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Abstract. Financial analysis plays a major role in investing the disposable income of various economic
agents. Stock markets are predominantly made up of small investors with limited information and low
capabilities for a suitable analysis. Researchers, as well as practitioners, are divided over the findings
on the adequacy of technical analysis in investing. This paper examines the Markov chain process
in the stock market to discover the essential links and probabilities for the stocks’ transition through
three states of stagnation, growth, and decline (i.e., stagnant, bull, and bear markets). The subject of
analysis is a randomly selected portfolio of 20 shares traded on the New York Stock Exchange. The
data suggest that the portfolio relatively quickly, in four trading days, achieves equilibrium probabilities
that allow a certain amount of predictability of future movements. At the same time, when analyzing
the expected time intervals for the first transition, we found that the portfolio returns to a state of
growth much faster than a decline. In addition, the results negate the basic habits of frequent trading,
herding, and taking a short position in events of negative price fluctuations. Our research contributes
towards observing regularities and stock market efficiency with a clear goal of improving expectations
and technical analysis for small individual investors.
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1. Introduction

Operational research often becomes a structural part of corporate management and investment
decision- making on both microeconomic and macroeconomic levels. Special applications in the
microeconomic processes of firms and households are found to be usually related to financial
problems and their complex solving systems. The quantitative analysis is a special mixture of
statistical, econometric, and optimization methods, all emerging from broader mathematical
modelling. Applications are related but not limited to project planning, resource allocation,
investment decision-making in the real and financial sectors, process automation, etc. Mathe-
matical models are used to approximate reality. They have never been nor will ever be perfect
in depicting the deterministic (or stochastic) reality, but they are a crucial tool for modern
economists. With their help we come to a general understanding of the underlying processes
and factors which contribute to theory formulation and challenging. Recently, special attention
is devoted to models used in formulating and making decisions. Depending on their precision,
they can be a clear algorithm in decision making for various levels of management or even a
breakthrough analysis for inclusion of other determinants which were previously unobserved. In
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addition, including qualitative factors is necessary, since reality is not completely quantitative,
after all.

In this paper, we will study the stochastic nature of the stock market and the formulation
of an investment strategy for a small and average investor. According to general theory, we
assume that such investors make their decisions predominantly based on technical rather than
fundamental analysis. By doing so, we aim to formulate a guide for investment decisions in a
stochastic set-up of a fluctuating market. To account for market dynamics, we observe stocks
traded at the New York Stock Exchange. Through a Markov chain process, our goal is to explain
the transition dynamics of a random portfolio through three states of return. Formulating such
fictional investment should simplify the market dynamics in the states of stagnation (objectively
defined as portfolio return in the interval between -0.1% and 0.1%), growth, and fall, which are
related to the concepts of bull and bear markets. The analysis is based on high-frequency (daily)
data for the period between January 2, 2018, and November 30, 2021. This timeline includes
the COVID-19 pandemic and its influence on price fluctuations. The random portfolio consists
of 20 stocks of companies in basic industries - the energy, financial, health, and technology
sectors, which have critical economic importance. Our findings support the main hypothesis
that the market quickly reaches equilibrium, especially after initial plummeting in valuation.
The time needed for transitioning to a state of growth from an initial state of fall, though
minor, is shorter in the opposite case. We show that such results do not support panic selling
after a day of bad results, opposing the concept of herding in financial investing. The random
portfolio has a greater probability of growth in the following days compared to the probability
for value decreasing. Due to the specific period, the stocks are observed to be rarely stagnant
in their returns.

Formulating new rules and expectations for trading at the stock market is necessary. Through
the incorporation of mathematical models in finance as an emerging research field, we contribute
to the academic literature of operational research. Our study focuses on the financial markets
through observation of transition probabilities and expected first passage times (EFPT) through
three states of portfolio returns. By doing so, small investors can observe regularities and mar-
ket efficiency, which assist in executing decisions and avoiding irrational behavior such as the
phenomenon of herding.

The paper is structured as follows. Section 2 overviews the theoretical background of port-
folio theory, stock investment, and Markov processes and their importance in modern academic
work. Section 3 discusses the methodological approaches in operational research (OR here-
after), developing the research model, and data acquiring and analysis. Upon this, the paper
relates the observed results with adequate elaboration, finishing with a systematic conclusion
of the research.

2. Theoretical background

Operational research dates formally back to the 17th century with the first complex decision
analysis, but the modern format of quantitative analysis was introduced in the 20th century.
Most commonly today, the quantitative methods are applied in the financial and industrial
systems alongside their usage in the sector of non-financial services. Process optimization and
generating a unique insight into their nature is the main idea behind operational research,
independent of whether we talk about stochastic or deterministic processes [7, 5]. Andrey
Andreyevich Markov, who the stochastic process was named after, introduced the idea in the
early 20th century through studying the interdependence between certain events and the law of
large numbers in probability theory [15]. The practical usage of the Markov chain in economics
is immense. Changes in the market structure of companies may follow the Markov process
[18, 13], implying that firms transit between sizes in their lifetime. Similar concepts are found
in studies of the agricultural sector [11], income distribution and disparities [14] as well as
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predicting human potential in ICT firms [10]. The literature dominantly deals with concepts
such as service optimization, income maximization, or cost minimization.

With the rapid development of financial markets, portfolio optimization becomes a key
component in formulating investment decisions. Markowitz [16] emphasizes the fundamental
concept of rational financial investors who act according to their own ‘subjective perception
of event probabilities’ in times of rising uncertainty. The relationship between such a concept
with the expected returns and the risk of a stock portfolio is the starting point in our study.
The dominant proportion of stock market investors is small and possesses significantly less
information compared to the large institutional investors, limiting their ability for deep market
analysis [3]. Some studies imply that portfolios of average individual investors lag behind the
market return by an average of 1.5% annually, with increased market activity (evident in times of
greater market distortions) further decreasing it [2]. Due to low aggregate levels of information
in possession, small investors usually incorporate technical or partial fundamental analysis of
market tendencies. The concept of technical analysis is often criticized. Brown and Jennings
[4] suggest that it is impossible for the spot price to be completely determined by information
contained in the previous periods. Following the results of Barber and Odean [2], Hoffman and
Chefrin [9] note that the investors who are highly dependent on technical analysis usually achieve
unsatisfactory results and trade speculatively. One of the main motivations behind our research
is the paper of Zhu and Zhou [25], which suggests that the technical analysis (mainly the moving
average analysis of prices) is especially useful in creating a sufficient portfolio return, on the
condition that stock returns are predictable. Park and Irwin [19] conducted a general review on
earlier studies related to the effectiveness of technical analysis, with 56 out of 95 modern studies
indicating that such methods consistently generate economic profits for individual investors. For
additional research revisiting the positive aspects of technical analysis, we strongly suggest the
work of Shynkevich [22].

So far, the usage of Markov chains in explaining stock market movements is stationed around
trend and volatility studies, with little attention placed on expected intervals of transition and
their connection to technical analysis. Using a Markov process, Hamilton and Lin [8] analyze
the monthly volatility of stocks in recession environments, combined with the respective ARCH
and GARCH models. The authors conclude that recessions are the main source of fluctua-
tion, coinciding with the specific timeline chosen for our study which includes the COVID-19
pandemic. The ability to form precise expectations is strengthened with the usage of Markov
chain models and neural networks in the computer modeling works of Dai et al. [6]. Financial
portfolios, such as the Tunisian public debt portfolio, can be studied through hidden Markov
models (HMM) for the expected Value-at-Risk (VaR) changes [21]. Such approach was found to
be robust and accurate enough for formulating predictions. Two-state and eight-state models
were used in studying the Prague Stock Exchange Index, systematizing the states of growth
and fall depending on their intensity [23]. However, the authors do not include the possibility
of the market being in a stagnant state, which can be regarded as a fundamental shortcoming.
Even though stocks are rarely stagnant, the inclusion of such a state may significantly change
the state transition hypotheses. The COVID-19 pandemic and its relationship with the US
stock market, volatility, correlation, and liquidity was also analyzed. Based on a Markov chain
model, the results imply a connection between stock returns, volatility, and correlation, but not
with the liquidity component during the turbulent period [12]. Changes in the traditional co-
movement between variables usually appear a day prior to structural changes in returns, which
may imply certain predictability of market risks. Recent research incorporating the Markov
chain models study the Nigerian, Chinese, and London stock exchanges, [1, 24, 20] respectively.

Our study builds upon the preexisting knowledge and research with a clear goal of contribut-
ing towards stock market decision making of small individual investors. Through operational
research incorporating the Markov chain models, we fill the gap in the literature left due to omit-
tance of stagnant returns, technical analysis, and critical sector portfolios, as well as inclusion
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of the pre- and post-pandemic periods for the case of the New York Stock Exchange.

3. Methodological approach

The methodological approach in operational research (OR) is usually based on typical steps
and procedures that allow for better creation, specification, and adequacy of the implemented
mathematical models. In the following sections, we relate the standard OR procedures to the
employed Markov chain model in the context of stock markets.

3.1. Defining the problem

Capital markets are fundamentally created by the agents, i.e., investors, rather than the pub-
licly traded companies. In practice, the pool of investors is dominated by the small ‘uninformed’
investors, contrary to the large ‘well-informed’ ones. Classical portfolio theory suggests that,
predominantly, market investors do not achieve above-average returns but rather a return pro-
portional to that of the market in the long run. They do not possess significant expertise for
deep quantitative analysis, so they focus on technical analysis quite often instead. Their deci-
sions are based on historical price fluctuations with the single goal of finding regularities in their
movements, which in turn can help predict the future. Starting from the behavioral concept of
herding, a large number of investors base their decisions on general market tendencies rather
than fundamental principles.

Since financial time series are often characterized with volatility clustering, with the Markov
chain model we estimate the probability of persistent devaluation of stocks. Our main hypothe-
ses are aimed at checking the presence of quick return stabilization of our respective random
portfolio and faster transition from initial fall to a state of growth. Supporting such assump-
tions contributes towards developing a broader range of technical analysis and formulating new
trading rules and expectations.

3.2. Developing the mathematical model

The main modeling approach in this study is the Markov process. We base the probability
of a random portfolio being in a given state and transiting through predefined states on an
examination of the return as a controlled variable in the model.

The Markov process is a model of real events which defines their randomness a priori It
is suitable for studying processes which are not based on natural laws and do not follow a
deterministic trajectory (e.g., the rotation of the Earth around its axis). Traditionally, it
examines subsequent events that depend solely on the event that precedes them. The model
excludes the conditionality of the present event on all past events. However, this does not imply
that the information is not incorporated in the price of the asset. Even if today’s status depends
on that of yesterday, it is implicitly conditioned by the event that precedes yesterday’s - and
so forth in a chain. We employ a discrete-time Markov chain which is useful for monitoring
random walks at the stock market. Having this in mind, the capability of trend analysis is of
key importance irrespective of the type of the asset, e.g. securities, commodities, etc. [7].

Let Xt be a random variable in time t where t = 0, 1, 2, 3, ..., n. Subsequently, the state of
the random variable at a given point in time isXt = {X0, X1, X2, ..., Xn}. For simplification, we
define three ’market states’ - stagnation, growth (i.e., bull market), and fall (i.e., bear market),
making a state space S = {1, 2, 3}. Such set-up simplifies the subsequent matrix operations and
is a fair representation of reality. The portfolio theory signals that the market efficiency depends
on the level of informational integration in security prices, and so, semi-strong efficiency implies
that all publicly available information and historical prices are already incorporated in asset
prices [16]. This is a fair representation of the statement that the present stock price (not all
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previous) impacts the future price, which in turn is the main idea behind the Markov process.
This conditional relationship can be stated as

P (Xt+1 = s|Xt = st) (1)

where P is the probability for reaching a certain state for each time period t throughout all
possible states s0, s1, s2, ..., s. The main output is the transition matrix which depicts the
probabilities of transition through various states. In our case it is a square matrix with a
(3× 3) dimension which can be written as

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 (2)

such that the traditional definition of transition probability is 0 ≤ pij ≤ 1 and where pij =
P (Xt+1 = j|Xt = i) signals the probability that our process will transit from state i to state
j in one trading day. The matrix rows indicate the state at time t while the columns show
one step ahead at (t + 1). In our model, jumps between states are possible in any given time
period, not implying any 0 or 1 restrictions in the transition matrix. Such structure follows
the stochastic component of the stock market where interchangeable and reoccurring states are
completely possible. Consequently, the proposed Markov chain of the study is irreducible i.e.,
ergodic. The stochastic model is said to be ergodic if it is possible to transition from any initial
state to another state in a certain amount of steps, implied by

Pij(t) > 0 (3)

where P is the probability of transitioning from initial state i to state j in t steps, which does
not necessarily one. Moreover, the employed model in this study restricts the possibility of
absorbing states as there is no reason for such assumption when dealing with stock market
series.

3.3. Data acquiring and analysis

For the purpose of our research, we used secondary data for the stocks traded at the New York
Stock Exchange for the time period between 2018 and 2021. The data were collected from the
NASDAQ - Stock Screener database [17]. Daily adjusted closing prices are taken for the stocks
of companies coming from the basic industries - the energy, financial, health, and technology
sectors. Only common stocks are used. The data are further transformed to obtain price returns
through nominal prices

Rt =
∆P

Pt−1
(4)

where ∆P is the one-period difference in prices and R is the return. is the one-period difference
in prices and R is the return. We created a portfolio with 20 stocks based on a stratified sample
of sectors. For the hypothetical portfolio an equal weighting system is employed, defining a
portfolio return as

Rt
p =

n∑
i=1

ωiRit,∀ω =
1

n
(5)

where Rp is the portfolio return, R is the return of individual stock i , and ω denotes the
wights given to each stock in the portfolio. General summary of the stocks traded at the NYSE
classified by sectors and sizes used in the analysis are provided in Table 1.
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Market Capitalization Nano-Micro (0-$300M) Small-Medium ($300M-$10B Large-Mega ($10B+)
Sector No. of companies Share No. of companies Share No. of companies Share

Basic Industries 5 3.85% 89 68.46% 36 27.69%
Energy 26 18.71% 84 60.43% 29 20.86%
Financial 187 27.3% 409 59.71% 89 12.99%
Health 8 6.67% 55 45.83% 57 47.5%

Technology 15 6.67% 140 62.22% 70 31.11%
Total 241 18.55% 777 59.82% 281 21.63%

Table 1: Number and share of companies traded at the NYSE, classified by sector and market
capitalization, December 2021.

The random stratified sample portfolio consists of four stocks of companies per sector, get-
ting a total of 20 stocks. To preserve anonymity, we deliberately decided not to provide the
names of the companies used. In our fictional investment, 10% of the share are stocks of nano-
micro companies, small-medium companies account for 75% of the stocks used, and the rest
are large-mega corporations. All companies are American and their main activities include: oil
and gas production, production of medical and dental instruments, medical specialization, man-
agement of hospitals and geriatric institutions, investment management, financial corporations
with a wider range of operations, marketing, secondary car markets, non-life insurance, prod-
uct packaging, and electronic data processing. The data cover the time period from January
2, 2018 to November 30, 2021, providing 986 observations for further analysis. The following
figure depicts the nominal and relative price changes of our portfolio. Structural disruption is
evident during the onset of the COVID-19 pandemic, after which the trend changes significantly
from fairly stagnant to growing.

Figure 1: Portfolio value and return, January 02,2018 - November 30, 2021.

The main analysis is concentrated on measuring the probabilities for the portfolio to reach
one of the three predefined states. We calculate them based on relative frequencies, depending
on the number of days that the portfolio was at state si

P (X = si) =
fsi∑n
i=1 fsi

(6)

where i = 1, 2, 3 are states of stagnation, growth and fall, respectively, and f is the frequency i.e.,
the number of daily occurrences for each state. The biggest problem is defining the stagnation
state interval which should formally be fixed exclusively at 0% return, but for objective reasons
such as too few observations, the mathematical model would be operable with only two states
- something that does not represent reality. Arbitrarily, we define stagnation as −0.1% ≤ s1 ≤
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0.1%, with growth returns higher than the upper bound s2 > 0.1% and decreasing returns
below the lower bound of stagnation s3 < −0.1%. The absolute and relative frequencies (i.e.,
probabilities) of each state are presented in the following table 2.

State Numerical notation Interval Frequency Probability

Stagnation 1 −0.1% ≤ s1 ≤ 0.1% 81 0.08223
Growth 2 s2 > 0.1% 488 0.49543
Fall 3 s3 < −0.1% 416 0.42234

Table 2: Absolute frequencies and state probabilities of the Markov process.

We checked for different intervals of return for the stagnation state, such as -0.5% and 0.5%, as
lower and upper bound. The probability distribution changed significantly into 0.3472, 0.3492,
and 0.3036 for each of the three states, respectively. However, defining the stagnation state in a
narrower interval is favorable from both theoretical and practical aspects. Defining a too narrow
stagnant state may result in it being practically non-existent. For example, if we further reduce
the stagnation interval by half (between -0.05% and 0.05%), the frequency of stagnant states
approximately halves to 44 observations and to a 0.0447 probability. This will logically impose
changes in the probabilities of growth and fall states as well. A three-state Markov chain for
monitoring stock returns is quite a simplification of reality. At this point, we ought to mention
that the incorporation of more than three states or significant change in percentage intervals,
as previously noted, may substantially change subsequent matrix operations. Consequently,
caution is advised when interpreting the results.

4. Implementation, results, and discussion of the Markov process

The central idea of Markov chain processes is the formulation of the transition matrix between
predefined states in which the random variable can be found. With it we define all nine out-
comes in the specific case of a discrete stochastic process. Self-fulfilling outcomes with 0 and 1
restrictions are not possible in this study, as there is no reason why a portfolio could not transit
in any state at any given time or remain ’trapped’ in a specific one. The transition matrix can
also be represented by the following diagram.

Figure 2: Transition probabilities diagram.

The obtained results are summarized within the transition matrix. Consequently, it can be
observed that the portfolio is most likely to transition from a downtrend to a growth position
with 54.33%, followed by the probabilities of a transition from stagnation to decline by 48.15%,
and from growth to decline by 43.44%. If the portfolio is in a state of decline in the initial
period, it is the least probable that in the next one it will ’jump’ into a state of stagnation
(5.29%). The same can be recorded in matrix form:
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P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 =

0.0864 0.4321 0.4815
0.0963 0.4693 0.4344
0.0529 0.5433 0.4038

 (7)

However, the transition matrix indicates the probability of passing through states within one
step (i.e., one time interval). We broaden the analysis considering a four-day trading interval
after the initial period. With that we complete the five-day trading week on the stock exchange.
The calculations of transition probabilities through n steps, which in our case is n = 2, 3, 4, are

P 2 =

0.0745 0.5017 0.4237
0.0765 0.4979 0.4256
0.0783 0.4972 0.4245

 (8)

P 3 =

0.0772 0.4979 0.4249
0.0771 0.4980 0.4250
0.0771 0.4978 0.4251

 (9)

P 4 =

0.0771 0.4979 0.4250
0.0771 0.4979 0.4250
0.0771 0.4979 0.4250

 (10)

Transition matrices can be calculated even for the next 15, 100, or 500 periods, but after a
certain number of steps (in our case, for the first time approximately 4 days from the initial
moment) the system achieves a stable (long-term) state of transition probabilities. Essentially,
this does not mean that they never change, but that it determines a certain level of predictability
of the future state of the system [5]. After conducting additional power operations, we found
that the stable state of the system has the following distribution

X ∼ (Π1 Π2 Π3) ∼ (0.07709 0.49788 0.42503) (11)

which can be explained as the portfolio having a 7.709% chance of being in a stable state,
49.788% chance of being in a state of growth, and 42.503% chance of being in a state of fall,
irrespective of the initial state. The system distribution can be analyzed from two aspects - if we
observe what happens on a particular day or if we draw conclusions without observing based on
the previously determined probabilities. Whether we a priori determine a certain probability of
achieving a particular state or study the system though observations, the distribution stabilizes
at a predetermined level over a certain period.

In technical analysis, it is useful to know the probability of the portfolio transiting between
states for the first time after certain number of trading days. We often encounter statements
that stocks face difficulties returning ‘on track’ and that such phenomenon is evident in cases
of multiple-day devaluation. In that manner, we define the probability that the portfolio will
transit from state i to state j after exactly n periods. Is it more likely that the portfolio
will reach a growth position for the first time in 4 trading days after initial period decline
or maybe the opposite is more probable? The results of this analysis can be related to the
initially set hypothesis. Expected first passage times (EFPT) are obtained through first passage
probabilities calculated as

f
(n)
ij = p

(n)
ij −

n−1∑
k=1

f
(k)
ij p

(n−k)
ij (12)

where f
(n)
ij is a first passage probability and p

(n)
ij is a transition probability, both from state i

to state j in n trading days. Aggregated, these probabilities of first transition may be observed
in matrix form F (n) with the resulting output presented in table 3.
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State in period 0
State in period n

1 2 3

F (1)
1 0.0864 0.4321 0.4815
2 0.0963 0.4693 0.4344
3 0.0529 0.5433 0.4038

F (2)
1 0.0671 0.2989 0.2293
2 0.0682 0.2777 0.2502
3 0.0737 0.2423 0.2614

F (3)
1 0.0649 0.1425 0.1279
2 0.0641 0.1340 0.1395
3 0.0668 0.1136 0.1481

F (4)
1 0.0598 0.0670 0.0632
2 0.0590 0.0631 0.0778
3 0.0617 0.0534 0.0826

Table 3: First transition probabilities.

We found that after two trading days, first-time transiting from stagnant to growth state
has the highest probability. After three and four trading days, the highest probability of
first transition is noted for the self-returning state of fall (value decreasing). Consequently,
our indication leads to a higher portfolio probability of devaluation for the first time after a
longer period rather than returning to growth. This means that the investment regains positive
momentum fairly quickly, even after initial fall. Such results oppose the statement that a longer
period is needed to regain value after achieving bad results due to various factors.

Apart from using first-passage probabilities, we can calculate the expected first passage
time (EFPT) based on the initial state. According to Carter et al. [5], expected values can
be obtained through solving several systems of simultaneous equations based on transition
probabilities

E(Tij) = mij = 1 +

N∑
k=1

pikmkj , such that k ̸= j (13)

where m is expected number of trading days until first passage from state i to state j. In cases
where i = j we discuss special cases of expected reoccurrence times. Those probabilities do not
need to be calculated through simultaneous systems since we only need stable state probabilities
- something that we already calculated. Consequently, we obtain the following set of equations:

m11 =
1

Π1
(14)

m12 = 1 + p11m12 + p13m32 (15)

m13 = 1 + p11m13 + p12m23 (16)

m21 = 1 + p22m21 + p23m31 (17)

m22 =
1

Π2
(18)

m23 = 1 + p21m13 + p22m23 (19)

m31 = 1 + p32m21 + p33m31 (20)

m32 = 1 + p33m32 + p31m12 (21)

m33 =
1

Π3
(22)
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Simultaneously, we can solve equations 15 and 21, obtaining an expected 2.08 trading days
for the first transition from initial stagnant state to a state of growth and expected 1.86 trading
days for the first transition from initial fall to growth.
Proof. The simultaneous nature of the m12 and m32 variables defines a two-equation system as{

m12 = 1 + p11m12 + p13m32

m32 = 1 + p33m32 + p31m12

which can be further transformed into{
(1− p11)m12 = 1 + p13m32

(1− p33)m32 = 1 + p31m12

After incorporating transition matrix probabilities into our system, we obtain{
0.9136m12 = 1 + 0.4815m32

0.5962m32 = 1 + 0.0529m12
m12 =

1 + 0.4815m32

0.9136

0.5962m32 = 1 + 0.0529m12

1 + 0.4815m32

0.9136

∴ 0.56832m32 = 1.0579

leading us to the solutions {
m32 = 1.8615

m12 = 2.076

Solving equations 16 and 19, we found that the expected first passage time is 2.17 trading
days from stagnation to fall and 2.28 trading days from initial growth to fall. In a general
context, the portfolio is expected to recover quickly from initial downfall. Combining equations
17 and 20 yields expected first transition intervals - from growth and fall to stagnation - of
12.82 and 13.36 trading days, respectively. This may be accounted to the especially rare state
of stagnation for the analyzed portfolio. Studying the results for the reoccurring states, we
found that the shortest interval is noted for growth (2.01 trading days), followed by fall (2.35
trading days), and approximately 13 days for reoccurring stagnation. Based on these results,
small investors can further develop their market expectations and capabilities for technical
analysis. Instead of herding and focusing on extremely short-term trading strategies, it would
be opportunistic to form a longer-term approach in investing, having in mind the frequent
readjustment of the portfolio value. Moreover, these results signal market efficiency, which was
initially expected for highly developed capital markets in the USA. To avoid repetition and
over-extensiveness in stating solutions, we present a compact proof of the obtained results.
Proof. The simultaneous nature of the m21 and m31 and the m13 and m23 variables define two
systems presented as{

m21 = 1 + p22m21 + p23m31

m31 = 1 + p32m21 + p33m31

and

{
m13 = 1 + p11m13 + p12m23

m23 = 1 + p21m13 + p22m23

which can be further transformed into{
(1− p22)m21 = 1 + p23m31

(1− p33)m31 = 1 + p32m21

and

{
(1− p11)m13 = 1 + p12m23

(1− p22)m23 = 1 + p21m13
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obtaining the solutions after incorporating transition probabilities from equation 7{
m31 = 13.357

m21 = 12.818
and

{
m23 = 2.2785

m13 = 2.172

Even though our results support the initially set hypotheses, there are some limitations to
our research. First, to simplify matrix operations we used a three-state system. Even though
a perfect approach doesn’t exist, we believe that defining a wider range of accessible states is
favorable. Second, we note that the main restriction in our study is the assumption of return
intervals. There is no clear-cut border between different levels of return, which may be perceived
as a subjective approach. Even though the results portray a quick shift from negative to positive
portfolio returns, this may not mean that returning to a growth state is sufficient to offset the
initial devaluation. An important limitation to point out is the chosen data frequencies in this
study. Since the research employs daily returns, the usage of intraday returns, for example,
may significantly change the transition and subsequent steady-state probabilities. We ought to
explore such a case in a separate study since obtaining intraday data at this point was out of
reach. Being completely aware of the noted research imperfections, we deliberately leave these
questions and limitations open for our future work and for inspiring other scholars’ research.

5. Conclusion

Through the implementation of Markov chain models in financial time series, we monitored
the predictability of NYSE portfolio returns throughout the 2018-2021 period. We managed to
formulate a rule of thumb in the technical analysis for small individual investors, confirming
that frequent trading, immediate short positions in the initial downfall of portfolio value, and
herding are unnecessary behavioral reactions. The resulting matrix of transition indicates
a greater probability for transiting into a state of growth after initial fall for the analyzed
period, with a possibility of reaching long-term steady-state probabilities in approximately four
trading days. Moreover, the expected first passage times (EFPT) suggest that the hypothetical
portfolio needs the least time (1.86 trading days) to jump from a state of fall to growth, unlike
the reverse situation which needs approximately 2.28 trading days to occur. However, the
three-state system defined in our study is not a clear definition of reality but rather a necessary
simplification. A clearer image could be obtained through a larger set of multi-level states of
return, discussing the sufficiency of achieved returns in offsetting initial fluctuations. Moreover,
our initial analysis can be further broadened with a larger sample of observations, preferably
at least a decade-long window. Additionally, we leave the study of a non-US stock market with
larger volatility open for future work. Finally, the capacity for structural changes in portfolio
returns may vary and is dependent on exogenous shocks, policy changes, as well as the investors’
risk perceptions. The impact of such variables should be studied in a different environment and
model setting rather than strictly through Markov chains.
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