into a decision support system: a case study of methane 
concentration in coal mines, Inf. Sci. 451–452 (2018) 112–133, https://doi .org /
10 .1016 /j .ins .2018 .04 .026.

[22] R. Corizzo, M. Ceci, E. Zdravevski, N. Japkowicz, Scalable auto-encoders for 
gravitational waves detection from time series data, Expert Syst. Appl. 151 
(2020) 113378.

[23] B. Petrovska, T. Atanasova-Pacemska, R. Corizzo, P. Mignone, P. Lameski, E. 
Zdravevski, Aerial scene classification through fine-tuning with adaptive learn-
ing rates and label smoothing, Appl. Sci. 10 (17) (2020) 5792.

[24] R. Corizzo, M. Ceci, H. Fanaee-T, J. Gama, Multi-aspect renewable energy fore-
casting, Inf. Sci. 546 (2021) 701–722.

[25] M. Grzegorowski, A. Janusz, D. Ślęzak, M.S. Szczuka, On the role of feature 
space granulation in feature selection processes, in: J. Nie, Z. Obradovic, T. 
Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, 
J. Kepner, A. Cuzzocrea, J. Tang, M. Toyoda (Eds.), International Conference 
on Big Data, IEEE, BigData 2017, Boston, MA, USA, December 11–14, 2017, 
pp. 1806–1815.

[26] F.A. Batarseh, E.A. Latif, Assessing the quality of service using big data ana-
lytics: with application to healthcare, Big Data Res. 4 (2016) 13–24, https://
doi .org /10 .1016 /j .bdr.2015 .10 .001.

[27] A. Janusz, M. Grzegorowski, M. Michalak, L. Wróbel, M. Sikora, D. Ślęzak, 
Predicting seismic events in coal mines based on underground sensor mea-

https://doi.org/10.1007/s12599-019-00592-5
https://doi.org/10.1007/s12599-019-00592-5
https://doi.org/10.1109/ACCESS.2020.2966597
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFD9721AB9BC94A16B447088F49DF3058s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFD9721AB9BC94A16B447088F49DF3058s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFD9721AB9BC94A16B447088F49DF3058s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFD9721AB9BC94A16B447088F49DF3058s1
https://doi.org/10.1016/j.asoc.2020.106164
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1145/1978542.1978562
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib04257A6F1E27AA3235F06B8546964E79s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib04257A6F1E27AA3235F06B8546964E79s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib04257A6F1E27AA3235F06B8546964E79s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibCBAE77468798714FC7820DE8B512EC5As1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibCBAE77468798714FC7820DE8B512EC5As1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibCBAE77468798714FC7820DE8B512EC5As1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibB4960E65C21A3023CC7A11E8511E6B21s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibB4960E65C21A3023CC7A11E8511E6B21s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibB4960E65C21A3023CC7A11E8511E6B21s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibB4960E65C21A3023CC7A11E8511E6B21s1
https://docs.aws.amazon.com/athena/
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib33502BFB3CDBE02A05ADE21E76088ABAs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib33502BFB3CDBE02A05ADE21E76088ABAs1
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICDE.2010.5447738
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7C3DDB9A9487ADC6A8E53045FB8D6635s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7C3DDB9A9487ADC6A8E53045FB8D6635s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7C3DDB9A9487ADC6A8E53045FB8D6635s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7C3DDB9A9487ADC6A8E53045FB8D6635s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib03A8D00FD7D6ACC9158CB3A142A04368s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib03A8D00FD7D6ACC9158CB3A142A04368s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib03A8D00FD7D6ACC9158CB3A142A04368s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib846A32BFD6A3DFC24EA8B5ED3EBCA71Bs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib846A32BFD6A3DFC24EA8B5ED3EBCA71Bs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib846A32BFD6A3DFC24EA8B5ED3EBCA71Bs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib846A32BFD6A3DFC24EA8B5ED3EBCA71Bs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib2225132F319460F4AC7E3E2EB9B05F45s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib2225132F319460F4AC7E3E2EB9B05F45s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib2225132F319460F4AC7E3E2EB9B05F45s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibC5A4E6BED21FBB9FF0385481BEF3FEFEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibC5A4E6BED21FBB9FF0385481BEF3FEFEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib236F9E6EE686560D42A0C0DC7B94B6D7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib236F9E6EE686560D42A0C0DC7B94B6D7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib236F9E6EE686560D42A0C0DC7B94B6D7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib236F9E6EE686560D42A0C0DC7B94B6D7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib236F9E6EE686560D42A0C0DC7B94B6D7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1E297E3CD611131F2B936EA2AE3D0117s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1E297E3CD611131F2B936EA2AE3D0117s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7EFB8C16F96A74DC018CECC2407036C2s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7EFB8C16F96A74DC018CECC2407036C2s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7EFB8C16F96A74DC018CECC2407036C2s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7EFB8C16F96A74DC018CECC2407036C2s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib7EFB8C16F96A74DC018CECC2407036C2s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib6B2200ADFA955BC49C498386383FB195s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib6B2200ADFA955BC49C498386383FB195s1
https://doi.org/10.1016/j.ins.2018.04.026
https://doi.org/10.1016/j.ins.2018.04.026
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibE645BC221E06BF7AE8F1BC4487C1F0D4s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibE645BC221E06BF7AE8F1BC4487C1F0D4s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibE645BC221E06BF7AE8F1BC4487C1F0D4s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib69BA989D74E7DCB97817E9158F3DD01Cs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib69BA989D74E7DCB97817E9158F3DD01Cs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib69BA989D74E7DCB97817E9158F3DD01Cs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibAF4A19F1AFBB289331D1F588FB657D6As1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibAF4A19F1AFBB289331D1F588FB657D6As1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib10E8904677F78E4144BE5B5DEA0B6484s1
https://doi.org/10.1016/j.bdr.2015.10.001
https://doi.org/10.1016/j.bdr.2015.10.001


M. Grzegorowski, E. Zdravevski, A. Janusz et al. Big Data Research 25 (2021) 100203
surements, Eng. Appl. Artif. Intell. 64 (2017) 83–94, https://doi .org /10 .1016 /j .
engappai .2017.06 .002.

[28] E. Zdravevski, P. Lameski, A. Kulakov, B. Jakimovski, S. Filiposka, D. Trajanov, 
Feature ranking based on information gain for large classification problems 
with mapreduce, in: Proceedings of the 9th IEEE International Conference on 
Big Data Science and Engineering, IEEE Computer Society Conference Publish-
ing, 2015, pp. 186–191.

[29] E. Zdravevski, P. Lameski, A. Kulakov, S. Filiposka, D. Trajanov, B. Jakimovski, 
Parallel computation of information gain using hadoop and mapreduce, in: 
M.P.M. Ganzha, L. Maciaszek (Eds.), Proceedings of the 2015 Federated Con-
ference on Computer Science and Information Systems, in: Annals of Computer 
Science and Information Systems, vol. 5, IEEE, 2015, pp. 181–192.

[30] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. 
Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia, A. 
Talwalkar, Mllib: machine learning in Apache Spark, J. Mach. Learn. Res. 17 (1) 
(2016) 1235–1241.

[31] A. Gounaris, J. Torres, A methodology for spark parameter tuning, Big Data Res. 
11 (2018) 22–32, https://doi .org /10 .1016 /j .bdr.2017.05 .001.

[32] R.E. Shawi, S. Sakr, D. Talia, P. Trunfio, Big data systems meet machine learning 
challenges: towards big data science as a service, Big Data Res. 14 (2018) 1–11, 
https://doi .org /10 .1016 /j .bdr.2018 .04 .004.

[33] I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S. Ullah Khan, The rise 
of “big data” on cloud computing: review and open research issues, Inf. Sci. 47 
(2015) 98–115, https://doi .org /10 .1016 /j .is .2014 .07.006.

[34] N. Kaur, S.K. Sood, Efficient resource management system based on 4vs of big 
data streams, Big Data Res. 9 (2017) 98–106, https://doi .org /10 .1016 /j .bdr.2017.
02 .002.

[35] S.S. Gill, P. Garraghan, V. Stankovski, G. Casale, R.K. Thulasiram, S.K. Ghosh, K. 
Ramamohanarao, R. Buyya, Holistic resource management for sustainable and 
reliable cloud computing: an innovative solution to global challenge, J. Syst. 
Softw. 155 (2019) 104–129, https://doi .org /10 .1016 /j .jss .2019 .05 .025.

[36] A. Malondkar, R. Corizzo, I. Kiringa, M. Ceci, N. Japkowicz, Spark-ghsom: grow-
ing hierarchical self-organizing map for large scale mixed attribute datasets, 
Inf. Sci. 496 (2019) 572–591, https://doi .org /10 .1016 /j .ins .2018 .12 .007, http://
www.sciencedirect .com /science /article /pii /S0020025518309496.

[37] K. Elmeleegy, Piranha: optimizing short jobs in hadoop, Proc. VLDB Endow. 
6 (11) (2013) 985–996.

[38] H. Herodotou, F. Dong, S. Babu, No one (cluster) size fits all: automatic cluster 
sizing for data-intensive analytics, in: Proceedings of the 2nd ACM Symposium 
on Cloud Computing, ACM, 2011, p. 18.

[39] D.J. Dubois, G. Casale, Optispot: minimizing application deployment cost using 
spot cloud resources, Clust. Comput. 19 (2) (2016) 893–909, https://doi .org /10 .
1007 /s10586 -016 -0568 -7.

[40] X. Wu, F.D. Pellegrini, G. Gao, G. Casale, A framework for allocating server 
time to spot and on-demand services in cloud computing, ACM Trans. Model. 
Perform. Evaluation Comput. Syst. 4 (4) (2019) 20:1–20:31, https://doi .org /10 .
1145 /3366682.

[41] Z. Cen, J. Wang, Crude oil price prediction model with long short term mem-
ory deep learning based on prior knowledge data transfer, Energy 169 (2019) 
160–171, https://doi .org /10 .1016 /j .energy.2018 .12 .016.

[42] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for 
financial market predictions, Eur. J. Oper. Res. 270 (2) (2018) 654–669, https://
doi .org /10 .1016 /j .ejor.2017.11.054.

[43] D. Shah, H. Isah, F. Zulkernine, Stock market analysis: a review and taxonomy 
of prediction techniques, Int. J. Financ. Stud. 7 (2) (2019), https://doi .org /10 .
3390 /ijfs7020026.

[44] A.A. Ariyo, A.O. Adewumi, C.K. Ayo, Stock price prediction using the ARIMA 
model, in: 2014 UKSim-AMSS 16th International Conference on Computer 
Modelling and Simulation, 2014, pp. 106–112.

[45] A.A. Adebiyi, A.O. Adewumi, C.K. Ayo, Comparison of ARIMA and artificial neu-
ral networks models for stock price prediction, J. Appl. Math. 2014 (2014) 
614342:1–614342:7, https://doi .org /10 .1155 /2014 /614342.

[46] M. Baughman, C. Haas, R. Wolski, I. Foster, K. Chard, Predicting Amazon spot 
prices with lstm networks, in: Proceedings of the 9th Workshop on Scientific 
Cloud Computing, ScienceCloud’18, Association for Computing Machinery, New 
York, NY, USA, 2018, p. 7.

[47] V. Khandelwal, A.K. Chaturvedi, C.P. Gupta, Amazon ec2 spot price prediction 
using regression random forests, IEEE Trans. Cloud Comput. 8 (1) (2020) 59–72.

[48] S.A. David, J.A.T. Machado, L.R. Trevisan, C.M.C. Inácio, A.M. Lopes, Dynamics of 
commodities prices: integer and fractional models, Fundam. Inform. 151 (1–4) 
(2017) 389–408, https://doi .org /10 .3233 /FI -2017 -1499.

[49] A. Neilson, Indratmo, B. Daniel, S. Tjandra, Systematic review of the literature 
on big data in the transportation domain: concepts and applications, Big Data 
Res. 17 (2019) 35–44, https://doi .org /10 .1016 /j .bdr.2019 .03 .001.

[50] R. Ranjan, Streaming big data processing in datacenter clouds, IEEE Cloud Com-
put. 1 (1) (2014) 78–83, https://doi .org /10 .1109 /MCC .2014 .22.

[51] H. Hu, Y. Wen, T.S. Chua, X. Li, Toward scalable systems for big data analytics: 
a technology tutorial, IEEE Access 2 (2014) 652–687, https://doi .org /10 .1109 /
ACCESS .2014 .2332453.

[52] S. Mathew, Overview of Amazon Web Services, April 2017, accessed: 2019-06-
04.

[53] M. Kiran, P. Murphy, I. Monga, J. Dugan, S.S. Baveja, Lambda architecture for 
cost-effective batch and speed big data processing, in: 2015 IEEE International 
Conference on Big Data (Big Data), 2015, pp. 2785–2792.

[54] A. Liu, J. Lu, F. Liu, G. Zhang, Accumulating regional density dissimilarity for 
concept drift detection in data streams, Pattern Recognit. 76 (2018) 256–272, 
https://doi .org /10 .1016 /j .patcog .2017.11.009.

[55] E. Ahmadi, M. Jasemi, L. Monplaisir, M.A. Nabavi, A. Mahmoodi, P.A. Jam, New 
efficient hybrid candlestick technical analysis model for stock market timing on 
the basis of the support vector machine and heuristic algorithms of imperialist 
competition and genetic, Expert Syst. Appl. 94 (2018) 21–31, https://doi .org /10 .
1016 /j .eswa .2017.10 .023.

[56] R.M.I. Kusuma, T.-T. Ho, W.-C. Kao, Y.-Y. Ou, K.-L. Hua, Using deep learning 
neural networks and candlestick chart representation to predict stock market, 
arXiv:1903 .12258, 2019.

[57] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized streams: 
fault-tolerant streaming computation at scale, in: M. Kaminsky, M. Dahlin 
(Eds.), ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP 
’13, Farmington, PA, USA, November 3–6, 2013, ACM, 2013, pp. 423–438.

[58] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J. Franklin, 
S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction 
for in-memory cluster computing, in: S.D. Gribble, D. Katabi (Eds.), Proceedings 
of the 9th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2012, San Jose, CA, USA, April 25–27, 2012, USENIX Association, 
2012, pp. 15–28.
13

https://doi.org/10.1016/j.engappai.2017.06.002
https://doi.org/10.1016/j.engappai.2017.06.002
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib224BBC2AEF942D5BA86AAEAE4C94D846s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib224BBC2AEF942D5BA86AAEAE4C94D846s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib224BBC2AEF942D5BA86AAEAE4C94D846s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib224BBC2AEF942D5BA86AAEAE4C94D846s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib224BBC2AEF942D5BA86AAEAE4C94D846s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib390F5330C17C3D8E8351E8FF77218B42s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib390F5330C17C3D8E8351E8FF77218B42s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib390F5330C17C3D8E8351E8FF77218B42s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib390F5330C17C3D8E8351E8FF77218B42s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib390F5330C17C3D8E8351E8FF77218B42s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib308E20882358DA92B27965C5FD37433Fs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib308E20882358DA92B27965C5FD37433Fs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib308E20882358DA92B27965C5FD37433Fs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib308E20882358DA92B27965C5FD37433Fs1
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1016/j.bdr.2018.04.004
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1016/j.bdr.2017.02.002
https://doi.org/10.1016/j.bdr.2017.02.002
https://doi.org/10.1016/j.jss.2019.05.025
https://doi.org/10.1016/j.ins.2018.12.007
http://www.sciencedirect.com/science/article/pii/S0020025518309496
http://www.sciencedirect.com/science/article/pii/S0020025518309496
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib27971F8C33BAFBC4EA5A53589F98BFCEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib27971F8C33BAFBC4EA5A53589F98BFCEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDE2F88F92973338EB4914795E59598C7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDE2F88F92973338EB4914795E59598C7s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDE2F88F92973338EB4914795E59598C7s1
https://doi.org/10.1007/s10586-016-0568-7
https://doi.org/10.1007/s10586-016-0568-7
https://doi.org/10.1145/3366682
https://doi.org/10.1145/3366682
https://doi.org/10.1016/j.energy.2018.12.016
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.3390/ijfs7020026
https://doi.org/10.3390/ijfs7020026
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib73D3A9E91D66DF464615A87B4B49B982s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib73D3A9E91D66DF464615A87B4B49B982s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib73D3A9E91D66DF464615A87B4B49B982s1
https://doi.org/10.1155/2014/614342
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib444155E53034F045B379424118F0DF66s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib444155E53034F045B379424118F0DF66s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib444155E53034F045B379424118F0DF66s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib444155E53034F045B379424118F0DF66s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFA80A45DFD2A4F51CFE5B3EA9EB323C3s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibFA80A45DFD2A4F51CFE5B3EA9EB323C3s1
https://doi.org/10.3233/FI-2017-1499
https://doi.org/10.1016/j.bdr.2019.03.001
https://doi.org/10.1109/MCC.2014.22
https://doi.org/10.1109/ACCESS.2014.2332453
https://doi.org/10.1109/ACCESS.2014.2332453
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib3AA53FEF949844CF63F686082C38FAAEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib3AA53FEF949844CF63F686082C38FAAEs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib3AA53FEF949844CF63F686082C38FAAEs1
https://doi.org/10.1016/j.patcog.2017.11.009
https://doi.org/10.1016/j.eswa.2017.10.023
https://doi.org/10.1016/j.eswa.2017.10.023
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDB1F9FE3AAED7BD9664E6D53B54D12CCs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDB1F9FE3AAED7BD9664E6D53B54D12CCs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bibDB1F9FE3AAED7BD9664E6D53B54D12CCs1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1952434C78EA86A68879EE1B07372A72s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1952434C78EA86A68879EE1B07372A72s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1952434C78EA86A68879EE1B07372A72s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib1952434C78EA86A68879EE1B07372A72s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1
http://refhub.elsevier.com/S2214-5796(21)00020-4/bib974C312BEB6B62059004E6319E47E404s1

	Cost Optimization for Big Data Workloads Based on Dynamic Scheduling and Cluster-Size Tuning
	1 Introduction
	2 Related work
	3 Architecture of the framework for ETL of Big Data
	4 Methods
	4.1 Algorithm for cluster size cost-optimization
	4.2 Spot instances
	4.3 Spot price prediction
	4.4 Cluster configuration strategy

	5 Results and discussion
	5.1 Dataset
	5.2 Spot prices exploratory analysis
	5.3 Spot price predictions
	5.4 Cost-effectiveness analysis of dynamic cluster selection
	5.5 Limitations

	6 Conclusions
	Declaration of competing interest
	Acknowledgement
	References


