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From Big Data to Business Analytics: The Case Study of Churn
Prediction
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aFaculty of Computer Science and Engineering, Sts Cyril and Methodius University, Skopje, North
Macedonia

bCogniTrek Corp., Toronto, Canada
cInstitute of Informatics, University of Warsaw, Poland

Abstract

The success of companies hugely depends on how well they can analyze the available data and
extract meaningful knowledge. The Extract-Transform-Load (ETL) process is instrumental
in accomplishing these goals, but requires significant effort, especially for Big Data. Previous
works have failed to formalize, integrate, and evaluate the ETL process for Big Data problems
in a scalable and cost-effective way. In this paper, we propose a cloud-based ETL framework
for data fusion and aggregation from a variety of sources. Next, we define three scenarios
regarding data aggregation during ETL: (i) ETL with no aggregation; (ii) aggregation based
on predefined columns or time intervals; and (iii) aggregation within single user sessions
spanning over arbitrary time intervals. The third scenario is very valuable in the context
of feature engineering, making it possible to define features as “the time since the last
occurrence of event X”. The scalability was evaluated on Amazon AWS Hadoop clusters by
processing user logs collected with Kinesis streams with datasets ranging from 30 GB to
2.6 TB. The business value of the architecture was demonstrated with applications in churn
prediction, service-outage prediction, fraud detection, and more generally – decision support
and recommendation systems. In the churn prediction case, we showed that over 98% of
churners could be detected, while identifying the individual reason. This allowed support
and sales teams to perform targeted retention measures.

Keywords: Data streams; ETL; Business analytics; Hadoop; Spark; Churn Prediction

1. Introduction

The ubiquitous smart devices, sensors and social media generate sheer data volumes. At
the same time, consumers became accustomed to instantly-available personalized services.
Many companies, health providers and institutions have focused tremendous resources on
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providing this. In the era of Big Data, companies experience a growing pressure to store and
analyze all data that is being collected [1] to stay competitive in the data-driven marketplace.
Volume, velocity and variety are intrinsic properties of Big Data [1, 2]. Recently, variability,
veracity, visualization, and value were identified as similarly significant [3]. Together, they
define the 7 Vs of Big Data reflecting the enormous complexity presented to those who would
process, analyze and benefit from it. Another issue the companies face is that the results of
data analysis (e.g., joins, transformations and aggregations) or integration with other parts
of the system (e.g., projections and models created by machine learning algorithms) further
boost data generation and increase data volume [4].

In order to make the data available in a usable format, several steps need to be per-
formed [5, 6]: analyses and modeling to identify all relationships and business context; data
collection; and Extract-Transform-Load (ETL), which is usually time-consuming in terms
of both development and execution time. Once the data is processed and loaded into a
data warehouse, it needs to be available for reporting, visualization, analytics and decision
support [1].

As identified in [7], there are various challenges for data warehousing (DW) and busi-
ness intelligence (BI) over Big Data: size; complexity; design and data modeling; comput-
ing methodologies; query languages; usability; end-user performance; data consistency and
lineage; extending applicability of traditional tools for data exploration, visualization and
analytics; and integration with conventional DW/BI solutions and platforms. As envisioned
in [7], some of the future research directions about DW and OLAP over Big Data should
provide several improvements, including innovative solutions for computing aggregations,
which is one of the main benefits of our work.

The usability of data at any point in time amid various processing stages relates to data
consistency. Ensuring it is considerably challenging in Big Data systems. Strong consistency
models introduce severe limitations to the system’s scalability and performance. On the
other hand, weak and eventual consistency models facilitate high levels of availability and
lower latencies, but could significantly impair the value of obtained information and reduce
its usability [8].

While cloud computing has emerged as an important paradigm offering a variety of low-
cost hardware and software, which is particularly convenient for deploying Big Data systems,
it also raises new challenges related to architecture, cost and performance optimization,
providing reliability, guaranteeing security and ensuring privacy and data consistency [8].
Big Data exacerbates these concerns because of the distributed architectures, which require
more advanced mechanisms for synchronization, replication, scheduling and security [2].

Even though there are technologies for efficient ETL and analytics of Big Data, there is
no comprehensive cloud-based architecture offering an integrated, scalable and cost-effective
solution. Most approaches are either for specific purposes in a narrow domain or only provide
general definitions and lack experimental evaluation. These approaches neglect real-world
development and deployment challenges [3].

Therefore, the primary goal of this study is to create a general and cost-effective frame-
work for ETL of Big Data, covering several challenges: (i) coping with velocity concerns
by creating a Data Lake; (ii) solving veracity concerns by defining ETL scenarios, tem-
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plate matching and data tagging; (iii) utilizing short-lived on-demand cloud resources for
cost-effectiveness; (iv) investigation of the business value in a production deployment of the
system in a churn prediction case.

This work defines three Extract-Transform-Load (ETL) scenarios concerning data ag-
gregation commonly encountered in real-world systems. The first two are trivial and reflect
ETL with no aggregation, and aggregation based on predefined columns or time intervals.
The third one is about aggregation within single user sessions spanning over arbitrary time
intervals. In addition to its use in traditional BI, it is very valuable in the context of feature
engineering. This ETL scenario makes it possible to define features as “the time since the
last occurrence of event X”, “the time since the user’s last login”, “last bought or viewed
product”, “last used service”, etc. This scenario practically does not exist in the feature
extraction literature, especially not as an integral part of the ETL process.

We evaluated the ETL scenarios with a combination of traditional tools – for processing
dimensional data, and Spark executed on on-demand clusters – for processing high-volume
transactional data. To validate the scalability of the architecture, we performed experiments
on Amazon AWS clusters with datasets ranging from 30 GB to 2.6 TB.

We demonstrated the usability of the architecture with a churn prediction problem, uti-
lizing thousands of automatically generated features during the ETL process. We integrated
methods to explain the each prediction so that customer service and sales teams can perform
personalized active measures to try to prevent the service cancellations. The experimental
results of the proposed system particularly stand out from related works, because we eval-
uated the whole data-processing pipeline in a production setting with real high-velocity
streaming Big Data.

The rest of the paper is structured as follows. Section 2 reviews the related work. Section
3 describes the proposed architecture for scalable ETL of Big Data, defines three common
ETL scenarios and describes a churn prediction in which the output of the ETL was applied.
Next, in section 4 we present the results from our experiments and then, in section 5 we
discuss them. Finally, section 6 concludes the paper and identifies directions for future
research.

2. Related work

Traditional BI relies on ETL tools (e.g., Informatica, IBM Infosphere Datastage, Ab
Intio, Microsoft SQL Server Integration Services (SSIS), Oracle Data Integrator, Talend,
Pentaho Data Integration Platform - PDI, etc.) that load data into warehouse servers [9].
Lately, Enterprise Application Integration (EAI) systems are succeeding ETL tools and
perform much more functionalities. The other class of tools are the so-called “Extract-Load-
Transform” (ELT). Those tools are mostly promoted by database vendors that rely on the
power of database engines to perform the transformations, which are postponed to a later
time. ELT is useful when business requirements change frequently, so it is convenient when
the data is already loaded [10]. Authors in [11] review Traditional ETL and ELT tools,
with focus on the description of their terminology and capabilities, but without significantly
addressing Big Data challenges.
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Apache Spark draws ideas from the MapReduce paradigm, focusing on applications that
reuse a working set of data across multiple parallel operations. The work presented in [12]
demonstrates the similarities between ETL and MapReduce processes and emphasizes the
data partitioning as a missing aspect in the classical ETL deployments. The authors perform
partitioning of the data within the Map step, and aggregate the transformed data during
the Reduce step. The scalability was demonstrated on static datasets of up to 300 GB.
However, this work does not address matching of dimensions from fact tables. In addition
to addressing that, our approach also facilitates the processing of high-velocity data in a
production setting.

Consistent data warehouses allow utilizing traditional visualization, reporting and busi-
ness intelligence services, and simplify the use of data mining and machine learning libraries.
The BigDimETL approach [13] aims to conserve the multidimensional structure of DW while
integrating Big Data. Differently from our approach, this work is only theoretical, without
any experimental evaluation. A distributed parallel architecture for ETL of Big Data is
proposed in [14]. Unlike this approach, which requires the ETL to be completed before data
can be aggregated, our approach performs aggregation during the ETL process.

An approach that proposes a set of rules to translate a conceptual design and map
star schemas into NoSQL logical models with precomputed aggregate lattice is described
in [15]. Similarly to our approach, aggregate metrics need to be defined up front so that
the ETL process can compute all of them. Differently from this paper, which focuses on
rules for generation of the model, we focus on systematising the ETL scenarios and creating
distributed load agents to uniformly divide the load on on-demand clusters, before it even
gets to the DW.

The work presented in [16] proposes the CloudETL system, which exploits MapReduce
and Hive for distributed processing of data, focusing on slowly changing dimensions. Similar
to this approach, we also use in-memory lookup for matching the fact tables to the corre-
sponding dimensions. Our approach goes further utilizing lambda functions for handling
high-velocity data to create data lakes, and then processes them with Spark. Finally, we
demonstrate the value of the data marts by an end-to-end implementation, including an
application in a churn prediction problem.

Addressing data veracity by cleansing and tagging, similar to our idea of cleansing and
standardization with templates, is proposed in the GENUS system [17]. The document store
used in this approach is XML, limitting the evaluation in regards to scalability, data volume,
versatility and velocity. Processing historical and incoming data separately is proposed in
[18]. To avoid the contention between OLAP queries and OLTP updates, this approach uses
dynamic mirror replication technology. The experimental evaluation was conducted on a
static dataset of only 16 GB, which is only a fraction of the dataset that we used in our
experiments.

Real-world data processing and analytics projects often require the ETL to be carefully
designed and implemented. One specific case of the ETL process are the stages of feature
engineering, feature selection and prediction model construction [19]. However, properties
of the data, such as class imbalance or missing data, aggravate parallelization of feature
extraction and selection and require appropriate algorithms [20].

4



Customer churn is a common problem in many businesses and sophisticated techniques
have been applied in churn prediction for years. However, making a breakthrough by im-
proving prediction techniques is increasingly difficult. By using high-volume training data
with a variety of features from business and operations support systems and high-velocity
new data, [21] shows that prediction performance can be significantly improved. More-
over, this can be used to launch proper retention campaigns that targets potential churners.
Motivated by this work in the telco industry, we applied similar techniques in the video
streaming industry and came to similar conclusions. Additionally, we employed Local In-
terpretable Model-agnostic Explanations (LIME) [22] for explaining the predictions to help
the customer sales teams in the retention campaigns. Another difference is that instead of
manually generating potentially valuable features, the ETL capabilities of our architecture
were leveraged to generate a variety of features automatically through various aggregations.

In Table 1 we summarize the differences between the related works that propose different
approaches related to ETL of Big Data. Our proposed approach is in the highlighted row,
clearly offering significant improvements in terms of capabilities and experimental evaluation
over the related approaches. The last two rows for reference about directly applying Spark
Streaming, or Spark, Pig or Map Reduce, without the proposed framework.

5



Table 1: Comparison of related works.

Considerations Dataset Dimensions
Appro-
ach

Paral. Velocity Veracity Desti-
nation

Type Size Format Surro-
gate
keys

Key
match-
ing

SCD Load
Model

Aggre-
gations

Appli-
cation

[12] MR No N/A HDFS Static 100
GB

CSV No No No Full,
Diff.

Fixed,
During

No

[13] MR No N/A N/A N/A N/A CSV,
JSON

No Yes Type 1 N/A Fixed,
During

No

[14] MR No N/A HBase N/A N/A CSV No No No N/A Fixed,
After

No

[15] MR No N/A HBase,
Mongo
DB

Static 375
GB

CSV,
JSON

No Yes No N/A Fixed,
During

No

[16] MR, Pig No N/A Hive Static 320
GB

CSV Yes Yes Type 2 Full,
Diff

During No

[17] N/A No Templates,
tagging

N/A Static N/A XML No No No N/A None No

[18] MR Separates pro-
cessing of his-
toric and real-
time data.

N/A Hive Dynamic 32
GB

CSV No No No Full,
Diff.

Fixed,
During

No

Proposed Spark,
Pig, MR

Maintaining
a Data Lake
with Lambda
functions.

Templates,
tagging

S3, Blob
Storage,
HDFS,
Hive,
HBase,
Info-
bright

Dynamic 2.6
TB

CSV,
JSON

Yes Yes Type 2 Full,
Diff.

Arbitrary,
During

Churn
pre-
dic-
tion

Spark
Stream-
ing

Spark Limited to re-
cent data.

N/A Any Dynamic Any CSV,
JSON

No No No Full Fixed,
During

N/A

Spark,
Pig, MR

Spark,
Pig, MR

No N/A Any Static Any CSV,
JSON

No No No Full Fixed,
During

N/A

Paral. denotes the framework for parallelizing the computation. MR means MapReduce. Velocity refers to considerations about data collected
at high velocity. Veracity denotes any effort in the standardization of data. The Static and Dynamic dataset types denote whether the data was
static and at rest, or dynamically changing, respectively. Yes in surrogate keys means surrogate keys for dimensions are being generated, and Yes
in Key matching means that they are maintained by setting foreign keys in the fact tables. SCD denotes Slowly Changing Dimensions support.
Diff. denotes differential or incremental load. Aggregations: Fixed means they are performed on fixed time periods, Arbitrary means on arbitrary
time periods ranges, During means during the ETL and After means after the ETL.
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3. Methods

3.1. Architecture
3.1.1. ETL of Big Data

Figure 1 shows the architecture of the proposed system. In organizations, commonly,
there are traditional data sources, such as relational database management systems (RDBMS)
and structured and semi-structured data from internal or third-party data providers, that
generate reasonably-sized data. Companies usually process this kind of data using tradi-
tional Data Integration Tools. In our experiments, we utilized the Pentaho Data Integration
Platform (PDI) for such ETL tasks, which process incoming low-volume data and store it
in the Data Warehouse (marked with light gray arrows in Figure 1).

We chose PDI because it enables users to ingest, blend, cleanse and prepare diverse
data from any source. Its visual tools eliminate coding and complexity for creation of
data pipelines. It offers data agnostic connectivity spanning from flat files and RDBMS
to Hadoop, powerful orchestration and scheduling capabilities (including notifications and
alerts), agile views for modeling and visualizing data on the fly during the data preparation
process, support for Hadoop distributions, Spark, NoSQL data stores and analytic databases,
etc.

On the other hand, if there are data producers that generate Big Data with high volume,
velocity or versatility, then the classical approach for ETL is not suitable. The Big Data
streams can be efficiently collected and processed by Distributed Streaming Platforms (DSP),
which are scalable, replicated and fault-tolerant (e.g., Apache Kafka, Amazon Kinesis, etc.)
[23].

By defining a retention policy, we can configure DSPs, to retain data on the queue for a
specific time after it was published, regardless if it was consumed or not. For example, for
Amazon Kinesis, the maximum data retention period is one week at the time of this writing.
DSPs allow the same data stream to be consumed by multiple consumers independently and
simultaneously, each of them working at their own pace. Accessing data on a DSP queue
can be performed by either push or pull mechanisms [24]. The pull mechanism is innate for
Amazon Kinesis and Apache Kafka, so each consumer has and manages its read pointer.

The proposed architecture allows consumption of DSP queues by the three most common
and widely used types of consumers:

Push Lambda Functions (Stream-based model) Herein, event sources publish events
on DSP, which trigger the lambda function multiple times per second as data arrives on
the queue, and the lambda function processes the events [25, 26]. Lambda functions are
subscribed to automatically read batches of records of the DSP queue and process them
if they are detected on the stream. They poll the queue periodically (up to few times
per second) for new records. The lambda function should be rarely updated because it
stores unprocessed raw data in the original format on Object Storage Services (OSS)
(e.g., Amazon S3 or Windows Azure Blob Storage). However, if it requires updating,
that usually forces some minimal downtime. The most common reason for updating
the function is to improve error handling because of unparsable or illegal input provided
by the event sources.
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Storage Stream Pullers These consumers have more control in fetching records from
DSPs because they manage their read pointer independently, and therefore, can repro-
cess events if needed (e.g., for recovering after failures). However, their management
is more involved because the uptime of the machine that executes the storage stream
pullers need to be guaranteed by manual mechanisms, as Amazon AWS does not guar-
antee it. This mechanism provides an alternative for durable and persistent storage of
the raw data with a variable frequency of persisting data [25].

Analytics Stream Pullers Spark Streaming and Apache Storm are typical consumers
that provide stream processing and real-time analytics [25].

The first two types of consumers are redundant alternatives for reliable and permanent
storage of the incoming data in raw format on different S3 buckets. Each of these alternatives
is very reliable with guaranteed Service Level Agreement (SLA) and either one of them is
sufficient for the proposed architecture. Using both alternatives can simplify deployment
procedures and further improve the reliability of the system. Namely, if the data format
changes drastically, or sources vary, the consumers can be updated without any downtime
or risk of losing data. Having both alternatives also provides integration convenience with
the existing infrastructure in organizations.

Ability to perform full-text searches could provide some robustness to data veracity and
complement the analytical capabilities of data warehouses. Services such as Elasticsearch
or Solr [27] could cleanse the raw data stored in OSS (e.g., extract plain text from HTML
files) and then index it to provide full-text searching functionalities, as shown in Figure 1.

The Analytics Stream Pullers (e.g., Apache Spark Streaming and Apache Storm) are
a different kind of consumers that process the streaming data to provide near real-time
insights and analytics. Very complex algorithms can be implemented with these technologies
to provide valuable business insights and near real-time analytics, and can also store data
in the warehouse. Be that as it may, Analytics Stream Pullers can execute algorithms that
use only recent data because of data retention policies.

To complement this, the proposed architecture employs on-demand Spark clusters for
implementing more complex algorithms for ETL and feature engineering. They can analyze
dynamic trends over longer time periods (e.g. week-by-week or month-by-month comparisons
of various metrics) or find the time since some particular event happened (more examples
are provided in Subsections 3.2.1, 3.2.2 and 3.2.3). Such metrics are not computable with
Analytics Stream Pullers. The Cluster Launcher module, located on the same instance that
hosts the Data Integration Tool (DIT), facilitates the starting of on-demand Spark clusters.
It can be invoked manually or based on a predefined schedule by DIT. The Cluster Launcher
can start a Hadoop cluster with configurable size and can run a particular Spark job on it.
After one starts the Spark cluster, it downloads the source code from a release branch of
a code repository (i.e., git, mercurial, subversion or even a location on an FTP server, S3
or Azure Blob Storage) and automatically starts it. Code development and management
adhere to the adopted strategy of the organization (e.g., GitFlow [28]), which defines rules
and best practices for conflict resolution, peer-review, merging to staging and production
branches, etc. Each Spark cluster during its lifetime executes only a specific ETL job. If the
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organization requires multiple ETL processes of unrelated data, then multiple Spark jobs
can be defined, and for each of them a separate workflow can be managed (i.e., separate
code repositories, execution schedules, destination data warehouses, etc.).

Spark applications process Big Data stored on OSS, while also considering the dimen-
sional data from the data warehouse. Generally, the dimensional data does not have to
be processed by Spark because usually, it is with much smaller volumes compared to the
transactional data; therefore, we can use traditional ETL tools can for it. However, while
processing the transactional data, which we would store in fact tables, the dimensional data
is still required. If the fact tables are wide, then the dimensional data is a prerequisite for
the denormalization. Otherwise, we need it for setting up foreign keys to the dimensions.

In addition to the ETL process, Spark can also look in past data if required, perform
complex aggregations and run machine learning algorithms. Spark outputs the results to
HDFS, but some data can be stored additionally on OSS, depending on the requirements
(e.g., for archival purposes). Another reason why we choose Spark is because of its ability
to utilize all available resources on the cluster dynamically. This ability allows adding new
nodes on the fly, so a running Spark job can recognize all resources and utilize them without
restarting.

Next, we execute the Distributed Load Agent (DLA) on different nodes of the Hadoop
cluster, processing distinct portions of HDFS data generated by Spark. After the DLA
processes complete, data is available in the warehouse for various BI reporting and analytics
tools, as well as for external data mining or machine learning algorithms.

3.1.2. Distributed Load Agents
Traditionally, data ingestion is a huge burden on database servers and often is a bottle-

neck. After we complete the extraction and transformation steps, and we set the primary
and foreign keys, we only need to perform the load process. The idea for Distributed Load
Agent (DLA) comes from the principles of edge computing, and the goal is to offload most of
the load process to remote machines at the edge and away from the data warehouse. These
edge nodes would compress data and prepare an output, which, at least theoretically, could
be copied to the end of the database. Thus, the overall impact on the database server would
be minimal. The work presented in [29] demonstrates that the load process can indeed
work so efficiently. In the proposed architecture, the whole on-demand Hadoop cluster is
considered as being on the edge from the data warehouse perspective (see Figure 1).

Hadoop YARN (Yet Another Resource Navigator), which is responsible for job schedul-
ing, monitoring and resource management, guarantees reliable execution of Spark jobs even
if some nodes of the Hadoop cluster die. Likewise, HDFS can detect and automatically
recover after node failures. DLAs use the underlying Hadoop infrastructure, so each of them
executes on a slave node and loads some portion of the data to the data warehouse. How-
ever, if a node fails, the DLA dies along with it. Because DLAs are an extension to Hadoop
and are not part of the standard distributions (i.e., Cloudera, Hortonworks, MapR, Amazon
EMR, and Azure HDInsight), we have to manage them separately. To provide reliability
of this component of our framework, we propose a distributed system for managing DLAs,
which monitors and uniformly distributes their tasks across the Hadoop cluster.
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In Figure 2, we present the sequence diagram of the proposed DLA management. The
initialization process determines the number of available nodes, the number of tables that
need to be loaded, and the number of horizontal partitions on HDFS generated by Spark.
Mapping of data to tables happens on the edge-nodes by the agents with predefined rules
and templates. For instance, by using a set of regular expressions, a variety of fields could
be correctly standardized (e.g., date/time fields, URLs, e-mail addresses, phone numbers, IP
addresses, amounts and currencies, floating point numbers, campaign identifiers, referrers,
postal addresses and other spatial data, device IDs, or other domain-relevant entities).

Slavei

DLA(chunki)

Data
WarehouseHDFS

Init

Hadoop Master

update task/
slave status

redistribute
failed tasks

wait for all tasks
to complete

Start DLA(Parami)
start copy chunki

copy completed

copy DLA output

return
completedi

status checki

status checki

status checki

Figure 2: Sequence diagram of the Distributed Load Agents

Then DLA task parameters are configured (i.e., list of files that need to be processed
on a particular node), so each node in the cluster executes DLA on approximately the
same amount of data. When a node completes the DLA process, it notifies the master.
Meanwhile, the master pings the nodes and checks their status, to continuously monitor
the overall progress of each task. If it detects a DLA failure or a stale process, it reassigns
the task to the first idle node. We store all metadata related to the DLAs (i.e., node and
task statuses) on HDFS for reliability. This storage policy provides the ability to overcome
any failure of the master because then the secondary master would be able to continue the
orchestration of the DLAs. If during the lifetime of the Hadoop cluster (while executing a
Spark or DLA task) a corruption the cluster is detected, this information is propagated to
the Master and/or back to the Cluster Launcher. When DLA completes successfully on all
nodes, the master collects and estimates the duration of each step, the volume of processed
data, the number of rows per table, cost, etc. We upload this metadata to OSS and the data
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warehouse, so it can be further used for self-calibration of cluster-size and for estimating
future task duration. Finally, the master gracefully self-terminates the cluster.

The DLA experiments were performed using the distributed data load processor layer
developed by Infobright from 2005 through 2016, which is now available as a part of
Infobright DB product (https://www.ignitetech.com/index.php/download_file/view_
inline/221/240/). We chose this particular solution because it has been already well
adopted within the organization wherein the framework proposed in this paper was evalu-
ated, owing to its analytical performance for ad-hoc queries and the ingestion rates at the
level of 2 TB of data per hour. For more information about the characteristics of Info-
bright’s load processes, let us refer to [30], where so-called knowledge capture agent - the
new generation of the aforementioned distributed load processor - is considered.

3.2. ETL data-flow scenarios
In this section, we describe three ETL data-flow scenarios commonly needed in organiza-

tions. These scenarios relate to the major portion of data to be stored in data warehouses,
i.e., data contained in fact tables. The volume of dimensional data is considerably smaller;
therefore, it does not necessarily require processing based on Big Data technologies, rather
traditional ETL tools for this type of data are sufficient. The proposed architecture assumes
that traditional ETL tools already process the dimensional data and that it only needs to
process data to be stored in fact tables. We present the steps for implementing the ETL
process of the three scenarios in Figure 3.

Business (i.e., natural) keys denote unique record identifiers that could have some busi-
ness meaning, but most importantly, they are managed by operational data stores (ODS). In
a data warehouse, a surrogate key is a necessary generalization of the ODS business key and
is one of the basic elements of data warehouse design. Every join between dimension tables
and fact tables in a data warehouse environment is based on surrogate keys, not business
keys. It is up to the data extract logic to systematically look up and replace every incoming
business key with a data warehouse surrogate key each time either a dimension record or
a fact record is brought into the data warehouse environment. The surrogate keys provide
independence from ODS business keys, which could be subject to deletion, updating, or
recycling.

Populating foreign keys in fact tables in a traditional way with joins between the fact
and dimension tables would be inefficient and unfeasible for large datasets because it re-
quires shuffling and redistributing data across the cluster nodes. On the other hand, if the
dimensions’ business and surrogate keys are distributed across nodes in advance, populating
foreign surrogate keys is a simple dictionary lookup operation based on the business key
with O(1) complexity. This method does not require reshuffling and adheres to the data
locality principle.

In Figure 3 the proposed data flow for the three scenarios is shown, and each of them is
described in more detail in the following subsections. All scenarios share steps one and two.
Spark in the first step loads the business and surrogate keys of all processed dimensions, and
then distributes them to each node. Also, the maximum values of the surrogate keys for each
table are calculated in step 1, because they define the starting values of the new surrogate
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keys that would be generated during a subsequent run of the ETL process. For non-existing
business keys, new surrogate keys are generated as a sequence of increasing integers, starting
from the current maximum key for the table. Gaps in the generated sequence of numbers
are allowed by design (for computational efficiency). During the surrogate key generation,
their density is calculated (defined as the ratio of the total number of surrogate keys and
the maximum surrogate key), which shows how efficiently they are used. If the density is
very low and the maximum value of surrogate keys increases rapidly, so this may be used as
a recommendation to redesign the key generation approach.

3. Generate unique ids for each record 
(MaxId + ZipWithUniqueId)

4. Transform and clean the data; and
set primary and foreign keys to the dimensions (MapPartitions)

6. Group data by grouping key, such as userId
(GroupByKey)

7. Calculate sessions, aggregate data per
session, determine incomplete sessions

(MapPartitions)

5. Transform and clean the data; and
set foreign keys to the dimensions

(MapPartitions)

8. Extract sessions (FlatMap),
generate primary keys (MaxId+ZipWithUniqueId),

update them (MapPartitions + Persist)

3. Read all incomplete data from OSS

4. Merge of all new and incomplete data (Union)

9. Save sessions to HDFS

10. Extract unaggregated records (FlatMap),
generate primary keys (MaxId+ZipWithUniqueId),

update them (MapPartitions)

11. Save unaggregated records of complete
sessions to HDFS

13. Save unaggregated records of incomplete
sessions in raw format to OSS for future use

12. Extract unaggregated records of incomplete
sessions (FlatMap)

6. Aggregate data per grouping key
(MapPartitions)

7. Extract aggregated records (FlatMap),
generate primary keys(MaxId+ZipWithUniqueId),

update them(MapPartitions + Persist)

5. Group data by grouping key, such as userid
and hour of day (GroupByKey)

9. Extract unaggregated records (FlatMap)

8. Save aggregated data to HDFS

10. Save unaggregated data to HDFS

5. Save output
to HDFS

a) ETL1:

No aggregation

b) ETL2: Predefined time period aggregation c) ETL3: Session-based aggregation

Figure 3: Steps for completing the three ETL scenarios: (a) ETL1: No aggregation; (b) ETL2: Predefined
time period aggregation, (c) ETL3: Session-based aggregation

Next, step 2 reads all new data from OSS (with the Spark operations TextFiles or
WholeTextFiles). Because OSS storage is distributed, different nodes of the cluster read
distinct portions of data, thus achieving high parallelism. Usually, files on OSS are stored
with a hierarchical prefix describing the date and time when that data was collected (e.g.,
on AWS S3 s3://bucket/collection/folder/2018/01/12/23/34/), therefore it is trivial to
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determine the source path of the new data for a particular run.
Even though the steps in between differ between scenarios, after the data is stored on

HDFS, the Data Load to the data warehouse are executed in a similar manner using the
proposed algorithm for a distributed load, processing each table in a parallel way, one at
a time. Ultimately, all metadata collected during the cluster lifetime (i.e., various metrics
such as duration of each step, number of processed rows per table, etc.) is also loaded into
the data warehouse, and then the cluster self-terminates.

3.2.1. ETL scenario 1: No aggregation
The first scenario of ETL requires parsing, data type conversion, setting foreign keys

(Extract and Transform steps) and only loading into the fact tables of a data warehouse.
This scenario is the simplest of the three and does not require any aggregations in the
fact tables. Such use-cases require that all generated data be available at the lowest level
of granularity (after performing proper cleansing), as well as their associations with other
entities in the system. Some typical use-cases of this work-flow refer to the log analysis in
the following application fields:

Resource management: Monitoring across systems to detect particular log events and
patterns in the data; Identifying performance or configuration issues; Meeting opera-
tional objectives and SLAs; etc.

Application troubleshooting: Diagnosing and identifying root causes of application in-
stallation and run-time errors; Pinpointing areas of poor performance; Assessing ap-
plication health and troubleshooting.

Marketing insights: Gathering insights and analyzing their impact on visibility, traffic,
conversions, and sales; Revealing potential improvements of Search Engine Optimiza-
tion (SEO); Understanding which pages are useful and useless; etc.

Regulatory Compliance and Security: Maintaining compliance with industry regula-
tions often requires all data to be preserved in source format, while tagging and iden-
tifying certain events in data.

What is common about these use-cases is that the original data needs to be completely
preserved without any level of aggregations so that one could pinpoint particular events.
From this perspective, it is also worth mentioning one more application aspect - regulatory
compliance and security. Indeed, maintaining compliance with industry regulations often
requires all data to be preserved in source format, while tagging and identifying certain
events in the data.

The steps for completing the ETL of this scenario are shown in Figure 3a. Step 3
generates unique numeric identifiers for each row with the ZipWithUniqueId transformation.
Even though there can be gaps in the generated numbers by this operation, it does not
require data shuffling, making it very efficient. When the maximum value of the surrogate
key (MaxId) is added to the generated unique number, a unique surrogate key of each row
is obtained.
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In step 4 the transform phase of ETL is performed, consisting of data transformations,
data cleaning, data type casting, setting primary surrogate keys (using the unique ids gen-
erated in the previous step), and setting foreign keys to the dimensions (by performing
lookups in the dictionary already distributed to each node in step 1). This step uses the
MapPartitions Spark operation, which guarantees that the transformations will not cause
shuffling, thus adhering to the data locality principle.

Subsequently, step 5 stores the output of the transformations to HDFS in text format.

3.2.2. ETL scenario 2: Predefined time period aggregation
The second ETL scenario refers to a predefined time period aggregation. This scenario

is commonly present in data aggregation concerning nominal or dynamically quantized col-
umn domain (e.g., user, campaign, asset) in conjunction with some predefined time period.
Therefore, it is an extension of the first scenario because it analyzes the granular data and
picks out important pieces of information (e.g., response times, customer plan dollar values,
performance resource usage info, etc.), then rolls them up into aggregated records, which
can be displayed in metrics dashboards. Associating the aggregated records with the actual
records that comprise them, allows drilling down. For example, if suddenly a spike in the
number of signups on a daily basis happens, the change can be quickly validated by checking
the logs to see who signed up and when. This is not always possible with the traditional
metrics dashboards, as they do not maintain the source of data that is used to calculate the
metrics. Another use of the aggregated data is for concept drift detection, for trend analysis
over more extended periods, or engineering features for machine learning algorithms [6, 19].

Determining which aggregate metrics would be needed requires significant manual effort
by data warehouse architects [5, 6]. Therefore, a more conventional approach is to generate
a variety of potentially useful metrics and rely on statistical and feature selection methods
to discover the more relevant ones afterward. Another reason to include more metrics is that
data changes over time so the importance of the metrics could change. For those reasons,
this ETL scenario generates a variety of aggregate metrics upfront, comparable to [15].

The steps of the second ETL scenario are shown in Figure 3b. Steps 1 to 4 are identical
to the previous scenario and are related to data transformations, data cleaning, and setting
primary and foreign keys.

The records with the same grouping key are grouped with the GroupByKey operation
in step 5. Even though the grouping key could be any column, we recommend using time
dimension columns (e.g., hourly or daily aggregations). The reason for that is because the
proposed architecture uses the Infobright data warehouse, which already facilitates swift
ad-hoc queries, including aggregations on any dimensional data, owing to its knowledge
grids.

Step 6 aggregates the records in the same group, thus producing an aggregate record
with one or more aggregate values (e.g., count, sum, min, max, or any user-defined aggre-
gate function). Additionally, in each aggregate record, all records that comprise it are also
preserved (i.e., are not lost because of the aggregation).

Next, step 7 extracts the aggregated records (with the Map or FlatMap operations),
generates primary keys for them with the same method as applied in step 3, and finally
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updates the aggregated records to reflect the generated primary keys. Additionally, it sets
the foreign key to the aggregate record in all records that comprise it, which is the sole
reason why the comprising records were preserved in the previous step. This step also uses
the Persist operator at the end, which stores the result in memory. By doing this, the next
time the result of this step is needed (in step 9), no re-computation would be required.

Step 8 stores the aggregated records (without the comprising records) on HDFS.
Subsequently, step 9 extracts the comprising records of each aggregate record with the

FlatMap operation in one set of unaggregated records.
Then these records are stored into HDFS in step 10.

3.2.3. ETL scenario 3: Session-based aggregation
Aggregation on predefined time periods still does not cover all use-cases. As an example,

let us go back to the feature engineering task mentioned previously. As discussed in [19],
focused on predictive maintenance and risk monitoring, the derived features of the form,
e.g. “the time since the last occurrence of event X” can be of special importance. Likewise,
in churn prediction problems, the “the time since the user’s last login”, “last used service”, or
“last bought product”, can be useful features [31]. Even though such features are logically
easy to understand, their calculation requires to look in variable and practically unlimited
periods of the past data. On the other hand, in typical streaming scenarios, only the recent
data is available.

Another challenging case is when aggregations on time periods are of arbitrary length.
These situations are common when there is an interaction between users and services, and
the user sessions could last hours or even days. Such cases are browsing sessions which
end either by logging out or by some period of inactivity; viewing sessions of video services;
gaming sessions; etc. Historically, such sessions were related to the user’s activity on a single
device, and therefore, were easily distinguished by the corresponding device id. However,
nowadays the user can start a given activity on one device and continue on another (e.g.,
one can start watching a movie on a tablet or smartphone and then, shortly after, resume
on a smart TV). From a business logic perspective, these seemingly distinct sessions should
be often considered as single sessions, thus making the traditional method for distinguishing
them unsuitable. One might try to cope with this by updating session records in real time,
but in case of millions of concurrent users with hundreds of millions of updates per hour,
this is simply unfeasible. A more suitable approach is thus to generate and maintain atomic
user activity log files, where records are only inserted, and then process them in an offline
fashion to determine the unique user activities that we are interested in.

Using technologies such as Spark streaming cannot easily cope with this type of scenario
because the time period in which the user session is not predefined and can be very long,
requiring very long sliding windows, which in turn, require a lot of memory. Moreover,
Spark streaming requires a cluster to be running permanently, which incurs higher costs,
even though real-time analytics may not always be required (e.g., if a delay of a couple of
hours is acceptable, or if the reports are daily, weekly or monthly).

The third ETL scenario calculates user sessions, then performs aggregation on session
level and finally loads data in an aggregated and unaggregated format. We propose to
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address the ETL process of this scenario by using the algorithm shown in Figure 3c. The
algorithm processes all records that comprise complete sessions and loads the result in the
warehouse. Incomplete sessions are defined as sessions that at the end of the period that
is being processed (e.g., a day’s worth of data) were still active. Therefore, the records of
incomplete sessions are stored separately in raw format at the end of the algorithm, so they
could be processed in the next run.

Steps 1 and 2 are the same as in the previous two scenarios. Step 3 reads data that was
part of incomplete sessions from a location on OSS where the previous run of the algorithm
stored them. Step 4 merges the two RDDs of the new and incomplete data with the Union
operator. Next, in step 5 data is cleansed and transformed, and the foreign keys to the
dimensions are also set.

In step 6 the records are grouped by a more coarse grouping key, such as user id. This
enables implementation of complex business rules in step 7 for determining user sessions
because all recent user records are available in one logical and physical location. During
step 7, the complete sessions are determined, along with the records that comprise them,
and some aggregations are performed per session. Additionally, step 7 identifies incomplete
sessions, which are also included in the aggregated data but are marked as incomplete. The
records that comprise incomplete sessions are kept in the original format so they can be
stored on OSS for re-processing in the next run.

Step 8 extracts complete sessions with the FlatMap operator, generates primary keys
for them and updates the records to reflect the generated keys: aggregated to have proper
primary keys and comprising records to have proper foreign keys to the corresponding ag-
gregate (session) records. The result of this step is preserved in memory because it will be
needed three times in the following steps.

Step 9 stores the complete sessions to HDFS.
Using the result from step 8, Step 10 combines the unaggregated records that comprised

completed sessions, and generates and sets their primary keys. Subsequently, in step 11
these records are stored on HDFS.

Next, step 12 extracts the unaggregated records of incomplete sessions into one set
and then in step 13 stores them in the original format (without any data cleansing and
transformations) in OSS so they can be used in the next run in step 3.

3.3. Business analytics application: Customer churn prediction
3.3.1. Problem description

The ultimate goal of any ETL process is to provide support of various business appli-
cations. The proposed architecture was applied for timely and actionable information for
a recommendation system, service-outage prediction, fraud detection (i.e., account sharing
against the terms of use) and historical performance tracking and decision support. For
brevity, here we only describe the use-case for a customer churn prediction problem for a
video streaming service operating in the Canadian market. The goal is to analyze usage pat-
terns and discover which customers will cease the business relationship with the company
in the near future, and identify the reasons for that.
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Three types of data were available for the churn prediction. First, demographic and
personal data from the customer profile (e.g. number of avatars, account age, number
of profiles, number of kids profiles, payment history, account type,etc.). Second, results
from customer surveys were also available. For these two types of data, ETL scenario 1 was
utilized. Third, a lot of dynamic data originating from the user interactions with the service.
This data, in its raw format, is unusable for churn prediction, or any analytics scenario for
that matter, as it only contains logs generated hundreds of times for each minute the user
streams some content. At the lowest level of granularity was a record called heartbeat,
contains a timestamp and various information describing the user, profile, content, device,
operating system, state, and other meta information. As expected, it sometimes contains
missing or malformed data.

Utilizing the three proposed ETL scenarios, the raw data was associated and aggregated
with other information available from the user profiles (e.g., gender, age, subscription date,
region, etc.), content description (e.g., genre, category, tags, etc.), service-quality metrics
for the same user session (e.g., streaming speed, dropped packages, latency, etc.). Some of
the resulting aggregated metrics were defined manually and had business meaning (e.g., the
total number of times or total time some content id was watched). Others were calculated
automatically and did not have any business meaning (e.g., mean, minimum, maximum,
sum and standard deviation of the number of heartbeats per watching session), but could
be potentially valuable for some analytics applications.
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Figure 4: Dataset creation for the churn prediction problem

The requirements for customer churn prediction specify that there should be enough time
before the predicted churn time. This would allow the company to take active measures
to prevent the customer from churning (e.g., a retention campaign offering some special
promotion, discount, bonus content, etc.). For this particular use-case, we selected active
customers in the last month and predicted whether they would churn between two and four
weeks of the churn prediction time. For example, data from July subscription period were
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used to predict whether the customer will churn between August 15 and August 31. The
setting is shown in Figure 4, corresponding to the “no-memory approach” described in [32].
This setup provides at least two weeks (e.g., the first half of August) for the customer support
and sales teams to reach out to the customer and try to prevent the service cancellation.
Please note that even though the limitation was that the predictions are made for active users
within a certain month, the features describing a particular customer requires processing of
unlimited passed data (i.e., since the customer joined).

A condition for users to be considered in the analysis was that they were active for the
whole month, meaning they registered before the training period started. The reason was
two-fold. First, to overcome the cold-start problem some data is required to build the model.
Second, newly subscribed users get the first month for free, so they are not relevant for the
churn prediction problem due to business reasons. However, they are of primary interest for
the similar task of predicting which newly subscribed customers will choose a paid plan after
the trial period. Even though we built a model for this problem, this is out of the scope of
this paper.

Considering that in real systems concept drift occurs over time, we also implemented
the strategy described in [33] to deal with it. Namely, by detecting value distribution
variations of features in the training and validation sets, we keep ones that are more stable
throughout time. The same training/validation scheme is also used for hyper-parameter
tuning of classification algorithms, as well as to select the final algorithm that will be used
in the production setting to make the classification.

3.3.2. Feature extraction
Using the three proposed ETL scenarios, data was already processed and aggregated on

various levels. Initially, heartbeats records were processed using ETL scenario 3 scenario
providing aggregate metrics about a watching session (e.g., the total time in player, watched
percentage of the content, how many devices were used within it, number of fast forwards,
number of pauses, rewatched time, count of missing heartbeat records, etc.).

Then, the session data was further aggregated on bi-monthly, monthly, bi-weekly, weekly,
and daily level, per user account and profile, genre, etc. Meanwhile, other data (e.g., num-
ber of distinct contents watched, number of heartbeats, distinct devices used, number of
operating systems, etc.) was processed per ETL scenario 2. All aggregated data were later
combined and further aggregated calculating various statistical metrics (i.e., count, mean,
mode, median, minimum, maximum, standard deviation, different percentiles, kurtosis, and
skewness).

Let us again stress the importance of ETL scenario 3 for these kinds of applications with
another example that utilized the previously processed data. Namely, events, such as “time
since last answered survey”, “time since last fully watched content”, “time since last fully
watched content with tag X” could be valuable predictors. The same goes for features like
“number of technical issues per day”, that require proccessing of various lower level metrics
(e.g. a watching session with more than 5% missed heartbeats, number of restarts within
the same session, number of dropped packets, etc.). With typical streaming applications,
where only recent data is available, these types of features could not be calculated because
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they require processing of potentially unlimited periods of data.
In order to end up with tabular data for the classification algorithms where each row

represents a customer and all colums are cetrain features, dimensional data was pivoted
and all metrics were available for each value of the dimension as a separate feature. For
example, for the “family” and “comedy” genres, there is a different feature originating from
the same metric (e.g., total number of heartbeats, total watch time, etc.). We additionally
computed differences of the same metric and aggregation type between consecutive intervals
(e.g., the variation of the total number of videos watched in the first half and second half
of the month). As a result, thousands of features were generated. The whole process was
performed every two weeks, facilitating churn predictions with the most recent data, but
also stressing the importance of a cost-effective and efficient solution.

4. Results

4.1. Experimental setup
Contributing to the popularity in industry and research community of the Amazon Web

Services (AWS), and the hardware heterogeneity offered in various instance types [25], it
was used for the experimental evaluation of the proposed architecture. Nonetheless, it
would be relatively straightforward to replicate the proposed architecture on other cloud
providers, such as Windows Azure or Google Cloud, considering that they already offer
similar services. Even on-premises infrastructures can provide suitable replacements for the
utilized AWS components.

From all available instance families on AWS, we used the “r3.2xlarge” instance type
(61 GB RAM, 8 CPUs, 160 GB SSD) for our experiments because it has high network
performance while offering better granularity in controlling the cluster resources compared
to larger instances.

We used Infobright DB as data warehouse because of the following reasons: fast ad-hoc
queries; no need for physical database design (indexing, partitioning, tablespaces design,
etc.); extremely fast load process exceeding terabytes per hour with high scalability; ability
to run multiple parallel loads to a single table; and very small footprint of the database.
The data warehouse was installed on a “r3.8xlarge” instance which has 244 GB RAM, 32
CPUs, 640 GB HDD, a 10 Gigabit network.

The data used for evaluating the framework was collected from a variety of devices (i.e.,
smart phones, web sites, and desktop applications) which published events on an Amazon
Kinesis stream with five shards in the “us-east-1” region. Events on the stream triggered a
python lambda function up to 5 times per second per shard, which stored the raw JSON
records, one record per line in a plain text file, in S3. The producers were able to generate
up to 1000 records per second per Kinesis shard. With this configuration (5 shards), we
could process a maximum of 1000writes× 5shards = 5000 events (source rows) per second
(24hours × 3600seconds × 5K = 432M events per day), that would be stored in up to
24hours× 3600seconds× 5reads× 5shards = 2.16M S3 objects (files).

The scalability experiments with each of the scenarios were repeated ten times and all
presented times represent the average of the repetitions. All scenarios were evaluated on
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clusters with 5, 10, 15, 20, 30, 40 and 60 nodes, so we could investigate the impact of cluster
size on the speedup.

Table 2 shows the information about the datasets used for evaluating the three ETL
scenarios. The data was provided from a video-streaming service that collects user logs
hundreds of times each minute.

Table 2: Information about the datasets and generated rows in each ETL
scenario

ETL scenario
ETL1 ETL2 ETL3 ETL3 (100 days)

Source type CSV JSON JSON JSON
Source columns 31 17 17 17
Dest. aggr. columns - 86 86 86
Dest. unaggr. columns 86 26 26 26
Source S3 objects 550 410K 410K 36M
Source size (GB) 53 30 30 2603
Source rows 137M 44M 46M 3987M
Dest. unaggr. rows 137M 44M 44M 3985M
Dest. unaggr. size (GB) 94 28 28 2427
Dest. aggr. rows - 2M 1M 108M
Dest. aggr. size (GB) - 2 1 70

Acronyms: Dest. - destination, aggr. - aggregated, unaggr. - unag-
gregated (i.e. not aggregated).

4.2. Evaluation of the ETL scenarios
All three proposed scenarios were used to populate several data marts for different pur-

poses, most notably a churn prediction system, a recommendation system and a fraud-
detection system. The first ETL scenario is evaluated with structured data that only re-
quires cleansing, transformation, surrogate keys generation, and setting up foreign keys to
dimensions. The second and third ETL scenarios additionally required aggregations, and
they were evaluated on user logs data collected during a typical workday.

For the ETL scenario 1, which does not require aggregation, we experimented when all
data was stored in one large text file, as well as in 550 smaller text files (see Table 2, column
ETL1). The size of the source files did not influence the performance of the system, which
is understandable, considering that S3 is a distributed storage system. The performance of
each step (Spark duration and DDL duration) depending on cluster size is shown in Figure
5a. Note that Amazon does not bill the booting duration. Similarly, the cost depending on
cluster size is shown in Figure 5b. From these two figures, it is evident that the 15-node
cluster was the most cost-effective because its chargeable duration is just under one hour.
It is also notable that when more than 30 nodes were used, the overall duration did not
improve significantly. For the ETL scenario 2, which performs aggregation on predefined
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Figure 5: Duration of each step (a) / cost (b) for ETL scenario 1 per cluster size
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Figure 6: Duration of each step (a) / cost (b) for ETL scenario 2 per cluster size
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Figure 7: Duration of each step (a) / cost (b) for ETL scenario 3 per cluster size
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time periods, the duration of each step and the cost depending on cluster size is shown in
Figures 6a and 6b, respectively. Obviously, the 5-node and 15-nodes cluster are the cheapest,
yet the latter completes the job considerably faster for the same cost. Finally, the results
of the experiments with the ETL scenario 3, which performs session-based aggregation, are
shown in Figures 7a and 7b. Similar to the second scenario, the most cost-effective is the
15-node cluster.

To verify that the proposed architecture is reliable and sustainable, we have executed the
third scenario (as it is the most complex of the three) on a considerably increased workload
using data collected during 100 days (see Table 2, column ETL3 (100 days)). We used
a 20-node cluster with “r3.2xlarge” instances. Considering that the volume of the source
data (2.6 TB) exceeds the storage capacity of the cluster (20 × 160 = 3.2 TB) total hard
drive space, of which less than 1 TB is available for HDFS), the Spark and DDL jobs were
executed interchangeably one day at a time (i.e., the flow shown in Figure 3c was executed
100 times on the same cluster). This also enabled the results of the ETL to be available
even though the whole process is not fully completed. The Spark jobs completed in 174,481
seconds in total, or on average, about 1,745 seconds per day’s data. This is considerably
less than when a cluster of the same size processed the daily data (2,034 seconds, see Figure
7a). We attribute these savings to the overhead of starting a Spark job on a new cluster and
initialization of dimensional data key lookup dictionaries, and to the variance in daily data
volumes. DDL completed in 8,514 seconds, an increase which is linearly proportional to the
processed data volume. Figure 8 shows the obtained speedup of the Extract and Transform
steps in Spark when comparing different cluster sizes for the three ETL scenarios, which is
based on the results provided in Figures 5a, 6a and 7a. Obviously, as the number of nodes
increases, the speedup decreases.

4.3. Business Analytics application: Customer churn prediction
Using the approach described in subsection 3.3.1, every two weeks the training validation

and test datasets were regenerated, selecting only active users in the appropriate time period.
During the retrospectively evaluated period for which we present the results, each of the
training, validation and test datasets contained about 200,000 subscribers, of which about
10% churned. As a result of the automated feature extraction process during the ETL,
for each of them there were available about 2,000 features, which were reduced to about
350 during the validation phase. The test results presented in Table 3 show the five best
performing algorithms using those 350 features. The validation experiments showed that
SVMs require significant time for hyper-parameter tuning without improvement of the scores,
so it was not considered for the test experiments.

The information gain of the top 10 most informative features is shown in Table 4. Based
on this analysis, we found that the activity of the users within the last two weeks before the
prediction day was the most informative. Understandable, users who did not use the service
in the last 2 weeks had a higher probability to churn than people who watched one or more
videos. Similarly, users that subscribed more than two months ago and are still active, are
less likely to cancel the subscription.

23



Table 3: Classifier performance on the test dataset with 10% churners (positive class).

Classifier Accuracy AUC Precision Recall NPV Specificity F1p F1n

XGBoost 0.9761 0.9850 0.9727 0.9975 0.9899 0.8982 0.9849 0.9418
AdaBoost 0.9705 0.9820 0.9695 0.9936 0.9746 0.8864 0.9814 0.9284
ExtraTrees 0.9735 0.9813 0.9706 0.9965 0.9858 0.8902 0.9833 0.9355
RandomForest 0.9744 0.9806 0.9726 0.9954 0.9819 0.8980 0.9839 0.9381
DecisionTrees 0.9737 0.9756 0.9718 0.9953 0.9814 0.8952 0.9834 0.9363

Table 4: Top 10 most informative features for churn prediction

Feature description Information gain

Days since subscribed 0.014712
Number of distinct assets watched in last 2 weeks 0.004214
Mean time in player in last 2 weeks 0.004168
Std of watched seconds in last 2 weeks 0.004051
Std of time in player in last 2 weeks 0.003882
Mean of heartbeats in last 2 weeks 0.003789
Mean seconds watched in last 2 weeks 0.003711
Count of heartbeats in last 2 weeks 0.003677
Std of heartbeats in last 2 weeks 0.003671
Diff of seconds watched between first and second half of last month 0.003572
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Figure 8: Speedup of the Extract and Transform steps (Spark) of the three ETL scenarios: ETL1 - no
aggregation; ETL2 - predefined time period aggregation; and ETL3 - session-based aggregation.

Even though the black-box ensemble models had superior predictive performance, the
more-easily interpretable Decision Trees model provided easier interpretation. However, it
was still over-whelming for production use, hence the LIME approximation was used. Figure
9 shows an exemplary LIME explanation of a “churns” and “remains” predictions made by
XGBoost. In this example, only 5 features are shown.

5. Discussion

This study proposed architecture for efficient and scalable ETL of Big Data, consisting
of distributed processing of data (extract and transform steps) with Apache Spark and
distributed load into a data warehouse. We evaluated three common ETL scenarios requiring
no aggregation, predefined time period aggregation and session-based aggregation.

For all cluster configurations and all ETL scenarios, Amazon does not charge for the
booting time needed to provision the cluster. Nonetheless, this has an impact on the overall
duration of the whole ETL process, so it needs to be considered. The booting time was very
similar for smaller and larger clusters (see Figures 5a, 6a and 7a). Because all experiments
for each scenario were repeated at least ten times, we could detect cases when the booting
time of 5-node clusters was even longer than the booting time of 60-node clusters, which we
attribute to the varying resource availability in Amazon AWS. Nonetheless, in the hundreds
of experiments, clusters up to 60 nodes with “r3.2xlarge” instances, this variance was negli-
gible and the clusters were always booted in less than 15 minutes. For clusters larger than
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Figure 9: LIME explanations of predictions made by XGBoost: churns (top), remains (bottom)

100 nodes or ones requiring more powerful instance types than “r3.2xlarge”, the booting time
was more variable, which needs to be taken into account if on-demand clusters are used.

For all three scenarios, the distributed load into the warehouse scaled very well, having
almost linear scalability (see Figures 5a, 6a and 7a). Be that as it may, we noticed that in
some rare cases when the smallest cluster (5 nodes) was used, one of the nodes would die.
This was no issue for losing data that was already stored on HDFS because of its replication.
However, for the DLAs, it would have been a problem if it was not the algorithm proposed
in subsection 3.1.2 (see Figure 2). In such cases, the load of a particular chunk of data,
which is atomic operation from the warehouse point of view, would be repeated by the first
available node. Node failures happened very rarely during Spark’s execution. Despite that,
no manual effort was needed for recovery, because Spark distributed the failed tasks to other
nodes using Hadoop and YARN facilities.

Even though the predefined time period aggregation ETL scenario logically differs from
the session-based aggregation scenario, from Spark’s data movement perspective, they are
very similar. The latter has only two extra steps (steps 12 and 13 in Figure 3c), which store
the unaggregated data of incomplete sessions to S3. In the experimental dataset, about 5%
of the sessions were incomplete, resulting in storing about 1.5 GB to S3 for processing on
the next run. Depending on the cluster size, it took 50 to 70 seconds for Spark to store this
data to S3 step, making its duration insignificant compared to the duration of the whole
ETL process. Likewise, the number of rows that were loaded into the warehouse in these two
scenarios were very similar (see Table 2), with a difference of about one million aggregated
rows, which was negligible (see Figures 6a and 7a).

The Spark process within all three scenarios considerably benefited when increasing the
cluster from 5 to 10 nodes, yielding a super-linear speedup (see Figure 8). For the no
aggregation scenario, which was evaluated on a 53 GB dataset, the duration dropped from
9,080 to 3,914 seconds (see Figure 5a). For the other two scenarios, which were evaluated
on a 30 GB dataset, the duration dropped from about 6,900 to about 3,400 seconds (see
Figures 6a and 7a). The reason for these super-linear speedups, particularly notable in the
first scenario, was the insufficient RAM on the 5-node clusters to store all data into memory,
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which caused data spills on the hard drive. For clusters with at least ten nodes, this was not
a problem for all three scenarios. When the node number increased, the speedup started to
decline (see Figure 8). The no aggregation scenario had better speedup than the aggregation
scenarios when using up to 40 nodes, which we attribute to the simpler data flow. However,
when the nodes increased to 60, the performance was worse than when using 40 nodes (see
Figure 5a). To confirm that this was not a peculiarity of this cluster size, we experimented
with the first ETL scenario with a 100-node and even a 200-node cluster. The results
were even worse because of the great communication and synchronization overhead. This
confirms that cluster size should be optimized for data load and that Big Data approaches
are not suitable for problems with small amounts of data. From all experiments and results,
we can also conclude that there is a physical limit of how fast the ETL process can be
completed. We could reduce the execution time under one hour for all ETL scenarios, but
further increasing the nodes did not additionally lower the execution times.

Although some metrics calculated during the ETL turned out to be uninformative for
the churn prediction problem, they were precious for other business analytics. Features
related to the number of dropped packets per operating system and user session were very
insightful for detecting production issues with mobile applications, that lead to the discovery
of memory management issues and the sequence of actions that lead to them. Likewise, they
were useful for predicting cancellation reasons, performed within a next phase that classified
the predicted churners in a multi-label multi-class setting. This, in combination with the
explained predictions by LIME, was particularly useful to sales teams.

The main limitation of the proposed architecture is that it cannot be used for real-
time ETL, rather with some predefined latency. Another limitation is that the proposed
distributed load agents architecture was evaluated with only one data warehouse engine.
Let us add that we are fully aware that our study refers just to a subset of Big Data
V’s. Nevertheless, the considered scenarios referring to large and dynamically increasing
relational data sets occur very frequently in practice, with a number of research challenges
that still need to be solved (and which are not fully solved by purely Hadoop-style systems
with regards to velocity). Moreover, we believe that the proposed solutions addressing a
combination of volume and velocity challenges can be adapted in the future also for handling
the unstructured data.

6. Conclusions

In this paper, we have proposed a cloud-based architecture for efficient ETL of Big Data.
The extract and transform phases are performed by Spark, and then the results are loaded
into a data warehouse using distributed load agents (DLAs) that utilize the processing
resources of the cluster slaves (edge nodes) reducing the workload on the database server.
To that end, the ETL process utilizes on-demand Hadoop clusters with a variable size that
run for a limited duration on Amazon AWS. By defining and evaluating three ETL scenarios
that cover a variety of use-cases, we showed that the ETL process could be effectively used
for feature extraction of non-trivial features that require processing of variable periods of
past data.
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The proposed approach allows using already established ad-hoc, analytical and inte-
gration capabilities of traditional data warehouses. For some cases, such as processing of
computer generated logs, the number of rows can be significantly reduced by some aggre-
gations, while still preserving enough information for a variety of ad-hoc queries. For such
cases, the pure Big Data solutions raise several challenges related to development time,
compatibility with visualization and reporting tools, and massive overhead when executing
MapReduce or Spark jobs. This is the real benefit of the proposed method that combines
Big Data technologies for the heavy lifting (e.g., ETL and aggregation) and traditional data
warehousing technologies for data exploration (analytics, reporting, visualization, etc.). We
showed that the proposed system brings real benefits to business applications, such as churn
prediction by performing the feature extraction within the ETL. Experiments showed that
churners can be identified with over 0.98 AUC score while providing explanations of the
classification that help sales teams to launch personalized retention campaigns.

In future work, the proposed management system of DLAs can be integrated with YARN.
Likewise, the algorithms could be expanded to consider hybrid aggregation scenarios during
ETL. Further research could be focused, e.g., on approximate database engines and their
information capturing capabilities for providing quick and dirty answers quickly, thus al-
lowing users to visualize and find data segments of interest very fast. They could facilitate
navigation through the data with efficient roll-ups and drilling down, while still enabling
to execute exact queries when needed. Another promising direction is to integrate machine
learning algorithms within the ETL in a non-blocking manner. This would allow for online
re-calibration of models, aiming to cope with concept drift, while complementing traditional
analytics with instant predictions.

References

[1] H. Chen, R. Chiang, V. Storey, Business intelligence and analytics: From big data to big impact, MIS
Quarterly: Management Information Systems 36 (4) (2012) 1165–1188.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. Ullah Khan, The rise of "big
data" on cloud computing: Review and open research issues, Information Systems 47 (2015) 98–115.
doi:10.1016/j.is.2014.07.006.

[3] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, R. Buyya, Big data computing and clouds:
Trends and future directions, Journal of Parallel and Distributed Computing 79 (2015) 3–15.

[4] C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technologies: A survey
on big data, Information Sciences 275 (2014) 314 – 347. doi:10.1016/j.ins.2014.01.015.

[5] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson, Data integration flows for business intel-
ligence, in: Proceedings of the 12th International Conference on Extending Database Technol-
ogy: Advances in Database Technology, EDBT ’09, ACM, New York, NY, USA, 2009, pp. 1–11.
doi:10.1145/1516360.1516362.

[6] S. Zhang, C. Zhang, Q. Yang, Data preparation for data mining, Applied Artificial Intelligence 17 (5-6)
(2003) 375–381. doi:10.1080/713827180.

[7] A. Cuzzocrea, Data warehousing and olap over big data: a survey of the state-of-the-art, open problems
and future challenges, International Journal of Business Process Integration and Management 7 (4)
(2015) 372–377.

[8] H. Wada, A. Fekete, L. Zhao, K. Lee, A. Liu, Data consistency properties and the trade-offs in com-
mercial cloud storage: the consumers’ perspective., in: CIDR, Vol. 11, 2011, pp. 134–143.

28



[9] S. Chaudhuri, U. Dayal, V. Narasayya, An overview of business intelligence technology, Commun. ACM
54 (8) (2011) 88–98. doi:10.1145/1978542.1978562.
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