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Abstract—In several NoSQL database systems, among which
is HBase, only one index is available for the tables, which is
also the row key and the clustered index. Using other indexes
does not come out of the box. As a result, the row key design
is the most important thing when designing tables, because
an inappropriate design can lead to detrimental consequences
on performances and costs. Particular row key designs are
suitable for different problems, and in this paper we analyze the
performance, characteristics and applicability of each of them.
In particular we investigate the effect of using various techniques
for modeling row keys: sequences, salting, padding, hashing, and
modulo operations. We propose four different designs based on
these techniques and we analyze their performance on different
HBase clusters when loading HDFS files with various sizes. The
experiments show that particular designs consistently outperform
others on differently sized clusters in both execution time and
even load distribution across nodes.

Keywords—NoSQL, HBase, Hadoop, table design, row key,
primary key, clustered index

I. INTRODUCTION

We live in a time in which people are connected on the
Internet and the expectation is to find useful and personalized
results instantaneously. To address this demand, the focus on
many companies has become to deliver targeted information
(e.g. recommendations or online ads), and their ability to
achieve this directly influences their success. In the past,
companies had the liberty to decide which data to store,
keeping in mind the associated resources for it. Now there
is an increasing need to store and analyze all data that can be
collected, so the company can be competitive on the market.
The results of such analysis when integrated in other parts
of the systems can boost the data generation further. It is
important to realize that the need for more data continues
to increase with the development of new machine learning
algorithms. Different companies have followed various ideas
to solve the Big Data challenge. One traditional approach is
to increase the processing power and it is effective up to
a certain point. Nevertheless, for web-scale applications, to
which we are accustomed nowadays, hardware scaling is not
as effective. After publishing the paper describing Google’s
file system [1] in 2003, their approach to MapReduce [2] in
2004, and the concept of Big Table [3] in 2006, the paradigm
of parallelization and distribution of computation has become
popular. Since then, many open-source projects and companies
have followed similar approaches. Systems like Hadoop [4, 5]
now enable to gather and process petabytes of data. It is
a framework that is used by industry leaders like Yahoo,
Facebook, Ebay, Adobe, StumbleUpon, etc [6].

Be that as it may, the scalable performance of Hadoop does
not come out of the box, per se. In order to use the facilities
of Hadoop and its subsystems like HBase and HDFS to store
and analyze huge volumes of data, an appropriate design is
needed. A bad design can produce devastating performance of
a system. In contrast, a good design can result in reduction
of the cluster size and thus the cost of the system, while
boosting the performance. This is especially true for the write
performance of HBase tables, which depends mostly on the
design of their row key. The importance of this topic is
highlighted in all HBase books. Also some papers like [7]
address this issue by employing a hash as part of the row key.

In this paper we analyze the performance, characteristics
and applicability of different row key designs. Specifically, we
employ various techniques for modeling row keys: sequences,
salting, padding, hashing, and modulo operations. We propose
four different designs based on these techniques and we
analyze their performance on different HBase clusters when
loading HDFS files with various sizes.

The rest of this paper is organized as follows. In section
II we provide an overview of HBase as a representative
of NoSQL databases. Then, in section III we describe four
different row key designs. Afterwards, in section IV we present
the comparative results of the different row keys designs and
we discuss the advantages and drawbacks of each of them.
Finally, this paper ends with section V where we make some
conclusions and point some directions for future work.

II. HBASE: A NOSQL DATABASE

HBase is an open source, non-relational, distributed
database modeled after Google’s BigTable. It runs on top of
HDFS (Hadoop Distributed Filesystem), providing BigTable-
like capabilities for Hadoop [4]. It is a platform for storing and
retrieving data with random access. HBase is a NoSQL (Not
Only SQL) database that can store structured and semistruc-
tured data [8]. It is designed to work on a cluster of computers,
where each node in the cluster adds up to the computational,
memory and storage capacity of the whole system. To facilitate
this HBase splits tables in regions, which are hosted by servers
called Region Servers.

Generally, given that Google’s Distributed File System,
Big Table and Map Reduce were the source of inspiration
for Hadoop, HDFS and HBase, there are equivalent concepts
in both ecosystems. Therefore, the ideas presented in this
paper are applicable to other Big Table-like systems such as
Amazon’s DynamoDB [9] and Cassandra [10].



The design and the use cases of HBase significantly differ
from the Relational Database Management Systems (RDBMS),
and consequently the approach for implementing applications
that use HBase is also different. In short, before creating a table
one has to think about its potential usage patterns, the expected
volumes of data, and even the data distribution of the row key.
The row keys of HBase tables determine the performance when
interacting with them. According to [11, 8], when designing
HBase tables, the row key is the single most important thing
and should reflect the expected access pattern. The reasons for
that are: the fact that regions serve a range of rows based on
the row keys and are responsible for every row which is in
that range, and the fact that HFiles store the rows sorted by
row key on disk. In relational databases, whenever the usage
pattern of a table is changed, we can add additional index
to address this, or we can drop obsolete indexes. All of this
can be done without any downtime. On the contrary, HBase
indexes only on the row key, so the only way to access data is
by using it. If we want to access a row by some information
contained in other columns, then we will need to scan a range
of rows, or even the entire table.

There are various techniques to design row keys that are
optimized for different access patterns, as explained in [11,
8]. In these books there are plenty of useful examples and
use-cases that illustrate the importance of the row key design.
Nevertheless, they lack an extensive analysis of row keys that
can offer balanced load on the cluster, while being generic
and applicable for a variety of scenarios. In [7] the authors
propose the usage of the MD5 hash function when generating
row keys. Nevertheless, the row key design is specific to a
particular application. Moreover, there is no analysis of the
distribution of row keys, nor of the execution times compared
to other row key designs.

In the following section we describe four different row key
designs and afterwards in section IV we analyze their effect
on communication costs and uniform load across nodes in the
HBase clusters.

III. GENERIC ROW KEY DESIGNS

As pointed out previously, the row key design of HBase
tables has the greatest impact on the performance of the
system. Monotonically increasing row keys (e.g. when using a
timestamp) cause only one of the table regions to be pounded
when inserting data, while others to be idle. In [5, 11] are
described scenarios where an import process can have dreadful
performance caused by monotonically increasing keys. The
authors of these books recommend avoiding such keys by
adding either randomized prefixes or some sort of pseudo-
random prefixes in the row key. In this section we describe four
different approaches to achieve this. For each of them we point
out their limitations, drawbacks and advantages. Some of their
properties are validated by the experiments and performance
evaluations described later in section IV.

Aiming to generate row keys that are lexicographically
sortable, we use a User Defined Function (UDF) for padding
numbers with zeros. Being able to have an expected ordering
of the row keys aids the design of HBase tables because it
can enable choosing good split points for pre-splitting, or
identify regions that might become “hot”. Hot regions have

significantly more load than others in an extended period of
time. By using this UDF we are able to combine multiple
integers in a slightly more complex structures (i.e. tuples) that
are lexicographically sortable in binary or string representation.
Also in three of the row key designs we use the MD5 hashing
function, therefore we describe it in subsection III-A. Then,
in the following subsections we describe each of the proposed
row key designs.

A. MD5 hashing function

The MD5 message-digest algorithm was proposed in [12].
The algorithm takes as input a message of arbitrary length
and produces as output a 128-bit “fingerprint” of the input. It
is conjectured that it is computationally infeasible to produce
two messages having the same fingerprint, or to produce any
message having a given prespecified target fingerprint. The
MD5 algorithm is intended for digital signature applications,
where a large file must be “compressed” in a secure manner
before being encrypted with a private (secret) key under a
public-key cryptosystem.

Aside for cryptographic applications, MD5 hashing func-
tions can be used for other purposes as well. One of them is
to generate an integer hash value from an arbitrary argument.
In the context of designing row keys, our hypothesis is that
MD5 hash values can be used as pseudo-random numbers.
Nevertheless, the range of values generated by the MD5 hash
function is quite wide, and is impractical for direct usage. More
memory is needed for holding the values and the range is not
as descriptive. We can amend this by calculating the modulo of
the MD5 hash value and the range size. In Python this can be
done by the code shown at listing III-A. The input argument
s is of arbitrary data type, which is converted into a string
with the function force string. The argument max value
is used as a divisor in the modulo operation, thus limiting
the range of integers that can be returned by this function to
0..max value− 1.

1 def MD5(s, max_value):
2 md5 = hashlib.md5()
3 md5.update(force_string(s))
4 digest = md5.hexdigest()
5 number = int(digest, 16)
6 return number % max_value

Listing 1. Python UDF for generating MD5 hash values in the range
0..max value-1

In order to confirm that the distribution of values in
that range is pseudo-random, we have performed extensive
experiments. We have used different values for the parameter
max value, while providing sequential integers and arbitrary
strings with varying length to the MD5 function. We have
provided 4 million different arguments to the MD5 functions
while using the values 1000, 10000, 100000 and 1000000 for
the max value parameter. The results showed that indeed
the distribution of returned values by the MD5 function was
uniform. This experiment confirmed that the MD5 function
can be used for generating pseudo-random integers. Fig. 1
shows the histogram of MD5 modulo 1000 for 4 million
sequential integers. Given that we have generated 4 million
numbers in the range 0..999, ideally each of the 1000 distinct
numbers would be generated 4000 times. Nonetheless, in our
experiment each distinct number was generated from 3810 to



Fig. 1. Histogram of MD5 modulo 1000 for 4 million sequential integers

4199 times with standard deviation of 61.89. It is evident that
the generated numbers with the MD5 function have similar
properties as random numbers that would be generated in the
same range.

B. Pre-splitting HBase tables

If no split points are provided at table creation time, HBase
creates only one region for the table. The reason for this is
because it cannot possibly know how to create the split points
within the row key space before having data in the table.
Making decisions about good split points should be based on
the distribution of the keys in the data. So when a table that
has one region gets large enough, it will be automatically split.
Nevertheless, this is an expensive operation and has several
drawbacks. First, the automatically chosen split point might
be optimal at the time of the split, but not be the best choice
in general. This is due to the fact that the expected table growth
or the distribution of row keys in the future are not taken into
consideration. Second, when a region is split into two, both
of them will be assigned to the same Region Server. Moving
one of the regions to another Region Server that is less loaded
needs to be done manually. Third, there is an overhead of
the entire operation and the time when the split is going to
occur cannot be precisely predicted, which can slow down
applications that use the table at the time of the split.

HBase provides tools for a process called pre-splitting,
which enables to create a table with a particular number of
regions by supplying the split points at the table creation time.
This is a convenient way to make sure that the table has the
desired number of regions even before it has any data. More-
over, HBase will try to distribute the table regions uniformly,
so each Region Server is responsible for approximately the
same number of regions. For instance, if a table is split into
R regions and we have RS region servers, then each Region
Server will get R/RS regions when R ≥ RS . When R < RS
then R of the region servers will be responsible for one region,
thus some of the region servers would not be used for this
table. The commands for creating tables with split points or
for manually splitting an existing HBase tables are explained
and illustrated with examples in [8].

Pre-splitting ensures that the initial load is more evenly
distributed throughout the cluster, and it should be always
considered when the row key distribution is known upfront.
If it is not known, then there is a risk of creating regions
that will not be loaded as expected due to data skew. If the
initial set of region split points is chosen poorly, the load
will be heterogeneous, which will in turn limit the cluster’s
performance. This stresses another aspect of the importance

of the row key design, namely having predictable distribution,
which is the focal point of this paper.

During the next subsections we assume that each row has a
unique integer identifier, id. Later on, in subsection III-G, we
discuss how the proposed row key designs can be generalized
for other cases when a unique identifier is not available.
Additionally, we choose to add a prefix in the row key design
that is also an integer, so we can easily estimate the difference
between prefixes. The proposed row keys have the following
format: (prefix, padded id). We have chosen this design
because it allows the row keys to be lexicographically sorted.
In order to achieve that, the id and the prefix are padded with
zeros to a predefined number of digits. Another convenient
property of this design is that the row key can be automatically
formatted as a tuple by the Pig Latin scripting language [13],
which we use for conducting our experiments. If we want to
save space we could omit the parenthesis and the coma from
the row key. Keeping in mind that the number of digits for the
prefix and the id is fixed, the row key integral parts can still
be decoded. For a given maximum value of the prefix MP , and
a given number of regions R, where MP > R, the number of
regions can be calculated as MP/R. In the interest of having R
regions, we need to specify R−1 split points when creating the
table. For the proposed row key format the split points can be:
MP/R, 2×MP/R, 3×MP/R, ..., (R−1)×MP/R. With these
split points the i-th region, i = 1..R, will handle the row keys
that have a prefix in the range [(i−1)×MP/R, i×MP/R).
Given that each region will handle exactly MP/R prefixes,
it would be ideal if all regions are equally loaded. Aiming to
achieve even load on each region, we propose different designs
of the prefix part of the row key in the following subsections.

When choosing the number of regions, it is usually good
idea to take a multiple of the number of region servers in
the HBase cluster. The logic for having more regions than
actual nodes is because the nodes are multi-core machines,
so different threads on the same node can service different
regions. Also when choosing the maximum value of the prefix
MP it is good for it to be a multiple of the number of
regions R, so the MP/R divisions mentioned above to be an
integer, which in turn makes all nodes to have equal number
of prefixes. Additionally it is recommended that MP >> R
because the cluster can get larger over time. Choosing MP in
that way will provide flexibility to make additional splits of the
existing table regions based only on the prefix. Moreover, it
will enable to distribute the data on all regions more evenly. To
illustrate this, let us consider the completely opposite example
in which MP = R. This in turn means that every prefix was
already used as an original split point. If we add one node to
the existing cluster with R regions, we would like to give a
portion of the table to the new node gets so it can do useful
work. But because all MP prefixes were already used for split
points, we are not able to specify a split point based on the
prefix. This will force us to make a split point based on the
second part of the row key, namely the id in this case. On the
other hand, for the distribution of the values of the id in general
we cannot make any guarantees. It means that the chosen split
point that includes both the prefix and the id is not optimal.
However, if MP was significantly greater than R, we would
be able to make additional split points that will split the table
in a predictable manner.



C. Random prefix

In general, random prefixes provide best distribution of
write load across region servers and consequently across
nodes in the cluster [11]. Nevertheless, this approach generally
provides bad performance for random reads. Let us consider a
simple example where each row has monotonically increasing
id. Furthermore, let the row key be designed in a way that
a random number prefixed the id. The design of the row key
would be as explained in the previous subsection in the format
(random prefix, id), and the table would be appropriately
pre-split. This row key design is independent of the data type
of the id of the row. In fact, the id can be a composed of
multiple columns because the random prefix does not depend
on them.

D. ID modulo prefix

The UDF shown at III-D generates a tuple which represents
the row key using a modulo of the id as prefix. Here id denotes
the unique identifier of the row, id pad digits is the number
of padding digits for the id, and mod number is the divisor
argument of the modulo operation. It returns a tuple consisted
of two parts: the padded modulo of the id and the padded id.

Obviously this design is only suitable for integer ids of
rows and this is its main drawback. Other drawbacks are
discussed in subsection III-G.

1 def rowkey_mod_prefix(id, id_pad_digits,
mod_number):

2 mod_number_digits = num_digits(mod_number)
3 prefix = int(id) % int(mod_number)
4 return (pad_number(prefix,

mod_number_digits), pad_number(int(id),
id_pad_digits))

Listing 2. Python UDF for generation of row key based on modulo of the
ID

E. ID MD5 modulo prefix

The UDF shown at III-E generates a tuple which represents
the row key using a modulo of the MD5 hash of the id as
prefix. Here id stands for the unique identifier of the row,
id pad digits is the number of padding digits for the id, and
mod number is the divisor argument of the modulo operation.
It returns a tuple consisted of two parts: the padded modulo
of the MD5 of the id and the padded id.

This row key is applicable for arbitrary types of the id.
In fact, even the function presented in listing III-E does not
specify the type of the id, while the MD5 function accepts ar-
bitrary data types that are converted to string before calculating
the MD5 hash and the modulo. As it turns out, demonstrated
by the experiments described in section IV, this row key is
the best option for both evenly distributed load during writes
across the cluster, while also being suitable for lookups during
reads of random rows.

1 def rowkey_md5mod_prefix(id, id_pad_digits,
mod_number):

2 mod_number_digits = num_digits(mod_number)
3 prefix = MD5(id, mod_number)
4 return (pad_number(prefix,

mod_number_digits), pad_number(int(id),
id_pad_digits))

Listing 3. Python UDF for generation of row key based on modulo of the
MD5 hash of the ID

F. Line MD5 modulo prefix

This UDF is exactly as the one described in the previous
subsection, but instead it calculates the MD5 hash of the whole
row as string, denoted as line in the code. The code for this
UDF identical to the one shown in listing III-E, but in to the
MD5 function we pass the whole row (line) and not only the
Id.

This row key design has an intrinsic anomaly that it cannot
be used for random reads. Still, we have decided to test it for
two purposes. First, we wanted to test if the execution time of
the MD5 function degrades for quite larger arguments. Second,
we wanted to test if the MD5 modulo prefix distribution is
still random for arguments comprised of mixed data types.
The experiments confirmed that the MD5 function is scalable
to large arguments while returning numbers with random
properties.

G. Generalization of the primary key

So far, we have assumed that each row has an integer id
that can uniquely distinguish it. In fact, many applications have
composite keys comprised of multiple columns. Obviously
a good generic row key design should also facilitate such
scenarios, as well. Let us consider a composite primary key
(i.e. id) that has the following format (A,B,C,D) where
A,B,C and D are the columns of arbitrary data types that
comprise it. For such key, obviously the prefix described in
subsection III-D is not applicable because it cannot calculate
the modulo of a non-integer id like this one. All other designs
are still applicable. First, the random prefix, described in
subsection III-C, only contains random numbers in a given
range that does not depend of the type of the id. Then, the
design based on the modulo of MD5 of the id, described in
subsection III-E, will treat the key (A,B,C,D) as a string,
calculate its MD5 hash, and consequently calculate a modulo
of it. Finally, the design described in subsection III-F does
not depend on the id at all, it rather uses the whole row
as an argument to the MD5 function. So all advantages and
drawbacks of these types of prefixes also generalize to arbitrary
types of the primary key of the row.

Another key point is that in some cases it is not suitable
to build the prefix based on the whole composite key. Namely,
instead of passing the composite id as an argument to the MD5
function for generation, it might be more suitable to use only
a part of the id as basis for the prefix. To illustrate this, let
us consider the case when we need to store some actions for
each user on a website, which is very common use case in
many business applications. In this case, the id of an action
(i.e. event) might be structured as (userID, timestamp). We
can still use this composite key as an argument to the proposed
row keys. If we do that, then the events of the same user will
be scattered on potentially all regions in the table. However,
this might be very inconvenient for various reasons. We might
want to do some analysis or perform some machine learning
based on all events of a particular user. Gathering all events
of a user entails communication and computation costs. This



can be alleviated by using only the userID and not the whole
composite id for generation of the prefix. The benefit of doing
this is that all events of the user will be lexicographically
sorted. On the other hand, this design endows unbalanced load
if the distribution of events per userID is skewed.

IV. RESULTS AND DISCUSSION

In this section we present the results from our experimental
evaluation of the proposed row keys. This section is structured
in several subsections, which describe and discuss specific
aspects of the experimental results. In the following subsec-
tions IV-A and IV-B, we describe the cluster configuration and
the dataset used for the experiments. Thereupon, in the next
subsections IV-C, IV-D and and IV-E, we describe and discuss
the effects of the cluster size, row key designs and number of
files and their sizes.

A. Environment and cluster configurations

In the interest of evaluating the various row key designs,
we have used a cluster that was deployed on-premises at the
Faculty of Computer Science and Engineering (FCSE) at the
Ss.Cyril and Methodius University, Skopje, Macedonia. It had
a total of 65 nodes, each of them an Intel Xeon Processor
E5640 with 12M Cache, 2.66 GHz, 24 GB RAM, 4 cores and
8 threads. From them 55 were configured to run the following
services: HBase Region Servers, HDFS DataNodes and YARN
MapReduce NodeManagers. The remaining nodes were used
for other Hadoop and Cloudera management services. We have
started experimenting using a HBase cluster with 55 nodes
(i.e. region servers) and have gradually reduced the number
of active nodes. For all experiments the number of HDFS
and YARN nodes was fixed to 55. Because data is read from
HDFS files, the number of HDFS nodes affects the number of
map tasks. HDFS source files, depending on their size and the
configured block size of HDFS, are automatically partitioned
on one or multiple blocks. In our experiments we have used
the default block size of 128 MB. The number of YARN nodes
determines how many nodes can run MapReduce applications
(i.e. jobs) [14]. In our experiments the number of map tasks
was always lower than the number of YARN nodes, so the
cluster limit regarding the number of active applications or map
tasks was never reached. We had exclusive access to the cluster
and we have executed all experiments sequentially, therefore
only one job was active at any time.

We have used the scripting language Pig Latin [13] for
writing the MapReduce jobs that parse the flat text files and
store them in HBase tables. The main reasons we prefer it
over manually writing MapReduce jobs are its simplicity and
speed of development. Moreover, it enables combining more
complex data flows, which we have applied for other types
of analysis of the same dataset that are not covered in this
paper. Pig determines the number of map tasks depending on
the number of partitions of the data source. If the data source
is a HBase table then the number of table regions elicits the
number of map tasks. When the data source is a HDFS file,
the number of blocks that comprise the file and the number of
HDFS nodes determines the number of map tasks. If we use
more than one HDFS file, then blocks from multiple files that
are on the same node might be combined in one map task.
To summarize, when using HDFS files as data source in Pig

Latin scripts the number of map tasks cannot be determined
upfront and depends on how the files are stored in HDFS and
the HDFS cluster configuration. Nevertheless, for a particular
set of files on a given cluster configuration, the number of map
tasks is constant.

In order to examine the effect of the number of table
regions on the parallelism, we have pre-split the destination
HBase tables to have 1, 2, 4, 8, 16, 32, 55, 110, 165 and
220 regions. HBase automatically distributed the table regions
in such way that each HBase Region Server is servicing an
equal number of regions per table. Note that for the current
experiments the number of table regions limits the parallelism
during the writes only, while the read parallelism and the
number of map tasks are determined by the HDFS files. As for
the modulo number used in all MD5-based row key designs,
we have decided to use 1000000, which results in generated
prefixes in the range from 0 to 999999. Likewise, for the
random prefix row key, the generated numbers were in the
same range. Based on the approach discussed in subsection
III-B the tables were pre-split accordingly.

B. Dataset for experiments

Aiming to test the various row key designs we used the
AAIA’14 [15] dataset. This dataset is a sparse matrix of 50000
rows and about 12000 columns with 0.9 % non-zero elements.
Instead of using its original form, we modified the dataset
files that were stored as flat text files, so each row contains all
non-zero values as pairs of column id and value. Additionally,
we have multiplied the dataset horizontally 80 times, after
which its size became 4 million rows. We have performed
other experiments on Hadoop clusters with this dataset, as
discussed in [16] and [17]. This representation of the dataset
in flat text file needed about 3 GB of space. We have stored
the enlarged dataset in different ways. We have tried storing
it in one large file, but also splitting the large file in many
smaller files, as well. We have repeated the experiments for
all different file sizes intending to determine the effect of the
file size on the performance. Table I shows all partitioning
schemes that were used. It was evident when the dataset is
stored in 10, 20, 40 and 80 files the blocks of these files
are not fully filled in. More importantly, for those cases even
though the total number of blocks increases, the number of
map tasks does not significantly increase. Interestingly, the
maximum number of map tasks was 40 and was obtained
when using 40 files. Somewhat counterintuitive, when using
80 files the number of map tasks reduced to 32. One logical
explanation for this phenomenon is that Pig Latin combines
the processing of multiple blocks of files that reside in the
same HDFS DataNode in one map task. This also explains
why the number of map tasks is lower than the total number
of blocks when using 10, 20, 40 and 80 files.

C. Effect of cluster size on performance

Fig. 2 displays the run times for loading the dataset
depending on the number of source files used, the number
of regions per destination HBase table when the number of
Region Servers is 55 for the different row key designs. It can
be noticed that for each row key design the best execution
times were when using table with 165 regions. The explanation
for this is the following. Each node in the cluster is a 4 core



TABLE I. DIFFERENT PARTITIONING SCHEMES OF A 3 GB DATASET

Files Size (MB) Blocks Blocks Filled (%) Total Blocks Total Maps

1 3070 24 99.9% 24 24
2 1535 12 99.9% 24 24
4 768 6 100.0% 24 24
8 384 3 100.0% 24 24

10 307 3 79.9% 30 25
20 154 2 60.2% 40 26
40 77 1 60.2% 40 40
80 38 1 29.7% 80 32

Fig. 2. Write performance for the different row key designs on a HBase
cluster with 55 Region Servers, different number of regions per table and
different number of source HDFS files.

machine. The 165 regions were uniformly distributed to the
55 region servers, so each of them services 3 regions of the
destination table. One of the 4 cores of each node remains free
to service other operating system and Hadoop processes, while
the other 3 are available for servicing the write requests to the
3 regions. When using a table with 110 and 55 regions, only
2 and 1 of the cores, respectively, are utilized when servicing
write requests to the 2 and 1 regions of the table that are on
that node. This is less than optimal and the full resources of the
cluster are utilized. On the other hand, when the table has 220
regions, all 4 cores of each node are being utilized during the
write requests, but there is no core left to service the operating
system and Hadoop. As a result, the operating system spends
more time for task switching, which in turn slows down the
write process.

D. Effect of row key designs

Regarding the execution times from the perspective of row
key designs, from the chart on Fig. 2 it can be noticed that
the random prefix provided worst results, especially when a
particular number of source HDFS files were used. Also it
is evident that the MD5 modulo prefixes always performed
similar, meaning that the size of the argument of the MD5
function does not significantly increase the execution time.
This fact verifies the claim that the MD5 function can be used
for complex keys comprised of multiple columns with different
data types. The ID modulo prefix obviously performs best on
this cluster configuration.

The charts presented on Fig. 3 show the performance of
the cluster during the load of the dataset stored as one file of
3 GB. There are presented 3 charts: one showing the HBase

Fig. 3. Write performance for one 3GB file when storing it in HBase tables
with 220 regions distributed on 55 region servers.

Read and Write Requests; one displaying the Write Requests
per Region Server; and one showing the Cluster Network I/O.
On each of them are shown the performances of each of
the row key designs in the following order: Random prefix,
described in subsection III-C, ID modulo prefix, described in
subsection III-D, the ID MD5 modulo prefix, described in
subsection III-E, and last the Line MD5 modulo prefix, as
described in subsection III-F. Generally, it can be noted that the
execution times were similar (392, 344, 400, and 391 seconds
in the respective order). However, it can be noted that the ID
modulo prefix produces more Read and Write requests at a
given time and more network I/O. Moreover, from the second
chart, where each line represents the requests per particular
Region Server, it is evident that not all region servers are
equally active at the same time. For all other designs all region
servers are equally loaded with requests all of the time, causing
the activity lines on the chart to overlap. A similar behavior can
be noticed in the other configurations with 55 region servers,
as discussed previously. Important to realize is that for all
cases the ID modulo prefix consistently generates thee to four
times more requests on region servers than the other row key
designs. Even though its run times are somewhat shorter than
for other designs, this behavior can be devastating and cause
region servers to crash if more applications run at once for an
extended period of time.

Another evidence to support the claim that the ID modulo
prefix can perform inconsistently is shown on Fig. 4. The only
similar execution times to the other row key designs are when
only one large file is used. The reason for this is because the
smaller files are actually splits of the large file, so the IDs in
the rows in them are monotonically increasing in a small range.
As a result, the prefix, which is actually the remainder returned
by the modulo operation, is also a monotonically increasing
number causing only some of the table regions to be active at
a given time.

Next, on Fig. 5 is displayed the performance of another
cluster configuration. We use a destination HBase table with
4 regions that are distributed on different region servers. The
spike in the first block of the second chart on Fig. 5 reveals
that when a random prefix is used and the number of regions is
small, some region might get significantly larger load than the



Fig. 4. Write performance for the different row key designs on a HBase
cluster with 8 Region Servers and 8 regions per table and different number
of source HDFS files.

Fig. 5. Write performance for one 3GB file when storing it in HBase tables
with 4 regions distributed on 4 region servers.

others. In fact, for the random prefix we have noticed similar
cases while using other configurations with small number of
regions. Nevertheless, given the random nature of the MD5
modulo prefixes, we acknowledge that the same situation can
happen for them, as well. Such thing can pose a problem and
cause a Region Server to die if it is “hot” for an extended
period of time, which can happen if multiple applications run
at the same time. Be that as it may, this is not a problem when
only one application runs on the cluster at one point because of
the limited duration of the increased load. Additionally, when
using clusters with larger number of nodes the probability of
one Region Server being hot for an extended period of time
diminishes.

E. Effects of HDFS file sizes and modulo number

Interestingly, from Fig. 2 it can be also noticed that having
more map tasks is not always better. Namely, when the dataset
was split into 80 and 40 files, there were 32 and 40 map tasks,
respectively. Nevertheless, when comparing the performance of
the same row key and same cluster, it was evident that when
using more map tasks (i.e. having smaller files) was the same
or worse than when having less map tasks (i.e. when using
one large HDFS file). We explain this behavior by the fact
that HDFS partitions large files systematically while trying to
distribute the load on the cluster uniformly. On the other hand,
when using many small files their blocks are not fully filled in,
so resources are wasted when storing and reading them. This
is especially evident when the dataset is split into 80 small
files. As it can be seen from table I, in that case the blocks
are only about 30% full. In fact, from Fig. 2 it is evident that
using one large file provided similar performance for all row
key designs and almost always one of the best results.

Fig. 6. Write performance for the different row key designs on a HBase
cluster with 8 Region Servers and 8 regions per table and 4 source HDFS
files.

For the row key designs based on the MD5 hash and the
random prefix, the divisor argument of the modulo operation,
which determines the range of values of the prefix, does not
make any significant difference, Nevertheless, this is not the
case for the row key based on the ID modulo prefix. If this
value is in the same order of magnitude as the number of rows
in the dataset, the prefixes generated by this row key design
will not be in the full range of possible prefixes. Another key
issue with this type of value of the divisor argument is that
for consecutive integer ids, the prefixes are also consecutive
numbers. As a result, only some regions are active at a given
time. This behavior can be noticed on the charts presented
on Fig. 6. Here is displayed the performance of the different
row key designs on a HBase cluster with 8 Region Servers,
8 regions per table and 4 source HDFS files. The first chart
shows the number of write requests per Region Server, where
each line is the activity of a particular Region Server. On the
second chart is displayed the number of active MapReduce
jobs. All other row keys elicited an uniform load on the cluster.
However, the ID modulo prefix produced bad distribution of
the load throughout the lifetime of the MapReduce job. It
can be noticed that in the second half of the lifetime of the
MapReduce job, only a few of the Region Servers were active
while servicing couple of map tasks. Therefore, the duration
of the MapReduce job was almost twice as large compared
to the other row key designs. The situation was very similar
when using more files on the same cluster. Although this issue
can be alleviated by reducing the value of the divisor in the
modulo operation, we do not spending time on optimizing it.
Rather, we suggest using the row key design based on the MD5
function, proposed in subsection III-E, as it overcomes these
issues naturally, while being also applicable to ids of arbitrary
data types.

V. CONCLUSION

In this paper we have discussed the importance of the
row key design of HBase tables. We have pointed out the
benefits of pre-split tables in order to distribute the load evenly
throughout the nodes of the cluster. In order to achieve that,
the row keys distribution needs to be known beforehand,
which is a very strict constraint. To address this problem
we have analyzed different techniques for adding prefixes in
the row keys. Our hypothesis was that the prefix would have
predictable distribution even if the distribution of the remaining
part of the row key (i.e. the id) was skewed. For the prefix we
have analyzed four different designs: random prefix, modulo of
the ID, modulo of the MD5 hash of the ID and modulo of the



MD5 hash of the whole row. We have performed extensive
experiments in which we loaded data in HBase tables on
clusters with varying number of nodes and different HDFS file
sizes. The experiments showed that the prefix that is modulo
of the MD5 hash of the ID has equally well write performance
as the random prefix. Furthermore, unlike the random prefix, it
offers random lookups in the table because for a given ID the
prefix is always the same, which keeps the row key consistent.
Dissimilarly, the row keys with random prefix do not offer any
facilities for random reads. When using such keys, aiming to
retrieve a particular row a full table scan must be performed.
The same disadvantage has the row key with prefix that is
the modulo of the MD5 hash of the whole row, which is
also somewhat more time-consuming to compute. Finally, the
prefix that is modulo of the ID facilitates random row lookups
without needing a full table scan. This design distributes the
load on all nodes generally well. Nevertheless, in that regard it
is worse than the other designs. Even though the total number
requests per region are equal, some of the regions are hot
in one point in time, and then they are idle for some period.
This behavior contributes to bad parallelization and region hot-
spotting because not all regions are equally active all of the
time.

A general drawback of all proposed prefixes is that they
lack the ability to perform scans of particular ranges of rows.
For instance, if the ID is an integer, one may want to scan all
rows that have an ID in a particular range. In this scenario,
the random prefix and the prefix that has MD5 of the whole
row would require a full table scan, regardless of how small
the range is. Likewise, the other two designs do not allow
using the built-in facilities of HBase to do the row scans.
Nevertheless, they can enable the client application to perform
as many lookups as the number of ids in the required range and
then merge the results. However, HBase itself cannot perform
this operation. If the client application is poorly designed, then
a full table might be needed to obtain the required range of
rows.

The main contribution of this paper is the detailed analysis
of the different options for adding prefixes to the row keys of
tables in NoSQL databases like HBase. We have recommended
a generic design that facilitates uniform load on the cluster
during writes and also allows random lookups. Moreover, the
design based on the modulo of the MD5 hash values of the
ID, can be used for a variety of applications and therefore we
recommend it.
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