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Abstract: The identification of Activities of Daily Living (ADL) is intrinsic with the user’s
environment recognition. This detection can be executed through standard sensors present in
every-day mobile devices. On the one hand, the main proposal is to recognize users’ environment
and standing activities. On the other hand, these features are included in a framework for the ADL
and environment identification. Therefore, this paper is divided into two parts—firstly, acoustic
sensors are used for the collection of data towards the recognition of the environment and, secondly,
the information of the environment recognized is fused with the information gathered by motion
and magnetic sensors. The environment and ADL recognition are performed by pattern recognition
techniques that aim for the development of a system, including data collection, processing, fusion
and classification procedures. These classification techniques include distinctive types of Artificial
Neural Networks (ANN), analyzing various implementations of ANN and choosing the most
suitable for further inclusion in the following different stages of the developed system. The results
present 85.89% accuracy using Deep Neural Networks (DNN) with normalized data for the ADL
recognition and 86.50% accuracy using Feedforward Neural Networks (FNN) with non-normalized
data for environment recognition. Furthermore, the tests conducted present 100% accuracy for
standing activities recognition using DNN with normalized data, which is the most suited for the
intended purpose.

Keywords: Activities of Daily Living (ADL); data fusion; environments; feature extraction;
pattern recognition; sensors
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1. Introduction

Data collection [1] can be conducted using different sensors existing on mobile devices, such as
the microphone, the accelerometer, the magnetometer and the gyroscope. The acquired data from
mobile sensors are related to the movement and environment where the activities are performed [2].
These data can also be used to develop a method for automatic Activities of Daily Living (ADL) and
environment recognition [3].

In continuation of a previous study, available in Reference [4], this paper proposes the use of
the microphone for environment identification, that is, bar, classroom, gym, street, kitchen, hall,
living room, library and bedroom, which is fused with the data collected using the accelerometer,
gyroscope and magnetometer sensors for the recognition of the standing activities, that is, sleeping
and watching TV. These methods are included in the design of an ADL and environment recognition
framework, proposed in References [5–7]. The advantages of environment recognition are not limited
to the increasing number of ADL recognized. Furthermore, this allows the framework to combine
the environments with ADL recognition, which returns different results, such as the user walking on
the street.

The topic related to the recognition of the ADL has some studies available in the literature [8–13]
but there are no studies that use all sensors incorporated in the mobile devices. However, the Artificial
Neural Network (ANN) is one of the most used methods in this topic [14,15]. Based on our
previous studies using motion and magnetic sensors for the development of an environment and
ADL recognition framework [4,16], this paper proposes the creation of several methods to adapt the
framework to all sensors incorporated in mobile devices. Some methods using different combinations
of sensors are presented in previous studies [4,16], such as the accelerometer, using the accelerometer
and magnetometer and using all of the previously described, along with the gyroscope. Thus, this
study presents an approach using acoustic data for environment identification, as well as different
methods, fusing the environment recognized with other data sources. The proposed method can use
the accelerometer and the environment, the accelerometer, the magnetometer and environment but also
can be performed using all the mobile sensors and the environment (accelerometer, magnetometer
and gyroscope). For the implementation and testing of these methods, we propose the use of
ANN [17–19] using three different implementations of ANN [4]. This research also includes the
definition of the correct set of features needed and the best implementation of ANN for ADL and
environment recognition. The best results are achieved with Feedforward Neural Network (FNN)
with Backpropagation for environment recognition and with Deep Learning techniques for standing
activities identification.

The main goal of this study is the design of an ADL and environment recognition framework.
We discovered that the recognition of the environment increases the number of activities recognized,
differentiating the standing activities, where the proposed standing activities are sleeping and watching
TV. At this point, the framework will be able to recognize six activities and nine environments, utilizing
the accelerometer, gyroscope, magnetometer and mobile microphone sensors.

The Introduction section is concluded in this paragraph and the remaining sections are structured
as follows—Section 2 introduces a literature review focused on the use of acoustic sensors for ADL
and environment recognition. The methods used for the development of the ADL and environment
recognition framework are presented in Section 3. Section 4 presents the results of the implementation
of different methods. Finally, the discussion about the results and implementation in the framework is
presented in Section 5, the conclusions are presented in Section 6.

2. Related Work

There are no studies related to the use of the fusion of the data collected using all sensors
incorporated in off-the-shelf portable devices, including accelerometer, gyroscope, magnetometer
and microphone, for ADL and environment recognition [1]. However, numerous methods which
incorporate subsets of these mobile sensors are presented in the literature.
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The authors of Reference [20] used the Global Positioning System (GPS), accelerometer
and microphone sensors for sleeping, walking, standing, running, and social interaction activities
recognition using linear and logistic regression methods reporting an accuracy around 90%.

In Reference [21], the authors extracted the minimum, difference between axis, mean, standard
deviation, variance, correlation between axis, sum of coefficients, spectral energy and spectral entropy
from the accelerometer sensor. Moreover, they study the total spectrum power, zero-crossing rate,
spectral centroid, sub-band powers, spectral spread, spectral roll-off, spectral flux and Mel-Frequency
Cepstral Coefficients (MFCC) using the microphone. The proposed study applied Gradient Boosting
Decision Tree methods and Support Vector Machine (SVM) to recognize several activities such as sitting
on a chair, standing, lying, walking, going upstairs and downstairs, running, jogging and drinking.
The results report 89.12% and 91.5% accuracy.

The authors of Reference [22] recognized several activities, including cycling, cleaning table,
shopping, travelling by car, going to the toilet, cooking, watching television, eating, driving, working
at a computer, reading and sleeping, using data acquired from the microphone and accelerometer
sensors and applying the Gaussian mixture model (GMM) with log power and MFCC as features,
reporting an accuracy of 77.9%.

In Reference [23], the accelerometer and microphone sensors were also used for the recognition of
shopping, driving, travelling by car, cooking, washing dishes, cleaning with a vacuum cleaner, waiting
in a queue, sleeping, working at a computer, watching television, sitting, being a bar, walking, lying
and standing activities, using a J48 decision tree, logistic model tree (LMT) and functional tree (FT),
and Instance-based k-Nearest Neighbour (IBk) lazy algorithm with mean, standard deviation, angular
degree, range and MFCC as features. The reported accuracies are around 90%, where the LMT decision
tree reports 90.4%, the J48 decision tree reports 90.7%, the IBk lazy algorithm reports 90.8% and the FT
decision tree reports 90.7% [23].

The remaining studies available in the literature using acoustic sensors do not use data fusion
techniques, because they only use the microphone signal. Based on the acoustic signal acquired from
the microphone, the authors of Reference [24] used the SVM method with spectral roll-off, slope,
minimum, median, coefficient of variation, inverse coefficient of variation, trimmed mean, skewness,
kurtosis and 1st, 57th, 95th and 99th percentiles as features. This method presents an accuracy higher
than 90% for the recognition of some environments such as restaurant, casino, playground, train, street
with ambulance, street traffic, nature at day, nature at night, river and ocean.

In Reference [25], the Linear Discriminant Classifier (LDC) was used with microphone data to
recognize several ADLs, including eating, drinking, clearing the throat, relaxing, laughing, coughing,
sniffling and talking. This method uses several features including log power, total Root-Mean-Square
(RMS) energy, spectral kurtosis, spectral centroid, spectral roll-off, spectral flux, spectral skewness,
spectral slope, spectral variance, MFCC, zero crossing rate, minimum, mean, median, maximum, RMS,
1st and 3rd quartiles, interquartile range, standard deviation, skewness, kurtosis, quantity of peaks,
mean peaks distance, mean peaks amplitude, mean crossing rate and linear regression slope. The best
reported accuracy was achieved using the total RMS energy, spectral flux, spectral centroid, spectral
skewness, spectral variance, spectral roll-off, spectral kurtosis, spectral slope and MFCC as features.
The average of the reported accuracy was 66.5%.

Artificial Neural Networks (ANN) is one of the most used methods for ADL and environment
identification using acoustic signals. In Reference [26], the authors implemented an ANN method,
i.e.,(Multilayer Perceptron) MLP, with MFCC as features for the identification of acoustic warning
signals of emergency units (police, fire department and ambulance), reporting a highest accuracy
of 96.7%.

Another study [27] uses ANN for the recognition of several materials collisions such as boll, metal,
wood and plastic. Moreover, this research also focuses on the identification of other activities such as
door opening/closing, typewriting, knocking, a phone ringing, grains falling, spray and whistle, using
time-variance and frequency-variance patterns as features, reporting an average accuracy of 98%.
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In Reference [28], the ANN was used for the recognition of sneezing, dog barking, clock ticking,
baby crying, crowing rooster, raining, sound of sea waves, fire crackling, sound of helicopter and sound
of chainsaw with some features, such as zero crossing rate, MFCC, spectral flatness and spectral
centroid, reporting an accuracy around 94.5%.

The authors of Reference [29] used the FNN for the recognition of the sound of sirens from
emergency vehicles, automobile horns and normal street sounds with MFCC and zero crossing rate as
features, reporting an accuracy between 80% and 100%.

Deep Neural Network (DNN) is another type of ANN used for laughing, singing, crying, arguing
and sighing recognition with MFCC as features [30]. The authors of Reference [31] also used DNN for
the ambient scene analysis (i.e., voice, music, water and traffic), stress, emotion and speaker recognition
with MFCC as features, presenting an accuracy between 60% and 90%.

The SVM is another method used for ADL and environment recognition using acoustic signals.
In Reference [32], the authors achieved an accuracy of 78.4% by using the SVM method for keystrokes
identification with MFCC as features. Furthermore, the SVM method has been used by the authors of
Reference [33] for the identification of several sounds, including beach, forest, street, shaver, crowd
football, birds, dog, sink, dishwasher, washing machine, brushing teeth, speech, bus, car, restaurant,
phone ringing, train station, chair, vacuum cleaner, coffee machine, raining and computer keyboard,
using MFCC as features and reporting an accuracy around 80%. The SVM method is also used for the
recognition of sleeping using MFCC and sound pressure level (SPL) as features, reporting accuracies
between 75% and 81% [34,35].

The Hidden Markov model (HMM) is another method used for ADL and environment recognition
using acoustic signals. In Reference [36], the authors used HMM for the recognition of several sounds
such as automobile, aircraft, moped, train and truck. The proposed study has used calculation and
storage of sound levels, statistical indices, one-third-octave spectra and noise events detection based on
thresholds as features, presenting more than 95% accuracy. In Reference [37], the authors recognized
the idle state and the cicada singing sounds with HMM, based on the frequency bands and ratio.

The Gaussian Mixture Model (GMM) is another method used for ADL and environment
recognition using acoustic signals. In Reference [38], the authors used GMM with MFCC as features
for the recognition of calls during driving, reporting an accuracy around 86%. On the other hand,
the authors of Reference [39] used GMM with zero crossing rate, Root Mean Square (RMS), MFCC
and low energy frame rate as features for the recognition of emotional states, reporting an accuracy
between 65% and 100%.

The authors of Reference [40] used Random Forests and SVM methods for the recognition of
street music, siren, gun shot, idling, drilling, dog bark, children playing, car horn and air conditioner
sounds. This study used MFCC and motif features, reporting an accuracy between 26.45% and 55.68%
with SVM, and between 70.55% and 85% with Random Forests.

In Reference [41], the authors used the decision tree and HMM approach for several ADL and
environment identification including reading, meeting, chatting, assisting conference talks, lectures,
music, driving, elevator, walking, airplane, fan, vacuuming, shower, clapping, raining, climbing stairs,
and wind. The proposed method used a zero crossing rate, low energy frame rate, spectral roll-off,
spectral flux, bandwidth, normalized weighted phase deviation, and Relative Spectral Entropy (RSE).
The reported accuracy is higher than 78%.

The authors of Reference [42] implemented the GMM, Feed-Forward DNN, Recurrent Neural
Networks (RNN), and SVM for the recognition of baby crying and smoking alarm, using MFCC,
spectral centroid, spectral flatness, spectral roll-off, spectral kurtosis and zero crossing rate, reporting
accuracies between 2% and 24%.

The SVM, diverse density (DD) and expected maximization (EM) methods were implemented
in Reference [43] for the recognition of several sounds, including cutlery, water, voice, ambient
and music. The proposed method uses MFCC, spectral flux, spectral centroid, bandwidth, Normalized
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Mel-Frequency Bands, zero crossing rate and low energy frame rate as features, presenting 87%
accuracy (average).

In Reference [44], several sounds were identified, including coffee machine brewing, hand
washing, walking, elevator, door opening/closing and silence, using k-Nearest Neighbour (k-NN),
SVM and GMM methods. This study use several features, such as zero crossing rate, short-time energy,
temporal centroid, energy entropy, autocorrelation, RMS, spectral centroid, spectral roll-off point,
spectral spread, spectral entropy, spectral flux, and MFCC methods. The highest accuracies achieved
with the different methods are 97.9%, with k-NN, 90%, with GMM, and 100% with SVM [44].

The authors of Reference [45] implemented the Random Forests, HMM, GMM, SVM, ANN, k-NN,
and deep belief network methods to recognize babble, driving, machinery, crowded restaurant, street,
air conditioner, washer, dryer, and vacuum cleaner, with MFCC, band periodicity and band entropy.

In Reference [46], the authors implemented Naive Bayes, k-NN, Random Forests and Bayesian
Networks methods for the recognition of several nursing activities, including the measurement of
height, patient sitting, assisting doctor, attaching/measuring/removing electrocardiography (ECG),
changing bandage, cleaning body, examining edema and washing hands. This method uses several
features, including mean of intensity, mean, variance of intensity, variance, mean of Fast Fourier
Transform (FFT)-domain energy, and covariance between intensities. The results reported are 56.10%,
with k-NN and Naive Bayes, 73.18%, with k-NN and Bayesian Networks, 55.15%, with Naive Bayes
only, 80.96%, with Naive Bayes and Bayesian Networks, 59.03%, with Random Forests and Naive
Bayes, and 67.83%, with Random Forests and Bayesian Networks [46].

The identification of various sounds including alarms, birds, clapping, dogs, footsteps,
motorcycles, raining, rivers, sea waves, and wind, using k-NN, Naive Bayes, SVM, C4.5 decision tree,
logistic regression and ANN, imputing several features is proposed in Reference [47]. These features
include skewness, zero crossing rate, kurtosis, spectral spread, spectral roll-off, spectral centroid,
spectral flatness measure, spectral slope, spectral flux, spectral skewness, spectral kurtosis, spectral
sharpness, spectral crest factor, spectral smoothness, spectral variability, Chroma vectors and MFCC.
The highest reported accuracies are 45%, with k-NN, 45%, with Naive Bayes, 54%, with SVM, 45%,
with a C4.5 decision tree, 44%, with logistic regression and 54%, with ANN [47].

In Reference [48], a fall detection method was developed with k-NN, SVM, least squares method
(LSM), and ANN methods with spectrogram, MFCC, linear predictive coding (LPC) and matching
pursuit (MP) as features, reporting 98% accuracy.

The Random Forests classifier was also implemented for the recognition of babble, driving,
go to the supermarket, outdoor walking, multiple speakers and kitchen hood. This method use
band-periodicity, bandentropy, spectrum flux (SF), subband short-time energy deviation (STED) and
subband power spectral deviation (SPSD) as features extracted from the microphone, and present
more than 70% accuracy [49]. In Reference [50], the Random Forest was also used to recognize several
activities, including using an escalator, an elevator, a drink vending machine and a ticket vending
machine, crossing a gate, climingb straight stairs, waiting, entering, queuing, and getting off a train.
This study implemented several features extracted from the microphone, such as the step interval,
the average step interval variances, the trajectory stretchiness, the peak and trough strength and
the amplitude.

The cough sound was recently recognized with a microphone, implementing the k-NN with Hu
moment as features [51], which reports accuracies over 93%. Moreover, the the k-NN and the SVM
methods are implemented with MFCC, Spectral Centroid, Spectral Bandwidth, Spectral Crest Factor,
Spectral Turbulence, Spectral Flux, Ratio f50 versus f90, Spectral Roll-off, Spectral Standard Deviation,
Spectral Skewness, Spectral Kurtosis, Spectral Peak Entropy and Tsallis Entropy as features [52],
which has accuracies around 99%.

The HMM was also used with the microphone and accelerometer incorporated in mobile and
wearable devices for the recognition of different scenes, including meal, arm gestures of eating,
conversations, participants, TV viewing, clattering sound, and voice. This study used MFCC,
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the average X-axis acceleration and the changing rate were used as features, reporting a minimum
accuracy of 88.7% [53].

In Reference [54], the authors used the SVM method for the classification of the different types
of vehicles with the Zero Crossing Rate (ZCR), MFCC, Spectral centroid and Spectral flux as features
extracted from the microphone, reporting a minimum accuracy equal to 78.95%.

The Adaboost method was proposed in Reference [55] with the maximum, minimum, mean,
standard deviation, Root Mean Square (RMS), ZCR, bandwidth, normalized phase deviation and
MFCC as features collected using the microphone, gyroscope and magnetometer to identify meals,
cooking, TV viewing and conversations, reporting a minimum accuracy of 65%.

The authors of Reference [56] used the J48 decision tree for the recognition of chatting, coding,
writing documents, and playing games, reporting 95% accuracy with the maximum, minimum and
mean as features.

In Reference [57], the cycling activity was recognized with Weka (REPTree), reporting an accuracy
of 97.4% with frequency spectrum as a feature.

Other studies have been done but they used big data and distributed systems and our proposal
consists of the use of local processing for the recognition of ADL and its environments [58–60].

Table 1 present the ADL and environments identified using the microphone, verifying that the
standing activities are well differentiated with acoustic data.

Table 1. Activities of Daily Living (ADL) and environments identified in the literature review.

ADL: Number of Studies:

Street with emergency vehicles (police, fire department and ambulance) 6

Sleeping; walking; standing; street traffic; ocean 5

Driving; river 4

Sitting; cleaning with a vacuum cleaner; train; nature; typing; dog barking;
baby crying; raining; music

3

Running; lying; going upstairs; going downstairs; drinking; shopping;
travelling by car; cooking; watching television; eating; working
on a computer; reading; washing dishes; restaurant; laughing;
door opening/closing; telephone ringing; helicopter; speech; coffee
machine; elevator

2

social interaction activities; jogging; cycling; cleaning table; going to toilet;
waiting in a queue; being a bar; casino; playground; clearing the throat;
relaxing; coughing; sniffling; talking; grains falling; whistle; sneezing; clock
ticking; arguing; football; shaver; bird; dishwasher; brushing teeth; bus;
calling; air conditioner; car horn; children playing; drilling; meeting; chatting;
shower; clapping; smoking alarm; hand washing

1

Based on the previous studies, the features used for the recognition of ADL and environments
with acoustic data are presented in Table 2, showing that the MFCC, zero crossing rate, spectral
roll-off, spectral centroid, spectral flux, total RMS energy, mean, standard deviation, minimum, median
and low energy frame rate are used in more than 3 studies, with more relevance for MFCC.

At the end, the ADL and environment identification can be executed using several methods shown
in Table 3. We found that the approaches with the highest accuracy are ANN, k-NN, Gradient Boosting
Decision Tree, IBk lazy algorithm, logistic regression, linear regression and FNN. Following the
methods for ADL and environment identification using the acoustic signal, an average accuracy higher
than 90% is reported. Moreover, the method that presents better accuracy for ADL and environment
the recognition is the MLP, presenting 96% accuracy (average).
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Table 2. Features identified in the literature review.

Features: Number of Studies:

Mel-Frequency Cepstral Coefficients (MFCC) 21

zero-crossing rate 8

spectral roll-off 6

spectral centroid; spectral flux 5

total Root-Mean-Square (RMS) energy 4

Mean; standard deviation; minimum; median; low energy frame rate 3

spectral spread; log power; skewness; kurtosis; sound pressure level (SPL);
bandwidth; Relative Spectral Entropy (RSE)

2

total spectrum power; sub-band powers; range; angular degree; slope;
coefficient of variation; inverse coefficient of variation; trimmed mean;
percentiles (1st, 57th, 95th and 99th); spectral variance; spectral skewness;
spectral kurtosis; spectral slope; maximum; quartiles (1st and 3rd);
interquartile range; number of peaks; mean distance of peaks; mean
amplitude of peaks; mean crossing rate; linear regression slope; spectral
flatness; threshold; noise level; one-third-octave spectra; statistical indices;
motif; normalized weighted phase deviation; Normalized Mel-Frequency
Bands; short-time energy; temporal centroid; energy entropy; autocorrelation;
spectral entropy

1

Table 3. Classification methods identified in the literature review.

Methods: Number of Studies: Average of Reported Accuracy:

Multi-Layer Perceptron (MLP) 3 96%

k-Nearest Neighbour (k-NN) 3 95%

Gradient Boosting Decision Tree 1 92%

IBk lazy algorithm 1 91%

logistic regression 1 90%

linear regression 1 90%

Feedforward Neural Networks (FNN) 1 90%

Hidden Markov Models (HMM) 2 87%

diverse density (DD) 1 87%

expected maximization (EM) 1 87%

J48 decision tree 2 84%

FT decision tree 2 84%

LMT decision tree 2 84%

Support Vector Machine (SVM) 10 77%

Gaussian mixture model (GMM) 5 76%

Deep Neural Networks (DNN) 3 68%

Linear Discriminant Classifier (LDC) 1 67%

Random Forests 3 66%

Adaboost 1 65%

Recurrent Neural Networks (RNN) 1 24%
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3. Methods

In this work, we propose a model for the detection and recognition of the environment detection.
This model is based on acoustic sensors and a model for the recognition of standing activities based
on motion and magnetic sensors as an enhancement of a previous developed framework for the
recognition of ADL and their environments [4–7,16]. The framework was designed to recognize the
following ADL—running, walking, going upstairs, sleeping, going downstairs, sleeping, watching
TV and standing. In addition, the following scenarios are also recognized by the framework—bar,
classroom, gym, kitchen, library, street, hall, living room and bedroom.

3.1. Data Acquisition

The data acquisition module aims to capture all the sensors’ data, including accelerometer,
magnetometer, gyroscope and microphone. Unlike the microphone, the data from which are saved in
a raw forma, this data was acquired at the same time as the study available in Reference [4] and with
the same individuals.

3.2. Data Processing

On the one hand, environment recognition comprehends the use of the microphone with the
application of the Fast Fourier Transform (FFT) [61] to extract the relevant features. After the application
of the FFT, several features were extracted, including 26 MFCC coefficients and standard deviation,
average, maximum value, minimum value, variance and median of the raw signal.

On the other hand, the recognition of the standing activities makes use of the environment
recognized and accelerometer, magnetometer and/or gyroscope sensors’ data with the application of a
low pass filter [62], extracting the same features presented in Reference [4].

3.3. Data Fusion

This module encompasses several databases obtained from the combination of different sensors,
and features, which are depicted in Figure 1. The different combinations of sensors are:

• Microphone for the Environment Detection
• Accelerometer data plus Environment Recognized
• Accelerometer and Magnetometer data plus Environment Recognized
• Accelerometer, Magnetometer and Gyroscope data plus Environment Recognized

Figure 1. Different combinations of features for the recognition of environment and standing activities.

3.4. Classification

This study aims to recognize nine environments, including bar, classroom, gym, kitchen, library,
street, hall, living room and bedroom using the same methods and implementations, which are
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implemented and tested in Reference [4]. The different implementations were performed with
non-normalized and normalized data, implementing a stop criterion related to the maximum number
of training interactions tested with three limits, namely: 106, 2 × 106 and 4 × 106.

4. Results

4.1. Identification of the Environment of the Activities of Daily Living with Microphone

The implementation of MLP with Backpropagation reported the results presented in Figure 2,
verifying that the accuracy reported is very low with all datasets. With non-normalized data (Figure 2a,
the results achieved are between 10% and 15%. With normalized data (Figure 2b, the results obtained
are between 10% and 20%, where the best results are achieved with dataset 1.

Figure 2. Results obtained with Multilayer Perceptron (MLP) with Backpropagation for the different
datasets of microphone data. (a) shows the results with non-normalized data. (b) shows the results
with normalized data.

Moreover, the results reported by the implementation of the FNN with Backpropagation are
presented in Figure 3. In general, this implementation reports better results with non-normalized
data. With non-normalized data (Figure 3a), the FNN reports results higher than 70% with dataset 1
with a maximum number of training iterations, dataset 2 with 106 of training iterations, and dataset 4
with 4 × 106 of training iterations. With normalized data (Figure 3b), the FNN reports results below
than 60% but the results achieved are higher than 60% with the dataset 4 trained over 106 and 2 × 106

of iterations.

Figure 3. Results obtained with Feedforward Neural Network (FNN) with Backpropagation for the
different datasets of microphone data. (a) shows the results with non-normalized data. (b) shows the
results with normalized data.
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The results of the implementation of DNN are presented in Figure 4, where, with non-normalized
data (Figure 4a), the results obtained are below 20% with datasets 1 and 2, and the results obtained
are higher than 40% with datasets 3 and 4. In addition, with normalized data (Figure 4b), the results
reported are round 50% with all datasets.

Figure 4. Results obtained with Deep Neural Network (DNN) for the different datasets of
microphone data. (a) shows the results with non-normalized data. (b) shows the results with
normalized data.

In Table 4, the maximum accuracies achieved with the different implementations of ANN are
related to the different datasets used for the microphone data and the maximum number of training
iterations, verifying that the best results are achieved with the FNN with Backpropagation with
non-normalized data.

Table 4. Best accuracies obtained with the different frameworks, datasets and number of iterations for
the recognition of environments using microphone data.

Framework Datasets Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 2 106 12.86

FNN with Backpropagation 1 2 × 106 86.50

DNN 4 4 × 106 48.11

Normalized
data

MLP with Backpropagation 1 106 19.43

FNN with Backpropagation 4 106 82.75

DNN 4 4 × 106 48.74

In conclusion, the method for the recognition of the environment that should be implemented in
the framework for the recognition of ADL and their environments is the FNN with Backpropagation
using non-normalized data, because it achieves results around 86.50% with the dataset 1.

4.2. Identification of the Standing Activities with the Environment Recognized and the Accelerometer Sensor

The use of normalized data resulted in the achievement of an accuracy of 100% with MLP
with Backpropagation, FNN with Backpropagation and DNN methods, because the use of the
correct recognition of environments with acoustic data provides a correct discretization of the
accelerometer data.

Following the use of non-normalized data, Figure 5 shows the results obtained with MLP with
Backpropagation, FNN with Backpropagation and DNN methods. MLP with Backpropagation
(Figure 5a) reported results between 50% and 100%, where the better accuracy was achieved with the
datasets 1 and 4. FNN with Backpropagation (Figure 5b) reported results around 100%, except with
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dataset 1 that achieves an accuracy around 50%. DNN method (Figure 5c) reported results around
100% with datasets 2, 4 and 5 with all training iterations, and with dataset 3 with 4 × 106 iterations,
but the results obtained with other combinations are below expectations.

Figure 5. Results obtained with MLP with Backpropagation (a), FNN with Backpropagation (b) and
DNN (c) methods for the different datasets of environment and accelerometer data.

In Table 5, the maximum accuracies achieved with the different types of ANN are presented with
the relation of the different datasets used for the environment recognized and the accelerometer data
and the maximum number of iterations.

Table 5. Best accuracies obtained with the different frameworks, datasets and number of iterations for
the recognition of standing activities with the accelerometer data and the environments recognized.

Framework Datasets Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 2 106 100.00

DNN 2 106 100.00

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

Regarding the results obtained, in the case of the use of the environment recognized and the
accelerometer data in the module for the recognition of standing activities in the framework for the
identification ADL and their environments, the implementation that should be used is a DNN with
normalized data because the results obtained are always 100%.

4.3. Identification of the Standing Activities with the Environment Recognized and the Accelerometer and
Magnetometer Sensors

The use of normalized data resulted in the achievement of an accuracy of 100% with MLP with
Backpropagation, FNN with Backpropagation and DNN methods, because the use of the correct
recognition of environments with acoustic data provides a correct discretization of the accelerometer
and magnetometer data.

Following the use of non-normalized data, Figure 6 shows the results obtained with MLP with
Backpropagation, FNN with Backpropagation and DNN methods. MLP with Backpropagation
(Figure 6a) reported results around 100%, except with the datasets 1 and 5 which achieved an accuracy
around 50%. FNN with Backpropagation (Figure 6b) reported results around 100%. DNN method
(Figure 6c) reported results around 100% with dataset 5 with all training iterations, and with dataset 4
with 106 of training iterations, but the results obtained with other combinations are below expectations.
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Figure 6. Results obtained with MLP with Backpropagation (a), FNN with Backpropagation (b) and
DNN (c) methods for the different datasets of environment and accelerometer and magnetometer
sensors’ data.

In Table 6, the maximum accuracies achieved with the different implementations of ANN are
presented with the relationship between the different datasets used for the environment recognized,
and the accelerometer and magnetometer sensors’ data, and the maximum number of iterations.

Table 6. Best accuracies obtained with the different frameworks, datasets and number of iterations
for the recognition of standing activities with the accelerometer and magnetometer data, and the
environments recognized.

Framework Datasets Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 4 106 99.05

FNN with Backpropagation 2 106 100.00

DNN 3 106 89.55

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

DNN with normalized data always reported results equal to 100% with the use of the
accelerometer and magnetometer sensors’ data combined with the environment recognized. Thus,
the framework for the identification ADL and their environments should implement the DNN with
normalized data.

4.4. Identification of the Standing Activities with the Environment Recognized and the Accelerometer,
Magnetometer and Gyroscope Sensors

On the one hand, the results reported by the implementation of the MLP with Backpropagation
using the MLP with Backpropagation are presented in Figure 7. With non-normalized data (Figure 7a),
the results achieved are around 100%, except with the datasets 1 that achieves an accuracy around 50%.
With normalized data (Figure 7b), the results obtained are always around 100% with all datasets.



Electronics 2019, 8, 1499 13 of 20

Figure 7. Results obtained with MLP with Backpropagation for the different datasets of
environment, and accelerometer, magnetometer and gyroscope sensors’ data. (a) shows the results
with non-normalized data. (b) shows the results with normalized data.

On the other hand, the results reported by the implementation of the FNN with Backpropagation
are presented in Figure 8. With non-normalized data (Figure 8a), the results achieved are always
around 100%. With normalized data (Figure 8b), the results obtained are always around 100% with
all datasets.

Figure 8. Results obtained with FNN with Backpropagation for the different datasets of
environment and accelerometer, magnetometer and gyroscope sensors’ data. (a) shows the results with
non-normalized data. (b) shows the results with normalized data.

Additionally, the results reported by the implementation of DNN are presented in Figure 9.
On the one hand, with non-normalized data (Figure 9a), the results obtained are around 90% with
dataset 5 with all training iterations. However, the results obtained with other datasets are below the
expectations. On the other hand, with normalized data (Figure 9b), the results obtained are always
around 100% with all datasets.

The datasets acquired from the accelerometer, magnetometer and gyroscope combined with the
environment recognized, the maximum number of iterations and the maximum accuracies reported by
the different implementations of ANN are presented in Table 7.

Using the environment recognized and the accelerometer, magnetometer and gyroscope sensors’
data in the module for the recognition of standing activities in the framework for the identification
ADL and their environments, the reported results are always 100% with implementation of DNN with
normalized data.
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Figure 9. Results obtained with DNN for the different datasets of environment, and accelerometer,
magnetometer and gyroscope sensors’ data. (a) shows the results with non-normalized data. (b) shows
the results with normalized data.

Table 7. Best accuracies obtained with the different frameworks, datasets and number of iterations
for the recognition of standing activities with the accelerometer, gyroscope and magnetometer data,
and the environments recognized.

Framework Datasets Iterations Needed
for Training

Best Accuracy
Achieved (%)

Non-
normalized
data

MLP with Backpropagation 2 106 100.00

FNN with Backpropagation 3 106 100.00

DNN 5 106 89.55

Normalized
data

MLP with Backpropagation 1 106 100.00

FNN with Backpropagation 1 106 100.00

DNN 1 106 100.00

5. Discussion

This research is included in the development of the framework for the recognition of ADL and their
environments, presented in References [5–7]. Furthermore, this study is composed by several modules
such as data acquisition, data processing, data fusion, and classification methods. The definition of
the method for the identification started in the previous studies [4,16]. These studies have used
accelerometer, gyroscope and magnetometer sensors to identify several activities such as going
downstairs, going upstairs, running, walking and standing with the DNN, data normalization and L2

regularization. In Section 4.1, the results of the recognition of the environments using the microphone
data, where the environments recognized are bar, classroom, gym, kitchen, library, street, hall, living
room and bedroom with the FNN with non-normalized data are presented. Fusing the environment
recognized with the accelerometer, gyroscope and magnetometer sensors’ data, the recognition of
more standing activities (i.e., watching TV and sleeping) was allowed, increasing the number of
ADL recognized at this stage of the development of the framework for the recognition of ADL and
environments, as presented in Figure 10.

The characteristics of the mobile devices, that is, the number of sensors available, influences the
methods for data fusion and artificial intelligence chosen. Ideally, all sensors available in the mobile
device should be used to increase the accuracy of the method. In Figure 10, a simplified schema for the
development of a framework for the identification of ADL is presented.
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Figure 10. ADL and environments recognized by the framework for the recognition of ADL
and environments.

Based on the results reported, the use of acoustic data revealed results with low accuracy because,
due to the amount of data used, it reports that the ANN are overfitted. In order to avoid the overfitting
problem, we used the early-stop technique, stopping the training of the ANN, when the reducing of
the training error stopped. The recognition of standing activities includes only the results obtained
with the recognition of the environment. The results obtained for the recognition of standing activities
are around 100%, because we considered that the environment is correctly recognized. The results of
the final framework will be different because of the recognition of environments that reported lower
accuracy. This study only took into account the recognition of environments and standing activities
separately. The use of the environment recognized correctly distinguish the activity performed.

The implementation of the framework for the recognition of ADL and their environments is
composed by data acquisition, data processing, data cleaning, feature extraction, data fusion and
data classification methods. Firstly, based on the results obtained in Section 4.1, the best results
achieved for each implementation are presented in Table 4. The best method for the recognition of
the environments is the FNN with non-normalized data, reporting an accuracy of 86.50%. Secondly,
based on results obtained with the use of the environment recognized and the accelerometer data,
presented in Section 4.2, the recognition of standing activities is allowed and the best results achieved
for each implementation are presented in Table 4. The best method for the recognition of the standing
activities is the DNN with normalization of the data and the application of L2 regularization, reporting
an accuracy of 100%. Thirdly, based on results obtained with the use of the environment recognized
and the accelerometer and magnetometer sensors’ data, presented in Section 4.3, the recognition of
standing activities is allowed and the best results achieved for each implementation are presented in
Table 5. The best method for the recognition of the standing activities is the DNN with normalization
of the data and the application of L2 regularization, reporting an accuracy of 100%. Finally, based on
results obtained with the use of the environment recognized and the accelerometer, magnetometer and
gyroscope sensors’ data, presented in Section 4.4, the recognition of standing activities is allowed and
the best results achieved for each implementation are presented in Table 6. The best method for the
recognition of standing activities is the DNN with normalization of the data and the application of L2

regularization, reporting an accuracy of 100%.
Our results and implementations cannot be directly compared with other studies because the

datasets and implementation code used by other authors are not share. We asked other authors about
the details of the implementation but they did not answer at the moment.

In conclusion, when the activity was recognized as standing and the environment is correctly
identified, the accuracy for the recognition of standing activities is 100%. At this stage of the framework
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for the recognition of ADL and their environments, two different classification methods are defined,
these are:

• DNN with normalized data for the general identification of ADL;
• FNN with non-normalized data for the general identification of the environments;
• DNN with normalized data for the identification of standing activities.

6. Conclusions

The development of a framework for ADL [1] and environment recognition using mobile
sensors, including accelerometer, gyroscope, magnetometer and microphone, with the architecture
presented in References [5–7], has several steps including data acquisition, data processing, data fusion
and classification methods. At this stage of the development, the proposed identified ADL are
running, walking, standing, going downstairs and upstairs, and sleeping, and the proposed identified
environments are bar, classroom, gym, kitchen, library, street, hall, watching TV and bedroom.

Depending on the types of sensors, several features were extracted from the sensors’ data for
further processing. The features extracted from the microphone are 26 MFCC coefficients and standard
deviation, average, maximum value, minimum value, variance and median of the raw signal.
Following the motion and magnetic sensors, we extracted the same features of the previous study [4].
The method developed should be adapted to the number of sensors available in the off-the-shelf
mobile devices and adapted to the limited resources of these devices.

In coherence with the previous studies [4,16], this research includes the comparison of three
different implementations of ANN, such as MLP and FNN with Backpropagation, and the DNN.
The DNN is the best method for the recognition of general ADL and standing activities, but the
FNN with Backpropagation is the best method for the recognition of environments. In Reference [4],
the different parameters of the ANN implemented are detailed.

The accuracies of the recognition ADL and their environments are different depending on the
different stages of the framework for the recognition of ADL and environments. Firstly, the best
accuracy for the recognition of the general ADL, presented in previous studies [4,16], is 85.89%,
implementing the DNN using L2 regularization and normalized data. Secondly, the best accuracy for
the recognition of the environments is 86.50%, implementing the FNN with Backpropagation using
non-normalized data. Finally, the recognition of standing activities are always around 100% with all
implementations studied, but, due to the performance, the best method for the implementation in the
framework is the DNN using L2 regularization and normalized data.

As future work, we intend to develop a framework for the identification of ADL and their
environments, adapting the method to the number of sensors available on the mobile device.
The recognition of the environments allows the framework for identifying the location in the
indoor/outdoor environments, where the ADL were performed. The environment recognition can
also improve the recognition of ADL, increasing the number of ADL recognized. The data related to
this research are available in a free repository [63].
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