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Abstract—Automated weed control has received an increased
interest from the scientific community in recent years. Even
tough there is fairly large number of available approaches and
even commercially available systems for weed control, several
challenges exist that need to be assessed. Most of the approaches
use automated detection of weed and apply herbicides with
sprayers on the most infested regions of the land. Automated
weed control has proven to reduce the quantity of applied
herbicides, thus reducing the pollution of products, land and
water. Being a part of the precision agriculture paradigm,
automated weed control can be performed only by accessing large
amount of on the field sensory data including images and videos
from unmanned areal and ground vehicles. With the increased
granularity of the regions which is a consequence of the increased
resolutions of the used vision sensors, there is even larger need
of fast and reliable data processing architectures that allow large
volumes of data to be instantly processed. Furthermore, the weed
detection includes computer vision algorithms that have high
time and space complexity and that often depend on parameters
that need to be tuned. By gathering and processing data from
multiple fields, the parameter estimation can be performed with
higher accuracy and greater reliability. In this paper we propose a
cloud based architecture that elevates the automated weed control
by using the possibilities introduced from the cloud to gather
additional aggregated knowledge from the process of automated
weed control and further improve the process of weed control
data processing and parameter estimation. We discuss the main
benefits of the proposed architecture and the challenges that
need to be overcome for it to be introduced to the agricultural
communities.

I. INTRODUCTION

Precision agriculture is improving the management of the
land by viewing it not as a single entity, but as multiple parts
that need separate attention. Based on the definition by [1]:
“Precision agriculture is the management of an agricultural
crop at a spatial scale smaller than the individual field”.
Based on this definition, by separating the individual field to
multiple parts, the complexity of the management domain is
significantly increased. Each separate part is being analyzed
and treated as a single entity and with the improvement of
the sensing technologies [2], these separate entities are be-
coming smaller and smaller. With the increased volume of the
gathered data, the need for improved and faster architectures
for gathering and processing is imminent. The complexity
of the precision agriculture data processing is even bigger if
we include the separate parts of the analysis that need to be
performed, sometimes with very fast processing speed, in order
to obtain the necessary information and to be able to react on
time based on the obtained knowledge.

Automated weed detection, as part of the precision agricul-
ture paradigm, is a complex task that requires multidisciplinary
approaches in order to be resolved. Automated weed detection
is consisted of analysis of separate land patches or individual
plants and estimation of the weed infestation on the land
patch or individual plant species identification. Both of the
tasks are quite complex when taken into account the differing
attributes of the plants in different stages of their development
and under different light conditions. The usage of cloud based
services for precision agriculture has already been introduced.
A labor monitoring and data processing cloud based approach
is described in [3]. Authors use the approach to monitor the
labor productivity trough labor monitoring devices. In [4], a
framework for cloud-based Decision Support and Automation
systems for precision agriculture in orchards is proposed. The
framework allows processing data of different formats and
control of field devices. In [5] authors discuss the challenges
that need to be overcome to use cloud based services for
decision support in precision agriculture. A method for re-
mote sensing observation sharing based on cloud computing
(ROSCC) is proposed in [6]. Authors experimented with the
system for large soil moisture mapping. In [7], the author gives
an interesting discussion after interviewing several farmers
and people that work with big data incorporation in farming.
The author warns about the challenges that the technological
advancements introduce to the simple farmers and that the
research should be driven towards the effects desired by the
users.

Automated weed control is a part of the precision agriculture
paradigm that deals with the removal of unwanted plants from
the fields. The precise weed management or weed control
has plenty of benefits and according to [8] they are both
economic and ecological. The economic benefit is consisted
of the removal of plants that compete with the wanted plant in
the same soil, and the ecological benefit is evident because the
precise automated weed control is shown to reduce the usage
of herbicides significantly. One such example that reports sig-
nificant herbicide reduction is presented in [9], where authors
use Unmanned Air Vehicles (UAVs) to support patch herbicide
spraying in maize crops. The usage of UAVs for precision
agriculture is already present, especially in the process of weed
infestation detection in field patches and will improve the food
production in future. The potential of UAVs is well described
in the literature [10].

However, little has been researched, about the potential of



using cloud based services to address the big data challenges
that arise from the very nature of the weed control process.
Weed control is consisted of detection and elimination of
unwanted weeds. The process of detection and elimination
is already being automated [11]. However several challenges
exist that need to be addressed.

In this paper we discuss the existing challenges for appli-
cation of automated weed control in the fields and propose
a general cloud based architecture that could overcome these
challenges. The paper is organized as follows: In section II we
discuss the main motivation behind the work presented in this
paper. Then in section III, we present the main architectural
design of a cloud based system for automated weed control.
Finally in section IV we discuss the main advantages and
disadvantages of the proposed architecture.

II. MOTIVATION

As previously discussed, the automated weed control could
be beneficial to the agricultural food producers by reducing
the unwanted weeds and increasing the yield per land unit.
However, several challenges still exist that need to be over-
come:

e Robust models for weed detection
¢ Reliable and safe methods for weed removal
o Adoption of the new technologies by farmers

The weeds are plants, and as any other plant, they grow.
During their growth, weeds differ in size, shape and color.
Furthermore, different kinds of weeds are present in the field
at the same time, which makes their detection a greater
challenge. The ultimate goal for maximum herbicide reduc-
tion and maximum yield from the fields, while keeping the
pollution at minimum, is to be able to single out each weed
plant and identify its species. By achieving this, any system
for automated weed detection and removal would be able
to treat separate weed plants with different herbicides or
perform a mechanical removal of the weeds. The challenge
here is to have a machine learning based model for detection
of the different types of weed, using fusion from different
types of sensors. One of the most popular sensors for this
task are cameras that can be mounted on UAVs. According
to [12], multispectral cameras can be used for generating
weed infestation maps. These maps use processing intensive
algorithms for generating image stitching and the complexity
is increased by adding other kinds of sensors as additional
information from the fields.

Another challenge is the safe removal of the weed from the
fields. The weed removal can be performed both by spraying
herbicides [13] and using mechanical tools [14]. The usage
of mechanical tools requires much greater precision in order
to limit the damage to the useful plants. Such precise control
requires intensive data processing and planning in order to
be executed. Furthermore, while the spraying tools require
the sensing systems not to underestimate the weed infestation
in the patches that need to be sprayed, the sensing units for
the mechanical tools must not overestimate or falsely identify
crops as weeds.

The final, and maybe the most important, challenge is the
farmers’ adoption of new technologies. Since most of the
available proprietary solutions for precision agriculture limit
the farmers to certain types of tools from certain producers,
we believe that a general software architecture and implemen-
tation could aid the new technology adoption not only for the
big agricultural producers, but also from the small and medium
sized farms. To meet the discussed challenges, the proposed
architecture must have the following qualities:

o Deal with large volumes of data from variable types of
sources

o Control variable types of hardware actuators

o Be able to make decisions and give suggestions for
different environments and under variable conditions.

« Be able to process fast

o Be affordable

The only way to have all of these qualities is to use a cloud
based solution where the farmers will be able to collaboratively
achieve the same goals. First, by using the local data for local
decision making and for building local models for the weeds
(the flora on a local scale in a small community varies less
than when observed globally). Secondly, by using the cloud
processing for on-demand decision making, which is much
cheaper for individual farmers that cannot afford expensive
hardware for data processing.

III. SYSTEM ARCHITECTURE

In this section we present a general architecture that is able
to address the requirements discussed previously. The general
architecture is shown in Fig 1.

One of the main challenges for a successful weed control
application is the data acquisition. As previously discussed,
the UAVs can be used for such purpose. Furthermore, ground
based cheap sensors can aid data gathering from the fields.
Such sensors have already been presented as a viable and
cheap alternative for inter-row weed detection [15]. The data
obtained from any source including the data that has been
input by the farmers can be used by the cloud based services
for multiple purposes. Initially, before enough data is gathered
from the fields, the data processed by the users will be used for
model generation. Machine learning approaches have already
been applied for the process of weed detection. The best results
are obtained, however, by using deep learning approaches
[16], such as deep convectional networks. As reported, these
approaches have high accuracy in successfully segmenting the
weed parts from the images. When combined with previously
processed data from other sensors, highly reliable models can
be generated for weed/crop discrimination. In fact, this is
the main goal of any automated weed control system, prior
to the treatment of weed. The high complexity of the deep
learning approaches can be overcome by using on-demand
GPU cloud services that are already provided by different
cloud service providers, such as Amazon Web Services [17]
and Google Cloud Platform [18]. The feature selection from
the other types of sensors can be combined by using machine
learning approaches and deep learning architectures. Most
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of the leading cloud service providers also provide machine
learning modules that can be used for both model generation
and weed detection. Deep learning approaches can be used
after enough data has been gathered from the fields. Initially
the models can be obtained by using manual feature generation
and more traditional machine learning approaches.

Most of the machine learning approaches, however, require
certain parameter tuning that is dependant on the data. Since
the farmers in certain geographical proximity deal with similar
challenges, meta-data can be stored about the specific models
that need to be used by specific farmers in a close geographical
location. This meta data can be obtained by both data analysis
and farmer input. As it can be observed in the general
architecture, both are taken into consideration. The trained
model can be used for generating an infestation map. The geo-
location combined with the sensory input and the imagery can
be used together to form the infestation map. The images are
combined and stitched together using the geo-location and a
2D or 3D map can be formed from the observed land. There
are already several commercially available products that allow
this kind of map building from images. The weed infestation
can be easily marked on the obtained map based on the prior
processing.

The obtained infestation map can than be employed in the
process of planning. The geo-location data is already available
and the locations of the weeds or the infestation of the land
patches have already been determined. Therefore, a plan for

spraying or weed picking can easily be devised by using
existing planning approaches. This planned strategy can then
be used by the farmers or by Unmanned Ground Vehicles
(UGVs) or Robots to automatically treat the weed infestation.
The main benefit of moving the planning to the cloud is that
the planning, which often demands a large computing power,
doesn’t need to be executed very frequently. Thus, the small
or medium farmer is not required to actually own an expensive
computing hardware and additionally makes the tools that can
be used for weed removal more versatile.

A plug and play approach is recommended when dealing
with different kinds of sensors and actuators. Since different
actuators can perform different actions, all of the available
actions must be pre-configured and known to the cloud based
system. The advantage is that once one of the users inputs this
data, it can be used by any other user that uses the cloud based
weed control system. The usage of cloud based services for
planning for automated machines has already been introduced
in the literature [19].

In Fig. 4 a more detailed flow of the infestation map
generation is presented. Based on both the user input and the
sensory input, the Image Processing part segments the different
parts of the images and generates features for combining the
images in a map. After the weed is detected using the model,
the user can observe and provide input in order to improve
the models. There are also approaches where the model is
generated in a self-supervised manner [20].



The weed detection model that is stored in the cloud
and the meta-data associated with it are constantly updated
and improved. In this way, different models can be used in
different seasons, and for different locations. One must note
that although the proposed approach is useful for farmers
in general, it is not a fully automated approach because the
farmer interaction with the system is necessary until the weed
detection models achieve acceptable performance. A simple
user interface is necessary to allow the farmer to tune the
system and give their input. An interactive approach for initial
segmentation such as [21] can be used to allow an expert or
the farmer to segment the weeds from the crops in the image
set to generate an initial dataset, based on which the models
can be initially built. In Fig.3 the initial learning module user
input is depicted in higher detail. As it can be observed, it
requires input from the user. However, this is performed in a
simple and elegant way so that the user does not necessarily
need to be precise in the selection and with time, after system
obtains enough data from multiple users, it will not be required
at all. In Fig.2 a mockup of a simple interface for the farmer to
input the initial data based on the acquired images from UAVs
or UGVs is presented. This kind of segmentation has already
been used in some of the more popular graphics editors such
as Gimp [22]. Any touch enabled device could be used to
obtain the input from the farmers.

IV. DISCUSSION

The proposed architecture describes a self improving cloud
based service for weed control. The data acquisition for the
system can easily be performed by the farmers by using the
crowd sourcing approach and can be used to build reliable
weed detection models. The proposed architecture can be
applied for both controlling an autonomous vehicle for weed
removal, or for decision support for farmers that don’t own
autonomous vehicles, but would like to treat the weed infes-
tation themselves. This architecture is suitable for both large
and small farms.

The main challenge while implementing such system would
be the ease of use and the motivation for technological
advancement from the farmers. The proposed semi-automated
approach requires an intuitive interface for the farmers. Since
the input sensors for weed infestation estimation and weed
plant detection are vision based, the initial segmentation can be
fairly easy performed. For small amounts of data the traditional
machine learning approaches are more suitable, and for large
amounts of data, deep learning approaches can be employed
to obtain even better results.

As discussed by [7], farmers do not like to be pushed by
new technologies. Rather they are more interested in being
able to influence on the technologies themselves, and apply
them as they see fit. This architecture takes this into account
and, at least initially, requires the attention of the farmers and
provides them the ability to tune and control, without being
able to impact the system reliability. Furthermore, since the
system is based as a service, it will be easy to adapt to any
data input.

(®) Weed Selection
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(O Plant selection

Fig. 2. Semi-automated data input interface
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\ 4
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Fig. 3. Semi-automated data input flow
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The main drawback of this architecture is that it requires
the user interaction and it also requires a large user base in
order to achieve optimal performance. Be that as it may, the
architecture allows the user to tune the parameters and even
to obtain a temporary optimal model that would allow weed
detection and treatment for specific weed types on localized
land units.
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