
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337978547

Cluster-size optimization within a cloud-based ETL framework for Big Data

Conference Paper · December 2019

DOI: 10.1109/BigData47090.2019.9006547

CITATIONS

10
READS

324

5 authors, including:

Some of the authors of this publication are also working on these related projects:

PhD thesis View project

When IoT is capable of Thinking and Learning View project

Eftim Zdravevski

Ss. Cyril and Methodius University in Skopje

157 PUBLICATIONS 1,432 CITATIONS

SEE PROFILE

Petre Lameski

Ss. Cyril and Methodius University in Skopje

102 PUBLICATIONS 929 CITATIONS

SEE PROFILE

Ace Dimitrievski

Ss. Cyril and Methodius University in Skopje

19 PUBLICATIONS 132 CITATIONS

SEE PROFILE

Marek Grzegorowski

University of Warsaw

18 PUBLICATIONS 148 CITATIONS

SEE PROFILE

All content following this page was uploaded by Eftim Zdravevski on 20 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337978547_Cluster-size_optimization_within_a_cloud-based_ETL_framework_for_Big_Data?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337978547_Cluster-size_optimization_within_a_cloud-based_ETL_framework_for_Big_Data?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-thesis-814?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/When-IoT-is-capable-of-Thinking-and-Learning?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ace-Dimitrievski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ace-Dimitrievski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ace-Dimitrievski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marek-Grzegorowski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marek-Grzegorowski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Warsaw?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marek-Grzegorowski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eftim-Zdravevski?enrichId=rgreq-bbd2348b45638d01bd33051213331b90-XXX&enrichSource=Y292ZXJQYWdlOzMzNzk3ODU0NztBUzo4MzgyNjU2MzI0Njg5OTNAMTU3Njg2OTUwOTQ0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Cluster-size optimization within a cloud-based
ETL framework for Big Data

Eftim Zdravevski, Petre Lameski,
Ace Dimitrievski

Faculty of Computer Science and Engineering,
Ss Cyril and Methodius University,

Skopje, North Macedonia
Email: eftim.zdravevski@finki.ukim.mk,

petre.lameski@finki.ukim.mk
ace.dimitrievski@gmail.com

Marek Grzegorowski
Institute of Informatics,
University of Warsaw,

Poland,
m.grzegorowski@mimuw.edu.pl

Cas Apanowicz
CogniTrek Corp.,
Toronto, Canada,

Email: cas.apanowicz@cognitrek.com

Abstract—The ability to analyze the available data is a
valuable asset for any successful business, especially when the
analysis yields meaningful knowledge. One of the key processes
for acquiring such ability is the Extract-Transform-Load (ETL)
process. For Big Data, ETL requires a significant effort and it
is a very challenging task to be performed in a cost-effective
way. There are quite a few examples in the literature that
describe an architecture for cost-effective ETL but none of
the available examples are complete enough and they are
usually evaluated in narrow problem domains. The ones that
are more general, require specific implementation details. In
this paper we propose a cloud-based ETL framework where
we use a general cluster-size optimization algorithm, while
providing implementation details, and is able to perform the
required job within a predefined, and thus known, time. We
evaluated the algorithm by executing three scenarios regarding
data aggregation during ETL: (i) ETL with no aggregation;
(ii) aggregation based on predefined columns or time intervals;
and (iii) aggregation within single user sessions spanning over
arbitrary time intervals. The execution of the three ETL
scenarios in a production setting showed that the cluster size
could be optimized so it can process the required data volume
within a predefined and thus, expected, latency. The scalability
was evaluated on Amazon AWS Hadoop clusters by processing
user logs collected with Kinesis streams with datasets ranging
from 30 GB to 2.6 TB.

Index Terms—Data streams; ETL; Business analytics;
Hadoop; Spark; Cluster size optimization

I. Introduction

The ubiquitous smart devices, sensors and social media
result in sheer data volumes [1]. At the same time,
consumers became accustomed to personalized services
that are available instantaneously, while many companies,
health providers and institutions have focused tremendous
resources on providing this. In the past, they could decide
which data to store by making compromises between
available resources and capabilities to manage data.

In the era of Big Data, companies experience a growing
pressure to store and analyze all data that is being
collected [2] to stay competitive in the data-driven market-
place. Volume, velocity and variety are intrinsic properties
of Big Data [2, 3]. Recently, variability, veracity, visual-

ization, and value were identified as similarly significant
[4]. Together, they define the 7 Vs of Big Data reflecting
the enormous complexity presented to those who would
process, analyze and benefit from it. Another issue the
companies face is that the results of data analysis (e.g.,
joins, transformations and aggregations) or integration
with other parts of the system (e.g., projections and
models created by machine learning algorithms) further
boost data generation and increase data volume [5].

In order to make the data available in a usable format,
several steps need to be performed [6, 7]: analyses and
modeling to identify all relationships and business con-
text; data collection; and Extract-Transform-Load (ETL),
which is usually time-consuming in terms of both devel-
opment and execution time. Once the data is processed
and loaded into a data warehouse, it needs to be available
for reporting, visualization, analytics and decision sup-
port [2]. The typical applications of the state-of-the-art
machine learning techniques also require proper data pre-
processing, including the costful process of representation
learning or feature extraction [8]. Cost-effective approach
to scale this process for Big Data [9] is crucial for the
efficiency of applications in many domains [10].

As identified in [11], there are various challenges for
data warehousing (DW) and business intelligence (BI)
over Big Data: data modeling; data consistency and
lineage; extending applicability of traditional tools for data
exploration, visualization and analytics; and integration
with traditional DW/BI solutions and platforms. The
usability of data at any point in time amid various
processing stages relates to data consistency. Ensuring it
is considerably challenging in Big Data systems. Strong
consistency models introduce severe limitations to the
system’s scalability and performance. On the other hand,
weak and eventual consistency models facilitate high levels
of availability and lower latencies, but could significantly
impair the value of obtained information and reduce its
usability [12].

While cloud computing has emerged as an important

paradigm offering a variety of low-cost hardware and
software, which is particularly convenient for deploying
Big Data systems, it also raises new challenges related to
architecture, cost and performance optimization, provid-
ing reliability, guaranteeing security and ensuring privacy
and data consistency [12]. Big Data exacerbates these
concerns because of the distributed architectures, which
require more advanced mechanisms for synchronization,
replication, scheduling and security [3].

Even though there are technologies for efficient ETL
and analytics of Big Data, there is no comprehensive
cloud-based architecture offering an integrated, scalable
and cost-effective solution. Most approaches are either
for specific purposes in a narrow domain or only pro-
vide general definitions and lack experimental evaluation.
These approaches neglect real-world development and
deployment challenges [4].

We evaluated three ETL scenarios concerning data
aggregation commonly encountered in real-world systems
with a combination of traditional tools – for processing
dimensional data, and Spark executed on on-demand
clusters – for processing high-volume transactional data.
We propose a Hadoop extension, inspired by the edge
computing paradigm, to further process the Spark output
and fully prepare it for the data warehouse. To validate the
scalability of the architecture, we performed experiments
on Amazon AWS clusters with datasets ranging from 30
GB to 2.6 TB. To minimize cloud costs, we also proposed
and validated an algorithm for cluster-size optimization
considering data volume, expected latency and historic
execution metrics The evaluation of each step of the
three ETL scenarios showed that the cluster size could
be optimized so it can process the required data volume
within the expected time.

Most importantly, the whole process is integrated from
end-to-end and evaluated in a production environment
on real high-velocity streaming Big Data, something that
lacks in most related approaches. Production environment
refers to the setting where one puts software and other
products into operation for their intended end users.

II. Related work

In classical BI, the ETL process loads data into ware-
house servers [13]. For reasonable data volumes there are
ETL tools that were successfully used in organizations
throughout the years, such as Informatica, IBM Infosphere
Datastage, Ab Intio, Microsoft SQL Server Integration
Services (SSIS), Oracle Data Integrator, Talend, Pentaho
Data Integration Platform (PDI), etc. Recently, Enterprise
Application Integration (EAI) systems are inheriting ETL
tools and now perform considerably more functionalities
than just ETL. In cases when the business requirements
vary often, database vendors are also promoting another
set of tools called “Extract-Load-Transform” (ELT), which
postpone the transformations to a later time [14]. The
terminology and capabilities of ETL and ELT tools are

described in [15], but without much regard to the chal-
lenges encountered with Big Data.

Apache Spark was inspired by the MapReduce concept
and focuses on the class of applications that reuse a
working set of data across multiple parallel operations.
Prime example of such applications are the iterative
machine learning algorithms and interactive data analysis
tools. Resilient Distributed Datasets (RDD) are the basic
abstraction in Spark and represent immutable, partitioned
collections of elements that can be operated on in-memory
and in parallel on different nodes in the cluster. MLLIB[16]
is an example of an open-source distributed machine
learning library that utilizes Spark. The parallelism of
MapReduce and Spark allows all ETL processes to be
distributed across multiple nodes and all transformations
to be performed on distinct portions of data [17, 18].

Big Data ETL processes rely on distributed storage
for efficient writing and reading. The Hadoop Distributed
File System (HDFS) is similar to Google’s distributed file
system. HBase is database built on top of HDFS and there
are several designs for efficient storage of high-volume
data, including [19].

Traditional ETL deployments do not consider data
partitioning [20], which is an essential aspect in ETL and
MapReduce processes. This work performed MapReduce
partitioning experiments on static datasets, which neglects
the task of matching of dimensions from fact tables.

After we load the data into a high-performance data
warehouse, such as Hive [21], HBase Amazon Redshift [22],
SAP HANA [23] or Infobright [24], we can execute ad-hoc
queries. It is important to note that execution of queries
against databases like Hive and HBase commonly relies
on MapReduce, Spark or Tez [25] jobs. Furthermore, the
synchronous dataflow execution model of MapReduce and
Spark limits the use of asynchrony for complex analytics.
Approaches, such as [26], attempt to bridge this gap by
proposing asynchronous architectures.

A framework that process historical and incoming data
separately is proposed in [27]. It uses a dynamic mirror
replication technology to avoid the contention between
OLAP queries and OLTP updates. The main limitation
of [27] is the evaluation, which only considers a static
dataset of 16 GB.

There are quite a few examples of cluster size opti-
mization for Big Data analytics. Authors in [28] propose
a query like environment where developers can query
for the required cluster size. The proposed approach
requires implementation specific details. Another approach
is presented in [29]. This work focuses on short jobs
optimization. Our proposed cluster-size optimization algo-
rithm works without the need of implementation details.
Furthermore, our architecture facilitates data processing
in different ETL scenarios, making it more versatile and
applicable for automated feature extraction.

Start
SparkETL

DSP Queue

Storage
Stream
Puller

ET
L

of
 lo

w
 v

ol
um

e
da

ta

Analytics
Stream Puller

(Spark Streaming,
Storm, Flink)

Object Storage Service
(S3, Blob Storage)

Lambda
Function

Cluster
Launcher
Daemon

Data
Integration

Tool

Relational
Databases

Low Volume
Data Producers

Big Data
Producers

D
at

a
So

ur
ce

s

Nodes with
DLA

On-demand
Hadoop Cluster for

ETL of high volume data

K

Processed
Big Data

D
im

en
si

on
al

D
at

a
to

 S
pa

rk

Data
Warehouse

Full-text indexing
(Solr, Elasticsearch)

Integration Machine

D
at

a
Pr

oc
es

si
ng

Control Low Volume Data

Flow Legend:

High Volume Data Query

Data Usage

Fig. 1: Architecture of scalable Cost-optimizing cloud-
based Big Data Warehouse.

III. Architecture of the framework for ETL of Big Data

Figure 1 shows the architecture of the proposed sys-
tem. In organizations, commonly, there are traditional
data sources, such as relational database management
systems (RDBMS) and structured and semi-structured
data from internal or third-party data providers, that
generate reasonably-sized data. Companies usually pro-
cess this kind of data using traditional Data Integration
Tools. In our experiments, we utilized the Pentaho Data
Integration Platform (PDI) for such ETL tasks, which
process incoming low-volume data and store it in the Data
Warehouse (marked with light gray arrows in Figure 1).

If there are data producers that generate Big Data
with high volume, velocity or versatility, then the classical
approach for ETL is not suitable. The Big Data streams
can be efficiently collected and processed by Distributed
Streaming Platforms (DSP), which are scalable, replicated
and fault-tolerant (e.g., Apache Kafka, Amazon Kinesis,
etc.) [30].

By defining a retention policy, we can configure DSPs,
to retain data on the queue for a specific time after
it was published, regardless if it was consumed or not.
For example, for Amazon Kinesis, the maximum data
retention period is one week at the time of this writing.
DSPs allow the same data stream to be consumed by
multiple consumers independently and simultaneously,
each of them working at their own pace. Accessing data
on a DSP queue can be performed by either push or
pull mechanisms [31]. The pull mechanism is innate for

Amazon Kinesis and Apache Kafka, so each consumer has
and manages its read pointer.

The proposed architecture allows consumption of DSP
queues by the three most common and widely used
types of consumers. First, with Push Lambda Functions
(Stream-based model), event sources publish events on
DSP, which trigger the lambda function multiple times
per second as data arrives on the queue, and the lambda
function processes the events [32, 33]. Lambda functions
are subscribed to automatically read batches of records of
the DSP queue and process them if they are detected on
the stream. They poll the queue periodically (up to few
times per second) for new records. The lambda function
should be rarely updated because it stores unprocessed
raw data in the original format on Object Storage Services
(OSS) (e.g., Amazon S3 or Windows Azure Blob Storage).
However, if it requires updating, that usually forces some
minimal downtime. The most common reason for updating
the function is to improve error handling because of
unparsable or illegal input provided by the event sources.

Next, Storage Stream Pullers as consumers have more
control in fetching records from DSPs because they
manage their read pointer independently, and therefore,
can reprocess events if needed (e.g., for recovering after
failures). However, their management is more involved
because the uptime of the machine that executes the
storage stream pullers need to be guaranteed by manual
mechanisms, as Amazon AWS does not guarantee it. This
is an alternative for durable and persistent storage of the
raw data with a variable frequency of persisting data [32].

The first two types of consumers are redundant alterna-
tives for reliable and permanent storage of the incoming
data in raw format on different S3 buckets. Each of these
alternatives is very reliable with guaranteed Service Level
Agreement (SLA) and either one of them is sufficient
for the proposed architecture. Using both alternatives
can simplify deployment procedures and further improve
the reliability of the system. Namely, if the data format
changes drastically, or sources vary, the consumers can be
updated without any downtime or risk of losing data. Hav-
ing both alternatives also provides integration convenience
with the existing infrastructure in organizations.

Third, Analytics Stream Pullers, such as Spark Stream-
ing and Apache Storm, are typical consumers that perform
stream processing and provide near real-time analytics
[32]. Very complex algorithms can be implemented with
these technologies to provide valuable business insights
and near real-time analytics, and can also store data in
the warehouse. Be that as it may, Analytics Stream Pullers
can execute algorithms that use only recent data because
of data retention policies.

To complement this, the proposed architecture employs
on-demand Spark clusters for implementing more complex
algorithms for ETL and feature engineering [34]. They
can analyze dynamic trends over longer time periods (e.g.
week-by-week or month-by-month comparisons of various

metrics) or find the time since some particular event
happened (e.g., “the time since the last occurrence of event
X”, “the time since the user’s last login”, “last bought or
viewed product”, “last used service”, etc.). Such metrics
are not computable with Analytics Stream Pullers.

The Cluster Launcher module, located on the same
instance that hosts the Data Integration Tool (DIT),
facilitates the starting of on-demand Spark clusters. It can
be invoked manually or based on a predefined schedule by
DIT. The Cluster Launcher can start a Hadoop cluster
with configurable size and can run a particular Spark job
on it. After one starts the Spark cluster, it downloads the
source code from a release branch of a code repository (i.e.,
git, mercurial, subversion or even a location on an FTP
server, S3 or Azure Blob Storage) and automatically starts
it. Code development and management adhere to the
adopted strategy of the organization (e.g., GitFlow), which
defines rules and best practices for conflict resolution,
peer-review, merging to staging and production branches,
etc. Each Spark cluster during its lifetime executes only
a specific ETL job. If the organization requires multiple
ETL processes of unrelated data, then multiple Spark jobs
can be defined, and for each of them a separate workflow
can be managed (i.e., separate code repositories, execution
schedules, destination data warehouses, etc.).

Spark applications process Big Data stored on OSS,
while also considering the dimensional data from the data
warehouse. Generally, the dimensional data does not have
to be processed by Spark because usually, it is with
much smaller volumes compared to the transactional data;
therefore, we can use traditional ETL tools can for it.
However, while processing the transactional data, which
we would store in fact tables, the dimensional data is still
required. If the fact tables are wide, then the dimensional
data is a prerequisite for the denormalization. Otherwise,
we need it for setting up foreign keys to the dimensions.

In addition to the ETL process, Spark can also look
in past data if required, perform complex aggregations
and run machine learning algorithms. Spark outputs the
results to HDFS, but some data can be stored additionally
on OSS, depending on the requirements (e.g., for archival
purposes). Another reason why we choose Spark is because
of its ability to utilize all available resources on the cluster
dynamically. This ability allows adding new nodes on the
fly, so a running Spark job can recognize all resources and
utilize them without restarting.

Next, we execute the Distributed Load Agent (DLA) on
different nodes of the Hadoop cluster, processing distinct
portions of HDFS data generated by Spark. After the DLA
processes complete, data is available in the warehouse for
various BI reporting and analytics tools, as well as for
external data mining or machine learning algorithms.

The proposed architecture makes it possible to handle
high-velocity Big Data thanks to its three components.
First, DSP apply sharding techniques allowing processing
of thousands of events per second. For instance, each

Kinesis shard can process up to 1000 writes per second,
and we could add new shards without any downtime.
Second, after the data is on the DSP stream, it is reliably
retained up to a predefined period (e.g., up to a week on
Kinesis). During that time a Stream Puller application or
an automatically triggered Lambda Function will store it
in OSS. For instance, up to 1000 concurrent executions of
lambda functions on AWS are allowed, with each execution
being able to process thousands of records and store them
to S3. Even if this is not enough and some throttling is
activated, the data is still retained on the stream and
would be processed automatically by the lambda function
after the system handles the peak load. The stream puller
applications need more manual management in terms of
maintaining checkpoints of last successful read, frequency
of data pulling, deciding how much data can be processed
per unit time, etc.

Nevertheless, they can still accomplish a reliable
stream data storing process. Therefore, the high-
velocity data is transformed into static data stored
in OSS. Third, OSS is reliable and persistent storage
by design. Objects on OSS are usually labeled with
a hierarchical prefix describing the date and time of
their collection, making it straightforward to obtain the
source path of the new data for a particular ETL run.
A common pattern that facilitates this on AWS S3 is
s3://bucket/collection/folder/year/month/day/hour/minute/.
Moreover, OSS provides information about the total size
of all objects with a common prefix (analogous to folder
size calculation); thus, the size of the data is known before
the ETL starts. Consequently, using the mechanisms
proposed further in Section IV, the cluster size can be
approximately set.

IV. Algorithm for cluster size cost-optimization

The proposed system utilizes on-demand clusters for
processing Big Data. Therefore, it is important to optimize
the cluster-size, considering the volume of data that needs
to be processed, as well as the allowed latency.

A. Apriori cluster size
The apriori algorithm for cost-optimization considers

two parameters: the size of data that needs to be processed
in one run, and the maximum time in which this data
needs to be fully processed and loaded into the warehouse.
The main output of the algorithm is the number of nodes
in the cluster, while also providing auditing information
for the duration of the distinct steps of the ETL process
and the associated cost, depending on the cluster size. The
algorithm consists of two phases: one, which identifies a
cluster size that can perform the ETL within the required
time; and a second phase, which attempts to downsize the
cluster, so it still performs the ETL within the required
time but uses fewer resources.

In Listing 1, some global constants and variables are
defined, as well as the function that performs the ETL

steps. Line 1 in Listing 1 defines constants used later in
the other functions. The global list info, which contains
tuples representing various parameters computed upon
completion of the ETL process. The type of node instance
offered by the cloud provider is denoted by inst_type, and
the unit_time constant denotes the smallest billing interval
in seconds.

The last constant is node granularity (i.e., node_gran),
which bounds the error during optimization of cluster size.
So, if the globally best number of nodes is nodes_best,
and the estimated optimal number of nodes by the
algorithm is nodes_optimal, then the algorithm guar-
antees that nodes_optimal - nodes_best < node_gran and
nodes_optimal >= nodes_best stand. If the globally best
number of nodes needs to be determined, then node_gran
should be set to one. However, in enterprise applications,
this is not required because the cluster needs to be able
to cope with a sudden increase in data volume or node
failure without incurring delays in the processing time.
Therefore, lines 9 to 10 in Listing 1 define the function
round_up, which rounds up the number of nodes to the
nearest multitude of node_gran. So, if unit_time is set to
5, then all cluster sizes determined by the algorithm will
be a multitude of 5 (e.g., 5, 10, 15, etc.).

Function perform_ETL (lines 4 to 14 in Listing 1) has
two input parameters: the number of nodes in the cluster
(i.e. nodes) and the maximum time allowed for the ETL
process to finish (i.e. max_time_allowed). This function
first starts a new cluster (line 5) and then executes the
steps of the ETL process: running the Spark job (line
6) that performs parsing, data cleaning, transformations
and various aggregations if needed (Extract and Transform
steps); and running distributed data load in the warehouse
(line 7), which is the Load step. This function also
terminates the cluster after everything finishes (line 8),
computes the execution time of each of these steps, the
total estimated cost and eventually stores them in the
info list (lines 9 to 13). Clusters for which the value of
ratio is less than one, are considered as valid because the
total execution time of the ETL process is shorter than
the maximum allowed time (i.e., max_time_allowed). In
contrast, invalid clusters are not able to complete the ETL
process within the required time.

Next, Listing 2 shows the Python code of three auxiliary
functions. First, the function clusters_valid_min (lines 1 to
3 in Listing 2) returns the number of nodes of the smallest
valid cluster. Similarly, the function clusters_invalid_max
(lines 4 to 7 in Listing 2) returns the number of nodes of
the largest invalid cluster or None if there is no invalid
cluster. Subsequently, function cluster_optimal (lines 8 to
11 in Listing 2) returns the number of nodes of the
optimal cluster. If multiple clusters can perform the ETL
in the required time, then the one with the lowest cost
and shortest time is considered as the optimal cluster.
Accordingly, if two clusters cost the same, the one that
performed the ETL process more quickly is preferred.

Finally, function optimize_cluster, shown in Listing 3,
defines the actual algorithm for cluster size optimization.
It accepts two input parameters: the expected volume
of data that needs to be processed (i.e., data_size) and
the maximum allowed time (i.e., max_time_allowed) in
which the ETL process has to be completed. The first
parameter can be estimated by investigating the highest
data volumes that need to be processed. The second one
depends on the business rules and relates to the time
after which the processed data needs to be available for
applications such as reporting, decision making, machine
learning, etc. The variable nodes (line 2 in Listing 3) is
set to a default number of nodes, which is heuristically
computed depending on the data_size parameter and the
available RAM on the used instance type. The rationale
is that all data needs to fit in the RAM for Spark to be
efficient. However, there is some overhead (e.g., operating
system occupies some of the RAM, replicated data across
nodes, type conversions, etc.) and not all RAM is available
for Spark. Therefore, the formula of the heuristic attempts
to address this. Even if the default value is very unsuitable
(i.e., is either too high or too low), it will be tuned by
the remainder of the algorithm. The variable nodes_tested
(line 2 in Listing 3) keeps track of the number of nodes
of evaluated clusters.

Subsequently, the first loop (lines 3 to 9 in Listing 3)
performs scaling up until the cluster size is enough to
execute the ETL process in the expected time (i.e. ratio
< 1). Because the ratio parameter represents the number
of times the max_time_allowed parameter is contained in
the total time needed for the ETL process, it is used as
a reasonable multiplier for scaling up the cluster (line 7
in Listing 3). Line 5 checks if the cluster is inefficient,
meaning that it executes longer than unit time (one hour
in this case) and that in the last period it is active less
than two thirds (2400 out of 3600 seconds in this case).
This heuristic forces clusters to utilize the most of the
time units for which they are billed by scaling the cluster
up, even if the ETL was performed in the allowed time
(line 8 in Listing 3).

The following loop (lines 10 to 16 in Listing 3) performs
scaling down, striving to find a smaller cluster that can still
execute the ETL process in the required time. Based on the
execution times collected during the previous executions of
the ETL process, the nodes of the largest invalid cluster
and the smallest valid cluster are obtained (line 11 in
Listing 3). Next, the number of nodes of a smaller cluster
is calculated. If the default cluster size was enough to
perform the ETL in the required time, then there would
be no invalid clusters tested so far. Therefore the next
cluster to be tested will be twice as smaller (line 12 in
Listing 3). Otherwise, the next cluster size would be the
arithmetic mean of the nodes of the largest invalid and the
smallest valid cluster max_time_allowed (line 13 in Listing
3). If the difference between the nodes of the smallest
valid cluster and the next cluster to be tested is less than

node_gran, then the optimal cluster size is returned (line
14 in Listing 3). If not, the ETL is performed with the
smaller cluster, and another iteration starts.

1 info , inst_type, unit_time, node_gran = [], ’r3.2xlarge’ , 3600, 5
2 def round_up(x):
3 return ceil (x / node_gran) ∗ node_gran
4 def perform_ETL(nodes, max_time_allowed):
5 t0, cluster = time(), start_cluster(nodes, inst_type)
6 t1, _ = time(), run_Spark(cluster) # Extract and Transform steps
7 t2, _ = time(), run_DDL(cluster) # Load step
8 t3, _ = time(), terminate_cluster_async(cluster)
9 t_boot, t_spark, t_DDL, t_total, t_charged = t1 − t0, t2 − t1,

t3 − t2, t3 − t0, t3 − t1
10 t_units = ceil(t_charged / unit_time)
11 cost = t_units ∗ nodes ∗ get_cost(inst_type)
12 ratio = t_total / max_time_allowed
13 info .append((cost, t_total, nodes, ratio , t_charged, t_spark,

t_DDL))
14 return ratio , t_total

Listing 1: Definition of global constants and variables and
Python function for performing the steps of the ETL
process

1 def cluster_valid_min():
2 valid = [nodes for (_, _, nodes, ratio , _, _, _) in info if ratio

< 1]
3 return min(valid)
4 def cluster_invalid_max():
5 invalid = [nodes for (_, _, nodes, ratio , _, _, _) in info if

ratio >= 1]
6 if len(invalid) > 0: return max(invalid)
7 else : return None
8 def cluster_optimal():
9 info . sort()

10 valid = [nodes for (cost , t_total, nodes, ratio , _, _, _) in info
if ratio < 1]

11 return valid [0]

Listing 2: Auxiliary Python functions used by the
algorithm for cluster size cost-optimization

1 def optimize_cluster(data_size, max_time_allowed):
2 nodes, nodes_tested = cluster_default(data_size), set()
3 while True: # scaling up
4 ratio , t_total = perform_ETL(nodes, max_time_allowed)
5 inefficient = t_total > unit_time and t_total % unit_time < (2

/ 3) ∗ unit_time
6 nodes_tested.add(nodes)
7 if ratio > 1: nodes = round_up(nodes ∗ ratio)
8 elif inefficient : nodes = round_up(nodes ∗ (1 + (t_total %

unit_time) / unit_time))
9 else : break

10 while True: # scaling down
11 nodes_invalid_max, nodes_valid_min = cluster_invalid_max(),

cluster_valid_min()
12 if nodes_invalid_max is None: nodes =

round_up(nodes_valid_min / 2)
13 else : nodes = round_up((nodes_valid_min +

nodes_invalid_max) / 2)
14 if nodes_valid_min − nodes < node_gran or nodes in

nodes_tested: return cluster_optimal()
15 perform_ETL(nodes, max_time_allowed)
16 nodes_tested.add(nodes)

Listing 3: Python function implementing the algorithm for
cluster size cost-optimization

B. Dynamic adjustment of cluster size

The main limitation of the apriori algorithm for cluster
size optimization is that the data size needs to be known

before the actual execution of the ETL. The collected ex-
ecution times, cluster size and data size, during the initial
runs required for optimization, as well as the subsequent
production runs, can allow dynamic adjustment of cluster
size. Namely, we can represent the execution time (t) as
a function (F) of cluster size (c) and data size (d), i.e
t = F (c, d). The function F is not known, but with enough
samples (c, d, t), it can be approximated. Likewise, we
can define a function G, which estimates the cluster size,
depending on the required execution time and current data
size, i.e., c = G(d, t). Again, having information about
previous ETL executions in the form of (c, d, t) samples, we
can use bilinear interpolation to estimate the appropriate
cluster size before the cluster is launched. This model
allows us to dynamically set the cluster size depending on
data size, without the requirement of frequent re-running
the cluster size optimization algorithm described in the
previous subsection.

Owing to data distribution skew, in some cases, some
steps of the ETL could take longer than during other runs
with similar data size and equal cluster size. Therefore,
the algorithm can be further enhanced by an option of
adding more nodes while a Spark job is executing. This
requires comparing the execution time of each consecutive
Extract and Transform step to previous executions while
considering the data size and cluster size. If there is
a significant deviation from the expected duration of a
particular step, then new nodes can be added. Herein,
several things should be considered when performing this
kind of addition to a live cluster. First, the provisioning
and booting time of a new node (i.e., 10-15 minutes) needs
to be taken into account. The dynamics of the system
need to be considered too. By the time the new nodes
are available, the current Spark job continues with the
processing and may have already scheduled and started
all of its tasks at a given step. In such a case, the new nodes
will be idle, waiting for the current step to finish so that
they could be utilized in the next step. Detailed analysis
of such dynamic behavior is out of the scope of this work,
although it is undoubtedly one of our future research goals.
Scaling-down the clusters while executing Spark jobs, is
not recommended for two reasons. First, decommissioning
instances while Spark is using them would imply that
some tasks can fail, causing Spark to redistribute them
to other nodes, thus prolonging the execution of the job.
Moreover, the cloud provider would charge the terminated
instances regardless due to the hourly pricing model of
AWS, so choosing the right moment in time to terminate
them without incurring costs for the next hour is another
challenge.

V. Results
A. Cluster hardware

Contributing to the popularity in industry and research
community of the Amazon Web Services (AWS), and the
hardware heterogeneity offered in various instance types

[32], it was used for the experimental evaluation of the
proposed architecture. From all available instance families,
only the “R3” and “R4” are optimized for memory-intensive
applications and offer the best price per GB of RAM
https://aws.amazon.com/ec2/instance-types/. “R4” does
not have local storage, thus require separate instantiation
of EBS (Elastic Block Store) volumes, so to simplify the
provisioning of hardware, we decided to use the “R3”
instances. The smaller instance types from the “R3” family
were not appropriate for Spark: “r3.large” has only two
cores, and “r3.xlarge” offers lower network performance
compared to the larger instance types. So, we used the
“r3.2xlarge” instance type for our experiments because
it has high network performance while offering better
granularity in controlling the cluster resources compared
to larger instances. These instances have 61 GB RAM,
8 CPUs, 160 GB SSD and cost 0.665 USD per hour on
demand, as of this writing.

We used Infobright DB [24] as data warehouse, installed
on a “r3.8xlarge” instance which has 244 GB RAM, 32
CPUs, 640 GB HDD, a 10 Gigabit network and costs 2.66
USD per hour on demand, as of this writing.

Throughout this paper, we illustrate the architecture
with services provided by Amazon AWS, as it is currently
the cloud provider with the highest market share
of about 32% (https://www.canalys.com/newsroom/
cloud-market-share-q4-2018-and-full-year-2018).
Nonetheless, other providers, such as Windows Azure or
Google Cloud, offer services with similar functionalities
to the AWS services used in the paper. Therefore, it
is relatively straightforward to replicate the proposed
architecture in another cloud environment. Even on-
premises infrastructures can provide suitable replacements
for the utilized AWS services. In particular, instead of
Amazon S3, one can use Microsoft Azure Blob Storage
or HDFS of a Hadoop cluster which runs permanently
(different than the on-demand short-lived cluster used for
the ETL). Likewise, Microsoft Azure Event Hubs or an
on-premises Apache Kafka deployment could substitute
Amazon Kinesis. Similarly, Elasticsearch or Solr can be
replaced by another text indexing service.

B. Experimental scenarios and datasets
Our experimental evaluation is performed on three ETL

scenarios using the proposed architecture as described in
[35]. The first evaluated scenario ETL1 is scenario where
we don’t perform data aggregation. The second scenario
ETL2 is a scenario where we perform data aggregation for
predefined time intervals, and the third scenario ETL3 is
session based aggregation.

Table I shows the information about the datasets used
for evaluating the three scenarios. The data was provided
from a service that collects user logs very frequently and
the result of the processing was timely and actionable
information. All three proposed scenarios were used to
populate several data marts for different purposes in

the company. First, decision support systems leveraged
aggregated data for evaluating investment opportunities
and tracking historical performance. Next, the second and
third ETL scenarios were applied for feature engineering
for building two machine learning systems: one for churn
prediction, and another one for fraud detection (i.e.,
account sharing against the terms of use). Finally, with
the proposed architecture, we preprocessed the log data
in order to infer the implicit feedback of users, in order
to build a recommendation system.

The first scenario was evaluated with structured data
that only required cleansing, transformation, surrogate
keys generation, and setting up foreign keys to dimen-
sions. The second and third scenario additionally required
aggregations, and they were evaluated on user logs data
collected during a typical workday. The data was published
from a variety of devices (i.e., smartphones, web sites, and
desktop applications) on an Amazon Kinesis stream with
five shards in the “us-east-1” region. Events on the stream
triggered a python lambda function up to 5 times per
second per shard, which stored the raw JSON records, one
record per line in a plain text file, in S3. The producers
were able to generate up to 1000 records per second per
Kinesis shard. With this configuration (5 shards), we could
process a maximum of 1000writes×5shards = 5000 events
(source rows) per second (24hours× 3600seconds× 5K =
432M events per day), that would be stored in up to
24hours × 3600seconds × 5reads × 5shards = 2.16M S3
objects (files).

TABLE I: Information about the datasets
and generated rows in each ETL scenario

ETL scenario
ETL1 ETL2 ETL3

Source type CSV JSON JSON
Source columns 31 17 17
Dest. aggr. columns - 86 86
Dest. unaggr. columns 86 26 26
Source S3 objects 550 410K 410K
Source size (GB) 53 30 30
Source rows 137M 44M 46M
Dest. unaggr. rows 137M 44M 44M
Dest. unaggr. size (GB) 94 28 28
Dest. aggr. rows - 2M 1M
Dest. aggr. size (GB) - 2 1

Acronyms: Dest. - destination, aggr. - aggre-
gated, unaggr. - unaggregated (i.e. not aggre-
gated).

C. Cluster optimization results

The algorithm for cluster size cost-optimization depends
on two input parameters: the source data size and the
maximum time allowed for the ETL process to finish. Since
all three scenarios have the first parameter predefined
(53 GB for the first, and 30 GB for the second and
third scenario), only the second parameter impacts the
selection of the cluster size. Table II displays the selected

10
,8

40

4,
79

4

3,
31

8

2,
50

4

1,
73

3

1,
41

3

1,
39

8

7,
15

4

3,
55

4

2,
60

3

2,
11

6

1,
71

9

1,
43

5

1,
39

1

7,
28

6

3,
60

8

2,
61

9

2,
13

3

1,
73

6

1,
45

4

1,
40

7

 -

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

5 10 15 20 30 40 60

Du
ra

tio
n

(se
co

nd
s)

Number of cluster nodes

ETL 1 ETL 2 ETL 3

Fig. 2: Duration of ETL for each scenario per cluster size

TABLE II: Selected cluster size depending on maximum
allowed time for the ETL process to finish

Max. time ETL1 ETL2 and ETL3
allowed (hours) Nodes Cost (USD) Nodes Cost (USD)

1 20 13.3 15 9.98
≥ 2 15 9.98 15 9.98

cluster sizes for each scenario, depending on the maximum
time allowed for completion of the ETL process. When
comparing the selected cluster sizes to the execution times
and cost (Fig. 2), it evident that indeed, the most optimal
clusters were selected. When compared to the clusters
that would be selected with a brute force approach that
tests all cluster sizes, starting from a small cluster, for
these experiments, the same cluster sizes are obtained.
For the first scenario and the maximum time of one
hour, the algorithm needed one iteration less to find
the optimal cluster. However, the true benefit from this
algorithm would be apparent when the volume of data is
much greater (e.g., terabytes of data) and the required
clusters are much larger (hundreds of nodes). To confirm
this, we performed simulations with interpolated execution
times (linear interpolation for the Load and Booting
times and logarithmic interpolation for the Spark time)
and data volumes and compared it to the brute force
approach. The proposed algorithm could find the optimal
cluster size in significantly fewer iterations (i.e., evaluated
clusters). Because the data used for the simulations was
synthetic and based on the recorded data during the real
experiments, it could be easily replicated. For conciseness
of the manuscript, we are not providing the results of the
simulations.

VI. Discussion

This study proposed architecture for efficient and scal-
able ETL of Big Data, consisting of distributed processing
of data (extract and transform steps) with Apache Spark
and distributed load into a data warehouse. We evaluated
three common ETL scenarios: no aggregation, predefined
time period aggregation and session-based aggregation.

For all cluster configurations and all ETL scenarios,
Amazon does not charge for the booting time needed to
provision the cluster. Nonetheless, this has an impact on
the overall duration of the whole ETL process, so it needs
to be considered. The booting time was very similar for
smaller and larger clusters.

One limitation of our experimental evaluation is using
relatively static volumes of data. Creating a realistic en-
vironment where data is generated with rapidly changing
pace and volume, while it is being processed was out of
the scope of this work, but is a prospective idea for future
work. Nonetheless, the proposed system was deployed in a
production system, where high streams of real data were
generated and processed. The data volumes varied daily
within a 30 percent margin, so this did not actually require
using clusters with a different size than the one that was
already configured at the start. The change in the data
volume was not soliciting addition or removal of at least
five nodes to get to the optimal cluster size.

Moreover, dynamically adding nodes while a cluster
is executing was not appropriate considering: the overall
duration of the spark job (less than one hour), booting
time for newly added nodes (about 10 minutes) and
considering at which step was already the Spark job.
For such short jobs, by the time the newly added nodes
are ready, the Spark job could have already distributed
the tasks to existing nodes and they could be already
processing them. Therefore, the new nodes would be idle
because there are no tasks in the queue. Such an approach
is more appropriate for long running jobs, something that
we could not evaluate in a production environment with
dynamic volumes.

The main limitation of the proposed architecture is that
it cannot be used for real-time ETL, rather with some
predefined latency. Another drawback of the proposed
distributed data load architecture is that it was evaluated
with only one data warehouse engine.

Let us also add that we are fully aware that our study
refers just to a subset of Big Data V’s. Nevertheless, the
considered scenarios referring to large and dynamically
increasing relational data sets occur very frequently in
practice, with a number of research challenges that still
need to be solved (and which are not fully solved by purely
Hadoop-style systems with regards to velocity). Moreover,
we believe that the proposed solutions addressing a com-
bination of volume and velocity challenges can be adapted
in the future also for handling the unstructured data.

VII. Conclusions

In this paper, we have proposed a cloud-based archi-
tecture for efficient ETL of Big Data. The extract and
transform phases are performed by Spark, and then the
results are loaded into a data warehouse using distributed
load agents (DLAs) that utilize the processing resources
of the cluster slaves (edge nodes), instead of the database
server. To that end, the ETL process utilizes on-demand

Hadoop clusters with a variable size that run for a limited
duration on Amazon AWS. By defining and evaluating
three ETL scenarios that cover a variety of use-cases, we
showed that with the proposed algorithm for clusters-size
optimization, the number of nodes can be tuned so the
ETL process can complete within the required time while
minimizing the cost.

The proposed approach allows using already estab-
lished ad-hoc, analytical and integration capabilities of
traditional data warehouses. For some cases, such as
processing of computer generated logs, the number of
rows can be significantly reduced by some aggregations,
while still preserving enough information for a variety
of ad-hoc queries. For such cases, the pure Big Data
solutions raise several challenges related to development
time, compatibility with visualization and reporting tools,
and massive overhead when executing MapReduce or
Spark jobs. This is the real benefit of the proposed
method that combines Big Data technologies for the heavy
lifting (e.g., ETL and aggregation) and traditional data
warehousing technologies for data exploration (analytics,
reporting, visualization, etc.).

The proposed management system of DLAs can be
integrated with YARN in a future work. Also, the response
time for ad-hoc queries in Big Data systems could be re-
duced by eliminating, or at least lowering, the overhead for
starting MapReduce and Spark jobs; designing keys that
provide uniform distribution, and thus processing load
across nodes; improving data segmentation on secondary
indexes; or providing optimization suggestions for Spark
jobs, just like traditional databases offer.

Acknowledgment

This work was partially financed by the Faculty of
Computer Science and Engineering at the Ss. Cyril and
Methodius University, Skopje, North Macedonia, and
partially by CogniTrek Corp., Toronto, Canada.

Likewise, it was supported by the COST action
CA15110 - Harmonising standardisation strategies to in-
crease efficiency and competitiveness of European life-
science research (CHARME) supported by COST (Eu-
ropean Cooperation in Science and Technology).

References

[1] C. Dobre, F. Xhafa, Parallel Programming Paradigms
and Frameworks in Big Data Era, International Jour-
nal of Parallel Programming 42 (5) (2014) 710–738.
doi:10.1007/s10766-013-0272-7.

[2] H. Chen, R. Chiang, V. Storey, Business intelligence
and analytics: From big data to big impact, MIS
Quarterly: Management Information Systems 36 (4)
(2012) 1165–1188.

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar,
A. Gani, S. Ullah Khan, The rise of "big data"
on cloud computing: Review and open research

issues, Information Systems 47 (2015) 98–115.
doi:10.1016/j.is.2014.07.006.

[4] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A.
Netto, R. Buyya, Big data computing and clouds:
Trends and future directions, Journal of Parallel and
Distributed Computing 79 (2015) 3–15.

[5] C. P. Chen, C.-Y. Zhang, Data-intensive applications,
challenges, techniques and technologies: A survey on
big data, Information Sciences 275 (2014) 314 – 347.
doi:10.1016/j.ins.2014.01.015.

[6] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkin-
son, Data integration flows for business intelli-
gence, in: Proceedings of the 12th International
Conference on Extending Database Technology:
Advances in Database Technology, EDBT ’09,
ACM, New York, NY, USA, 2009, pp. 1–11.
doi:10.1145/1516360.1516362.

[7] S. Zhang, C. Zhang, Q. Yang, Data preparation for
data mining, Applied Artificial Intelligence 17 (5-6)
(2003) 375–381. doi:10.1080/713827180.

[8] D. Ślęzak, M. Grzegorowski, A. Janusz, M. Kozielski,
S. H. Nguyen, M. Sikora, S. Stawicki, Ł. Wróbel,
A framework for learning and embedding multi-
sensor forecasting models into a decision support
system: A case study of methane concentration in
coal mines, Information Sciences 451-452 (2018) 112
– 133. doi:j.ins.2018.04.026.

[9] M. Grzegorowski, A. Janusz, D. Ślęzak, M. S.
Szczuka, On the role of feature space granulation in
feature selection processes, in: J. Nie, Z. Obradovic,
T. Suzumura, R. Ghosh, R. Nambiar, C. Wang,
H. Zang, R. Baeza-Yates, X. Hu, J. Kepner, A. Cuz-
zocrea, J. Tang, M. Toyoda (Eds.), International
Conference on Big Data, BigData 2017, Boston, MA,
USA, December 11-14, 2017, IEEE, 2017, pp. 1806–
1815. doi:10.1109/BigData.2017.8258124.

[10] A. Janusz, M. Grzegorowski, M. Michalak, L. Wróbel,
M. Sikora, D. Ślęzak, Predicting seismic events
in coal mines based on underground sensor mea-
surements, Eng. Appl. of AI 64 (2017) 83–94.
doi:10.1016/j.engappai.2017.06.002.

[11] A. Cuzzocrea, L. Bellatreche, I.-Y. Song, Data ware-
housing and olap over big data: current challenges
and future research directions, in: Proceedings of the
sixteenth international workshop on Data warehous-
ing and OLAP, ACM, 2013, pp. 67–70.

[12] H. Wada, A. Fekete, L. Zhao, K. Lee, A. Liu, Data
consistency properties and the trade-offs in commer-
cial cloud storage: the consumers’ perspective., in:
CIDR, Vol. 11, 2011, pp. 134–143.

[13] S. Chaudhuri, U. Dayal, V. Narasayya, An overview
of business intelligence technology, Commun. ACM
54 (8) (2011) 88–98. doi:10.1145/1978542.1978562.

[14] P. M. Maŕın-Ortega, V. Dmitriyev, M. Abilov, J. M.
Gómez, Elta: New approach in designing business
intelligence solutions in era of big data, Procedia

technology 16 (2014) 667–674.
[15] R. Mukherjee, P. Kar, A comparative review of data

warehousing etl tools with new trends and industry
insight, in: 2017 IEEE 7th International Advance
Computing Conference (IACC), 2017, pp. 943–948.
doi:10.1109/IACC.2017.0192.

[16] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, A. Talwalkar, Mllib: Machine
learning in apache spark, J. Mach. Learn. Res. 17 (1)
(2016) 1235–1241.

[17] E. Zdravevski, P. Lameski, A. Kulakov, B. Jaki-
movski, S. Filiposka, D. Trajanov, Feature rank-
ing based on information gain for large classifi-
cation problems with mapreduce, in: Proceedings
of the 9th IEEE International Conference on Big
Data Science and Engineering, IEEE Computer
Society Conference Publishing, 2015, pp. 186–191.
doi:10.1109/Trustcom-BigDataSe-ISPA.2015.580.

[18] E. Zdravevski, P. Lameski, A. Kulakov, S. Filiposka,
D. Trajanov, B. Jakimovski, Parallel computation of
information gain using hadoop and mapreduce, in:
M. P. M. Ganzha, L. Maciaszek (Ed.), Proceedings
of the 2015 Federated Conference on Computer Sci-
ence and Information Systems, Vol. 5 of Annals of
Computer Science and Information Systems, IEEE,
2015, pp. 181–192. doi:10.15439/2015F89.

[19] E. Zdravevski, P. Lameski, A. Kulakov, Row Key
Designs of NoSQL Database Tables and Their Impact
on Write Performance, in: Proceedings - 24th Euromi-
cro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2016, 2016, pp.
10–17. doi:10.1109/PDP.2016.84.

[20] M. Bala, O. Boussaid, Z. Alimazighi, P-etl: Parallel-
etl based on the mapreduce paradigm, in: 2014
IEEE/ACS 11th International Conference on Com-
puter Systems and Applications (AICCSA), 2014, pp.
42–49. doi:10.1109/AICCSA.2014.7073177.

[21] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, R. Murthy, Hive - a
petabyte scale data warehouse using hadoop (March
2010). doi:10.1109/ICDE.2010.5447738.

[22] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, V. Srinivasan, Amazon Redshift and the
Case for Simpler Data Warehouses, Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data - SIGMOD ’15 2015-May (2015)
1917–1923. doi:10.1145/2723372.2742795.

[23] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, W. Lehner, SAP HANA Database:
Data Management for Modern Business Appli-
cations, SIGMOD Rec. 40 (4) (2012) 45–51.
doi:10.1145/2094114.2094126.

[24] D. Ślȩzak, R. Glick, P. Betlinski, P. Synak, A new
approximate query engine based on intelligent cap-

ture and fast transformations of granulated data sum-
maries, Journal of Intelligent Information Systems.

[25] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, C. Curino, Apache tez: A unifying frame-
work for modeling and building data processing appli-
cations, in: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, ACM, New York, NY, USA, 2015, pp.
1357–1369. doi:10.1145/2723372.2742790.

[26] J. E. Gonzalez, P. Bailis, M. I. Jordan, M. J. Franklin,
J. M. Hellerstein, A. Ghodsi, I. Stoica, Asynchronous
complex analytics in a distributed dataflow architec-
ture, arXiv preprint arXiv:1510.07092.

[27] X. Li, Y. Mao, Real-time data etl framework for big
real-time data analysis, in: 2015 IEEE International
Conference on Information and Automation, 2015,
pp. 1289–1294. doi:10.1109/ICInfA.2015.7279485.

[28] H. Herodotou, F. Dong, S. Babu, No one (cluster) size
fits all: automatic cluster sizing for data-intensive an-
alytics, in: Proceedings of the 2nd ACM Symposium
on Cloud Computing, ACM, 2011, p. 18.

[29] K. Elmeleegy, Piranha: Optimizing short jobs in
hadoop, Proceedings of the VLDB Endowment 6 (11)
(2013) 985–996.

[30] R. Ranjan, Streaming big data processing in data-
center clouds, IEEE Cloud Computing 1 (1) (2014)
78–83. doi:10.1109/MCC.2014.22.

[31] H. Hu, Y. Wen, T. S. Chua, X. Li, Toward
scalable systems for big data analytics: A tech-
nology tutorial, IEEE Access 2 (2014) 652–687.
doi:10.1109/ACCESS.2014.2332453.

[32] S. Mathew, Overview of Amazon Web Services, ac-
cessed: 2019-06-04 (april 2017).

[33] M. Kiran, P. Murphy, I. Monga, J. Dugan, S. S.
Baveja, Lambda architecture for cost-effective batch
and speed big data processing, in: 2015 IEEE Inter-
national Conference on Big Data (Big Data), 2015,
pp. 2785–2792. doi:10.1109/BigData.2015.7364082.

[34] E. Zdravevski, P. Lameski, A. Kulakov, S. Kala-
jdziski, Transformation of nominal features into nu-
meric in supervised multi-class problems based on the
weight of evidence parameter, in: Proceedings of the
2015 Federated Conference on Computer Science and
Information Systems, Vol. 5 of Annals of Computer
Science and Information Systems, IEEE, 2015, pp.
169–179. doi:10.15439/2015F90.

[35] E. Zdravevski, C. Apanowicz, K. Stencel, D. Ślęzak,
Scalable cloud-based etl for self-serving analytics,
in: P. Perner (Ed.), Advances in Data Mining: Ap-
plications and Theoretical Aspects. 19th Industrial
Conference, ICDM 2019, Springer International Pub-
lishing, Cham, 2019, pp. 387–394.

View publication statsView publication stats

https://www.researchgate.net/publication/337978547

