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Abstract

Background

Assessment of health benefits associated with physical activity depend on the activity dura-

tion, intensity and frequency, therefore their correct identification is very valuable and impor-

tant in epidemiological and clinical studies. The aims of this study are: to develop an

algorithm for automatic identification of intended jogging periods; and to assess whether the

identification performance is improved when using two accelerometers at the hip and ankle,

compared to when using only one at either position.

Methods

The study used diarized jogging periods and the corresponding accelerometer data from

thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus

study. The data was obtained from two accelerometers placed at the hip and ankle. Auto-

mated feature engineering technique was performed to extract features from the raw accel-

erometer readings and to select a subset of the most significant features. Four machine

learning algorithms were used for classification: Logistic regression, Support Vector

Machines, Random Forest and Extremely Randomized Trees. Classification was performed

using only data from the hip accelerometer, using only data from ankle accelerometer and

using data from both accelerometers.

Results

The reported jogging periods were verified by visual inspection and used as golden stan-

dard. After the feature selection and tuning of the classification algorithms, all options pro-

vided a classification accuracy of at least 0.99, independent of the applied segmentation

strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of

correctly identified jogging periods related to the total time including the missed ones, was

up to 0.875. It could be additionally improved up to 0.967 by application of post-classification
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rules, which considered the duration of breaks and jogging periods. There was no obvious

benefit of using two accelerometers, rather almost the same performance could be achieved

from either accelerometer position.

Conclusions

Machine learning techniques can be used for automatic activity recognition, as they provide

very accurate activity recognition, significantly more accurate than when keeping a diary.

Identification of jogging periods in adolescents can be performed using only one accelerom-

eter. Performance-wise there is no significant benefit from using accelerometers on both

locations.

Introduction

Physical activity (PA) is a major life style factor associated with beneficial health effects across

the life span [1–3]. PA reduces the risk and progression of chronic diseases common in the

developed world by improving functional abilities, cardiorespiratory fitness and metabolic

health in patients with frequent diseases, such as cardiovascular, lung, and neurodegenerative

diseases, but also in the healthy population [4–13]. Since intensity, duration, and frequency of

PA have a great impact on PA associated health benefits [1–3], assessment of PA has become a

standard parameter in many epidemiological and clinical studies. Historically, standardized

questionnaires, such as PASE (Physical Activity Scale for the Elderly) [14] have been applied for

PA assessment. In recent years, sensors monitoring ambulation, such as pedometers or acceler-

ometers, are increasingly used for assessment of PA [15–17]. This is related to the fact that self-

reporting of PA tends to overestimate the time being physically active, particularly in high

intensity levels [18–20]. Accelerometers provide an objective measurement of acceleration

throughout the day, thus allowing more precise estimates of PA levels and patterns, e.g. deter-

mination of the daily periods spent in moderate-to-vigorous PA in bouts of at least 10 minutes.

Current methods for PA evaluation applied in epidemiological studies [2, 21, 22] do not

provide information about the type of activity nor give an idea about the sport performed by

the participant. Therefore, this information must be reported separately by the participant in

an activity diary [21, 22] and may lack accuracy with respect to time spent performing particu-

lar activity. Moreover, requiring participants to keep an activity diary may reduce their compli-

ance to take part in the study.

Meanwhile, in studies related to ambient assisted living, recognition of activities of daily liv-

ing based on accelerometer recordings has become very popular [23–33]. Generally, such

approaches first segment the time series data with sliding windows, then apply signal process-

ing and statistical methods for feature extraction from the raw accelerometer measurements

and then train machine learning algorithms for classification of different activities. The main

limitation of these studies is that they are based on measurements in controlled environments

with small number of participants and very limited duration of the experiments [24–33].

According to [23], systematic and automated feature engineering and selection which initially

considers variety of features is superior to approaches [30–33] based on hand-tailored features

for a particular set of sensor types, body placement or study goal.

The study presented in this article aims to develop a new algorithm based on machine

learning techniques for detection of intended jogging periods, using conventional accelerome-

ter data recorded under field conditions. To the best of our knowledge, this is the first study
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that uses data collected under field conditions for building models for activity recognition.

The data used in the study is comprised of measurements from two accelerometers placed at

the hip and ankle of adolescents and the corresponding activity diary. Additionally, this study

aims to determine whether recordings of two accelerometers, i.e. monitoring of body move-

ment at two different positions, is required or whether one position is sufficient for accurate

identification of jogging periods.

Jogging provides regular rhythmically movements and thus is supposed to be easily identifi-

able by an algorithm. Moreover, it is among the most popular leisure-time sporting activities

in the population with an increasing trend in the past years [34, 35] and is linked with signifi-

cant health benefits [35–38]. A recent meta-analysis of interventional jogging studies con-

ducted in healthy 18-65 year old inactive adults [39] showed that after 1 year of habitual

running, many benefits were observed, like reductions in body weight and fat, resting heart

rate, increased high density lipoprotein (HDL) cholesterol and an improved maximal oxygen

uptake. These biomedical indices correlated directly with the running intensity. Regular run-

ners have a substantially reduced risk for premature mortality and their life expectancy is

increased by about 3 years [35]. Running is protective against common chronic diseases, e.g.

the risk of cardiovascular mortality is reduced 45-70% compared to non-runners [35]. Further

benefits are reported for metabolic fitness, metabolic processes, the muscoskeletal, the cardio-

vascular, the endocrinological, and the neurological system [35–38]. Current recommenda-

tions include jogging periods at a relative modest pace for 15-30 minutes on 3 to 7 days a week

[37, 40]. Thus, identification of jogging periods in accelerometer recordings from epidemio-

logical or clinical studies is of great scientific interest.

Methods and analysis

The standard machine learning approach [41] for activity recognition is applied in this study.

First, the raw accelerometer readings are segmented with the sliding windows technique, and

from each window time and frequency domain features are extracted. Using feature selection

algorithms, the number of features is reduced, aiming to get more robust classification models

and to reduce the machine learning algorithms training time [42]. Then, several machine learn-

ing algorithms are applied to generate classification models for jogging periods recognition.

Ethics statement

The German Infant Nutrition Intervention Programme PLUS environmental and genetic

influences on allergy development (GINIPlus) study was approved by the local Ethics Com-

mittees, the Bavarian General Medical Council (Bayerische Landesärztekammer, Munich, Ger-

many) for the study place Munich and the Medical Council of North-Rhine-Westphalia

(Ärztekammer Nordrhein, Düsseldorf, Germany) for Wesel. The approval of the Ethics Com-

mittees includes the written consent procedure. Written informed consent was obtained from

the parents or the legal guardian of all participating adolescents.

Instruments

To assess the PA of the study sample, two ActiGraph GT3X (Pensacola, FL) accelerometers

were used. The ActiGraph GT3X contains a triaxial accelerometer for assessing accelerations

in the vertical (Axis 1), horizontal (i.e. antero-posterior or Axis 2) and medio-lateral (Axis 3)

axes [43]. ActiGraph (Pensacola, Florida, FL) is the most widely used accelerometer for assess-

ing physical activity, therefore ActiGraph accelerometers were chosen for reasons of applica-

tion and comparability to other studies. ActiLife software was used for initialization of

accelerometers (version 5.5.5, firmware 4.4.0).
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All feature extraction and machine learning algorithms were implemented in Python 3. We

have used SciPy [44] and NumPy [45] libraries for the statistical calculations, and the scikit-

learn library [46] for the classification algorithms. The algorithms were executed on a 2.3GHz

quad-core Intel Core i7 processor (with Turbo Boost up to 3.3GHz) with 6MB L3 cache and 16

GB RAM.

Participants

Measurements of physical activity (PA) by accelerometry were embedded in the 15-year fol-

low-up of the GINIPlus. The cohort and recruitment of the participants has been described in

[22, 47]. Briefly, 5991 newborns were enrolled in the cities of Munich and Wesel in Germany,

of which 53% participated in the 15-year follow up (3198 adolescents). Of these, 1890 (59%)

consented to accelerometry and 1054 provided data of acceptable quality for inclusion.

Data management

The participants were instructed to wear the two accelerometers on their hip and ankle during

the course of one week. The week started on the first school day after they received the acceler-

ometers. During the day, one accelerometer was attached to an elastic belt at the hip on the

side of the dominant hand. The other accelerometer was placed at the dominant ankle. Partici-

pants were required to keep a diary of all sport activities including intended jogging activities

in a provided sheet, in which they entered the date, start time and end time of the intended jog-

ging period, accurate up to a minute [21, 22]. Out of 1054 participants 626 reported sporting

activities of whom 95 (28 male and 67 female) reported periods of jogging [21]. 39 participants

were randomly selected and divided into three subsets: 14 for training, 13 for validation and 12

for testing of the machine learning algorithms. The diary record was verified as follows: for the

reported jogging period plus/minus x additional minutes raw signals from hip and ankle accel-

erometer were graphically displayed and if applicable corrected according to the apparent start

and end or short brakes of jogging.

The accelerometers sampling rate was set to 30 Hz and measured acceleration was stored at

1 Hz after conversion into proprietary ‘activity count units’ summed over a second-by-second

time interval. Data filtering was set to default (‘normal’) recommended by ActiGraph. Activity

counts of all three axes (vertical, horizontal and medio-lateral), the inclinometer signal, and

the number of steps were measured. For each participant there was a file with the following 8

columns: Date, Time, Axis 1, Axis 2, Axis 3, Steps, Inclinometer and Vector Magnitude. Conse-

quently, the last 6 columns represent 6 time series. Because there are two accelerometers, placed

at the hip and at the ankle of the participants, there are 12 time series available in total. Each

row in these files represent the accelerometer readings at a particular moment (with precision

of 1 second, corresponding to the 1 Hz storage rate).

For the selected participants, any errors in the self-reported labels or incorrect alignment

with the recorded data (e.g. unsynchronized time on the user’s clock and accelerometer clock)

have been fixed. Hereafter, the corrected logs are referred to as ‘golden standard’ labels,

whereas the original diary entries as ‘diary’ labels, respectively. The difference between them is

shown in Fig 1 together with the measurements from both accelerometers for a male (left) and

a female (right) participant.

Sample selection

From the whole set of participants with acceptable data quality, 39 participants were randomly

selected and divided into three subsets: 14 for training, 13 for validation and 12 for testing of

the machine learning algorithms (see Table 1). The gender distribution in the training and
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validation set was balanced, whereas in the test set it was completely random. The activity

duration provided in Table 1 is based on the golden standard labels.

Using data from 39 participants is more than the number of participants used in other stud-

ies related to activity recognition: [30] (19 participants), [31] (10 participants), [32] (10 partici-

pants) and [33] (30 participants). The total recorded activity in these studies is very short (i.e.

usually only several hours). In contrast, in our study we processed data from 55 days on which

there was at least one intended jogging period (see Table 1).

Data preparation

An overview of the data preparation steps commonly used in activity recognition systems is

provided in [41]. At the beginning, data needs to be segmented with the sliding windows tech-

nique, where raw accelerometer measurements are divided into windows (i.e. segments) that

contain measurements that happened in that particular time window. The adjacent windows

can contain distinct data, or they can overlap, meaning that some measurements can belong to

two consecutive windows. Generally, lower sensor frequencies or more complex activities

Fig 1. Exemplary raw accelerometer readings for one hour during which two participants, (a) male and (b) female, had a jogging activity. The

inclinometer and number of steps time series are not shown for clarity because they are in a different unit with much smaller values. Jogging ‘diary’ relates to

the reported jogging period by the user. Jogging ‘golden’ is the jogging period per the ‘golden standard’ labels.

https://doi.org/10.1371/journal.pone.0184216.g001

Table 1. Distribution of participants and Jogging Periods (JP) duration in minutes per dataset.

Gender JP Duration (minutes)

Dataset Male Female Days Number of JP Sum Mean Min Max

Train 7 7 22 40 806 20.1 2 90

Validation 7 6 19 31 648 22.0 3 63

Test 4 8 14 39 380 9.8 1 46

Days is the total number of days on which participants reported a jogging period.

https://doi.org/10.1371/journal.pone.0184216.t001
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entail longer windows. For recognition of jogging activities, a window of couple of seconds

would suffice [41] if the sensor frequency is high (e.g. greater than 30 Hz). In our case, the win-

dow length needs to be much longer than couple of seconds for the following reasons: (i) the

goal is not to recognize isolated short bursts of running (e.g. running to catch the bus), rather

longer periods of intended jogging activities; (ii) short pauses within one longer jogging period

(e.g. waiting on a traffic light before crossing a street) are allowed in this problem domain (iii)

the data frequency from the available accelerometers is 1 Hz; (iv) the available labels from the

golden standard and diary labels were accurate up to a minute, thus requiring the window

length to be at least one minute.

Therefore, we have decided to use two sliding window segmentation strategies: 60s win-

dows without overlap, and 180s windows with 120s overlap, i.e. 60s shift between consecutive

windows. Both window lengths are greater than the typical short pauses within jogging periods

(see Fig 2(b)), and yet significantly smaller than the usual duration of jogging periods (see

Fig 2(a)). More details about the obtained number of instances (i.e. epochs or episodes) with

the two segmentation strategies for each dataset are provided in Table 2.

When the task is defined as a binary classification problem (i.e. jogging vs non-jogging),

there is high class imbalance because the jogging periods are considerably shorter than the

whole period of recorded activities (see Table 2), which degrades classifier performance and

needs to be addressed [48]. Aiming to mitigate this, we considered only days on which partici-

pants reported a jogging activity.

Classification algorithms

In this section we describe the classification algorithms used for feature ranking, wrapper fea-

ture selection and building classification models. Different classification models were com-

pared in terms of accuracy, which represents the proportion of correctly recognized instances

(both true epochs of jogging and true epochs of non-jogging) among the total number of

instances (i.e. epochs).

Fig 2. Distribution of the duration (in minutes) of jogging periods (a) and pauses between jogging periods (b) in the training and validation

datasets based on the ‘golden standard’ labels before application of post-classification rules.

https://doi.org/10.1371/journal.pone.0184216.g002
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(i) Logistic Regression [49] has many advantages, as its simplicity, portability, easy interpre-

tation of classification models and importance of features, parallelization ability and speed. It

is an essential part of the wrapper feature selection, described later in the manuscript.

(ii) Random Forest (RF) [50] is an efficient algorithm that generates multiple decision trees

by randomly sampling instances from the dataset and randomly selecting m features in each

sample from all M features. The tree branching is performed by finding the best split from the

features on each node. In the process of classification, each tree votes for the class and the

majority class is chosen. The default value of m is
ffiffiffiffiffi
M
p

in the scikit-learn library [46].

(iii) Extremely Randomized Trees (ERT) algorithm [51] is similar to RF, as it also generates

an ensemble of trees. However, unlike RF, ERT chooses the split of the features randomly.

This increases the training speed because the number of calculations per node is decreased.

Both algorithms provide excellent classification performance and can train classification mod-

els on very large datasets very fast.

Both ERT and RF provide feature importance estimates, which is a property used for feature

ranking and discarding of low-importance features in the feature selection phase. Our experi-

ments showed that the importances generated by both algorithms are very consistent regard-

less of the number of features and trees, therefore we have chosen ERT because of its better

speed. Using smaller number of trees is obviously faster, but depending on the feature set, the

predictive performance sometimes is slightly worse.

For both algorithms the number of features in each feature subset, m, along with the num-

ber of trees in the ensemble, could potentially influence the classification performance, the

required time for building models and the feature importance estimates. To investigate the

effect of these parameters, we have repeated the experiments using the dataset obtained with

segmentation strategy of 60s windows without overlap. For the m we have tested 5 equally dis-

tanced values in the following range:
ffiffiffi
M
p

2
; 2

ffiffiffiffiffi
M
p� �

. For the number of trees in the ensembles we

have tested the following values: 100, 500, 1000 and 2000. Thus, a total of 20 combinations

were evaluated on the unfiltered feature set for both ERT and RF, and this was repeated 5

times. The impact of the m value on the classification performance, duration and feature

importance estimates was negligible regardless of the number of trees in the ensemble. The

number of trees had a more noticeable impact on the training time, i.e. the standard deviation

of the accuracy of different repetitions lowered as the number of trees increased. There was a

small difference between 500 and 1000 trees, whereas between 1000 and 2000 the difference

diminished. When repeating the same analysis on the datasets after the feature selection, the

number of trees did not have any impact on accuracy while impacting only the training time.

However, because 1000 trees provided optimal results for the unfiltered feature sets, we

decided to always use 1000 trees for the ERT and RF classifiers.

Table 2. Number of instances per dataset and segmentation strategy.

60s windows without overlap 180s windows with 120s overlap

Dataset Jogging Non-jogging JR Jogging Non-jogging JR

Train 829 31421 0.0257 745 31320 0.0232

Validation 707 27148 0.0254 645 27060 0.0233

Test 395 23437 0.0166 320 22966 0.0137

Jogging and Non-jogging is the number of instances (i.e. epochs or episodes) in the dataset and JR is the Jogging Ratio (i.e.

Jogging=ðJoggingþ NonJoggingÞ).

https://doi.org/10.1371/journal.pone.0184216.t002
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(iv) Support Vector Machines (SVM) classifier [52] with Gaussian kernel is much slower

algorithm as the dimensionality of data increases, but is very powerful, especially after parame-

ter tuning [53]. C and γ are the parameters for a nonlinear SVM with a Gaussian radial basis

function kernel. C is the cost of classification and a large C provides low bias and high vari-

ance. The Gaussian kernel, which aids in handling non-linear classification, has an additional

parameter, γ, which is the free parameter of the Gaussian radial basis function. A small value

of γ results in low bias and high variance. Parameter optimization is performed by evaluating

various combinations of SVM parameters (in this study we evaluated C values ranging in 0.1, 1

and 10, and γ ranging in 0.01, 0.001, 0.0001 and 0.00001) using the training and validation

datasets for a particular feature set [53]. Whenever we used SVMs, the datasets were normal-

ized, so the training dataset will have mean and standard deviation of 0 and 1, respectively.

Types of extracted features

The feature extraction consists of several steps, involving the 12 originally recorded time series

and some newly generated time series from which a variety of features are generated.

Let n denote the number of measurements within one window (n 2 60,180 in this study).

Let xi, where 0� i< n, represent the value of j-th time series within a particular sliding win-

dow. From all original time series, several types of features are extracted, which have been

proven to be effective predictors in recent competitions [54, 55] related to feature extraction

from a variety of time series data.

Basic statistics. The following basic statistics have been successfully used as informative

features in various studies [56–60]: minimum (min = min xi), maximum (max = max xi),
range (max −min), arithmetic mean (�x ¼

P
xi=n), harmonic mean (n=

P
x� 1
i ), geometric

mean ((∏xi)1/n), mode (the value of the current time series that occurs most often in the cur-

rent sliding window), standard deviation (s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

P
ðxi � �xÞ2

q

) and variance (i.e. unbiased

sample variance, σ2).

Skewness (the third central moment) and kurtosis (the fourth central moment) could also

be useful features, computed per the definition in Section 2.2.24.1 and Section 2.2.25.1 in [61],

respectively.

Additionally, these features were calculated: signal-to-noise ratio (snr ¼ �x=s), energy

(energy ¼
Pn� 1

i¼0
xi), and energy per sample (energy/n). Consequently, in total 14 features

related to basic statistics are generated from each sliding window segment of a time series.

Equal-width histogram. In [56] it was shown that histogram-related features can be

informative and robust for activity recognition. For each time series, the global minimum and

global maximum values are calculated before the segmentation, and the range is calculated as

their difference. Next, the range is divided by the number of intervals h, thus facilitating calcu-

lation of the bounds of the equal-width intervals. The number of equal-width intervals h is cal-

culated as h = dlog2 n + 1e, based on the Sturges rule [62]. The number of intervals h and the

bounds of each interval are calculated only once, before the segmentation and feature extrac-

tion. When a particular window of time series data is processed, the values xji are discretized

using the calculated bounds of the intervals for j-th time series. Finally, a histogram with h val-

ues is created which reflects the number values xji that are in a particular interval. Thus, the his-

togram (counts of values in each interval) represents the h generated features with this

approach.

Percentile based features. Studies [58, 59] showed that percentile-based features are use-

ful for activity recognition. Given a vector xi of length n, the q-th percentile of xi is the value q/

100 of the way from the mimumum to the maximum in a sorted copy of xi [63]. The percentile
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is the same as the minimum if q = 0 and the same as the maximum if q = 100. We have calcu-

lated the following percentile-based features from the values xi of a time series in a particular

sliding window segment: first quartile (Q1 obtained for q = 25), median (obtained for q = 50),

third quartile (Q3 obtained for q = 75), inter-quartile range (IQR = Q3 −Q1) and 10 additional

percentiles obtained for q 2 {5, 10, 20, 30, 40, 60, 70, 80, 90, 95}. Thus, from one time series, 14

features are generated.

Correlations. The correlation between pairs of raw time series values within one window

is used as informative features [57, 60]. In this study we used the correlation between the mag-

nitude of the hip and ankle accelerometers.

The most widely used measure of dependence between two series, xi and yi, is the Pearson’s

correlation coefficient, as defined with Eq (1), where n is the number of values in xi and yi, and

in all sums 0� i< n stands:

n
P

xiyi �
P

xi
P

yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2
i � ð

P
xiÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

y2
i � ð

P
yiÞ

2

q ð1Þ

Autocorrelation. Auto-correlation of the measurements within one window can provide

informative features too [57, 60]. Autocorrelation, also known as serial correlation, is the cor-

relation of a signal with a delayed copy of itself as a function of delay. In other words, it is the

similarity between observations as a function of the time lag between them. The analysis of

autocorrelation can help in discovering repeating patterns, such as the presence of a periodic

signal obscured by noise. It is often used in signal processing for analyzing functions or series

of values, such as time domain signals. Let τ denote the lag. We define its domain with Eq (2):

t 2 fbn=2cg [ f2i j 1 � i � log2n ^ 2i � n=2g ð2Þ

When τ = bn/2c, the autocorrelation of the first half and second half of the signal will be

computed, which can give some insights whether the signal is periodical. The other exponen-

tially increasing values of the lag τ are heuristically determined and enable computation of the

autocorrelation for a reasonable number of different lags. It is a balance between computing a

lot of, potentially redundant, correlation coefficients (e.g. if τ increases linearly) and comput-

ing only several coefficients for predetermined values of τ (which do not take into account the

length of the sliding window).

The classical autocorrelation is defined as:

1

ðn � tÞs2

Xn� t� 1

i¼0

ðxi � �xÞðxiþt � �xÞ ð3Þ

In addition to the classical autocorrelation, for the same values of τ as described earlier, the

Pearson correlation is calculated as well.

In this study, per Eq (2) for the 60s windows τ 2 {1, 2, 4, 30} and for the 180s windows τ 2
{1, 2, 4, 90}. Consequently, for both windowing configurations there are four τ values which

are used to calculate the classical autocorrelation and the Pearson correlation, yielding 8 fea-

tures per time series in total.

Curve fitting parameters. The linear curve fitting parameters (2 coefficients needed to

define the most optimal line that fits the xi values) and the quadratic curve fitting parameters

(3 coefficients needed to define the most optimal parabola that fits the xi values) have been

used as informative features in [57]. By performing linear and quadratic interpolation, 5 fea-

tures are generated from each time series.
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Feature extraction and selection

In this subsection we describe the applied process of feature extraction, feature selection and

classification.

Due to the data diversity with respect to the variety of field conditions under which it was

collected, the key tasks are feature extraction from the raw accelerometer measurements and

selection of the best feature set. A challenge for building robust features is dealing with drift in

the data, which can be the result of: data generated by different sensors, data collected from dif-

ferent participants, loss of accuracy of accelerometers over time, etc. Ideally, such variations

should have little to no effect on the trained classification models.

Depending on the problem domain, the types of extracted features are usually features that

have been previously successfully applied to the same or a similar domain. This is often subjec-

tive and depends on the researcher’s experience. To alleviate this, we have systematically engi-

neered new time series derived from the 12 original time series from both accelerometers and

extracted a variety of features from all of them.

The process flow, containing feature extraction, feature selection and classification steps, is

shown in Fig 3.

In step 1, the data stream was segmented with the sliding windows technique, as described

previously (see Table 2).

In step 2 the nominal attribute (participants’ gender) was processed, i.e. it was transformed

into two binary indicator values. A third numeric value was also generated from the gender

using the Weight of Evidence (WoE) technique [64]. Additionally, in step 2 features from the

windows of all 12 original time series were extracted and their individual importance was eval-

uated. From each time series, the following features were generated: 14 basic statistics, 7 histo-

gram based features for the 60s windows (or 9 for the 180s windows), 14 percentile based

features, 8 auto-correlation based features, and 5 curve fitting features. Therefore, there were

14 + 7 + 14 + 8 + 5 = 48 features per time series (50 for the 180s windows), plus 1 inter-correla-

tion feature and 3 features based on the gender, yielding 12 × 48 + 1 + 3 = 580 features in total

(604 for the 180s windows).

In step 3, the average feature importance per time series was computed, by training an ERT

classifier and using its feature importance estimates. If the average importance of a time series

was considerably lower than the most informative time series (i.e. less than 3 times), it was dis-

carded, along with its features. In this study, the inclinometer time series from the ankle and

hip were on average over 5 times less informative than the most informative time series. There-

fore, these 2 time series were discarded, leaving the number of remaining features 580

− 2 × 48 = 484 (504 for the 180s windows).

During step 4, delta series were generated as follows. First, the mean value �xi of the measure-

ments xji within a window of the i-th time series was calculated (0� j< n, where n is the num-

ber of measurements within one window). Then, the differences Dxji ¼ �xi � x
j
i between the

original measurement xji and the mean �xi was calculated. Note that the mean was calculated

separately for each window and each time series. Thus, each original measurement xji was

mapped to a new value Dxji. As a result, this step generated 10 delta series from the 10 retained

time series in this study.

In step 5, only 7 histogram based features (for the 60s windows or 9 for the 180s windows)

and 14 percentile based features were calculated from the delta series. The auto-correlations

features were omitted because they would be redundant to the auto-correlation features

extracted from the original time series. Since the delta series is only a linear translation of the

original series, the curve-fitting features and basic statistics features would be also redundant.
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This step from the 10 delta time series generated 10 × (7 + 14) = 210 features for the 60s win-

dows (10 × (9 + 14) = 230 for the 180s windows).

In step 6, 10 first derivatives time series were generated from the 10 original time series. The

first derivative is defined as difference between consecutive measurements within one window.

Thus, from an original time series with n measurements within one window, the first deriva-

tive time series has n − 1 values.

In step 7 features were extracted from the 10 first derivative time series in an analogous

manner as from the original time series. The only difference is that auto-correlation features

were not computed for the reasons described in step 5. As a result, this step generated 10 × (14

+ 7 + 14 + 5) = 400 features in total for the 60s windows (10 × (14 + 9 + 14 + 5) = 420 for the

180s windows).

In step 8 the Fast Fourier Transformation (FFT) of the 10 original time series was com-

puted, transforming the accelerometry signals into frequency domain. As a result, 3 FFT-

derived series of values from each original time series were generated: the series of frequencies,

the series of amplitudes and the series of magnitudes, i.e. 30 FFT-derivied time series in total.

Fig 3. Algorithm for feature extraction, selection and classification.

https://doi.org/10.1371/journal.pone.0184216.g003
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In step 9, for each of the 30 FFT-derived time series, the following features were extracted:

minimum, maximum, mean, standard deviation, range, first and third quartile, inter-quartile

range, median and the 10-th, 40-th, 60-th and 90-th percentile. The rationale was that these 13

features would sufficiently describe the distribution of values of the FFT-derived time series.

The spectral centroid was feature computed by the FFT from each of the 10 original time

series, therefore there were genereted 10 such features, or 30 × 13 + 10 = 400 frequency domain

features in total.

In step 10 all features generated by steps 2, 5, 7 and 9 were merged, resulting in one feature

set containing 1494 features for the 60s windows: 484 from the 10 retained original time series,

210 from the 10 delta series, 400 from the 10 first derivative series, and 400 from the 30 FFT-

derived series. For the 180s windows from each time series 2 additional histogram-based fea-

tures are generated, thus in total there were 1554 features.

In Step 11 the feature importance in the merged feature set was calculated by training an

ERT classifier. With the method proposed in [65] the concept distribution drift of the features

was estimated, by generating an artificial dataset containing all rows of the training and valida-

tion datasets. An artificial target label (i.e. class) was generated, which denoted from which

dataset the corresponding row originates. On this artificial dataset an ERT classifier was

trained and the importance of each feature was evaluated. The latter feature importance in fact

defined the data concept drift sensitivity estimate of the feature, i.e. the very informative fea-

tures for the artificial dataset were very sensitive to data distribution drift and therefore could

potentially lead to model overfitting [65].

In step 12, from the feature importances and concept drift sensitivity of all features, the fol-

lowing 9 percentiles were calculated: 10, 20, 30, 40, 50, 60, 70, 80, 90. There were 9 percentiles

from the feature importances and 9 percentiles from the concept drift sensitivity estimates.

These 2 sets of percentiles were calculated and used as thresholds for feature importance and

concept drift sensitivity. It evaluated all 9 × 9 = 81 combinations of thresholds, aiming to dis-

card features which had low feature importance or high concept drift sensitivity. For each of

the 81 feature sets, it build logistic regression models using the training dataset and evaluated

them with the validation dataset. In this study, the number of retained features after this step

was about 400. The purpose of this step was to significantly reduce the feature set size by dis-

carding features with low importance of high concept drift sensitivity.

In step 13 diversified forward-backward (DFB) feature selection was performed using a

modified version of the algorithm described in [66]. It used logistic regression as a wrapper

algorithm. Firstly, our approach ranked by importance the 400 features retained after step 12.

Next, in one iteration of the forward pass, all available features were considered for addition.

Starting from an empty feature set, it subsequently added features to the current best feature

set, evaluated multiple feature sets in parallel and retained the features whose addition

improved the predictive accuracy. We applied heuristic: features which did not improve the

score when added to some feature set, will not be considered for addition to other feature sets

tested later. The forward pass ended after all eligible features for addition were considered and

there was no improvement of the best accuracy. Next the backward phase followed, which

tested if the removal of any feature from the best feature set improved the score. In case a

removal of a feature improved the accuracy, it started a new backward iteration. Otherwise,

when all features were tested for removal the backward iteration stopped. In case of an

improvement during the forward or the backward phase, the algorithm started a new cycle of

forward and backward passes. Otherwise, the search converged and terminated. The algorithm

also terminated when the maximum number of allowed feature sets were reached. The maxi-

mum was set to 2000 in this study, which was sufficient considering the maximum feature set

Identification of jogging periods of adolescents under field conditions by accelerometers and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0184216 September 7, 2017 12 / 28

https://doi.org/10.1371/journal.pone.0184216


size of 1494 features. The feature screening performed in step 12 was particularly important

for this step because without it the search space would be significantly more complex.

We acknowledge that the selected best feature set might have been biased towards logistic

regression, because it was used as a wrapper classification algorithm in step 13. As step 13 adds

and removes features one-at-a-time, the wrapper algorithm needs to be unambiguously sensi-

tive to such changes. Due to the randomness in the learning process, ERT and RF are not suit-

able for this step. Similarly, SVMs have limited applicability for step 13 because of their high

sensitivity to parameter tuning. If they were used, then for each feature set parameter tuning

needs to be performed, thus significantly increasing the required number of evaluations.

Learning SVM models is generally significantly slower than logistic regression models (e.g. see

Tables 3 and 4), so this would further slow down the feature selection by an order of magni-

tude. Naïve Bayes classifiers would be also applicable for step 13, as they are both fast and also

their performance is impacted by additions and removals of features. However, prior applying

them, the appropriate probability function (e.g. Gaussian, Bernoulli, etc.) needs to be deter-

mined, which would additionally complicate step 13. In [23] it was demonstrated that using

Naïve Bayes and logistic regression for evaluating the impact of step-wise additions and

removals of features during wrapper feature selection results in similar feature sets. For these

reasons and owing to the simplicity and speed of the logistic regression algorithm, it was cho-

sen as a wrapper algorithm for step 13. This allowed evaluating multiple feature sets in parallel,

which is very efficient time-wise. Namely, the algorithm converged or evaluated a maximum

of 2000 feature sets in less than 5 minutes when executing 12 threads in parallel. At the end of

this step, the feature set that resulted in the highest accuracy for logistic regression was

recorded and marked as the ‘best’ feature set.

Ultimately, once the best feature set was determined, the evaluation of the automated

method for identification of jogging periods was performed in two phases. The first phase

refers to step 14 in Fig 3. In this step, first the optimal values for the SVM parameters C and γ
are estimated. In the second part of step 14, all classification algorithms (Logistic regression,

ERT, RF and SVM with optimal parameters) were evaluated using the independent test

dataset.

The second phase of evaluation of the method for identification of jogging periods was per-

formed in step 15. Post-classification rules, described in more detail in the following section,

were applied to further improve the accuracy of the analysis.

Evaluating accelerometer location usefulness

In order to assess whether recordings of two accelerometers, i.e. monitoring of body move-

ment at two different body positions is required or whether one position is sufficient to accu-

rately detect jogging periods, we have applied the following approach. Step 13 on Fig 3, i.e.

DFB feature selection, was executed three times so it considers features only from a particular

sensor location:

1. Ankle features. DFB feature selection considered only features extracted from the acceler-

ometer placed at the ankle and determined the best feature set. In essence, only features

from the 6 original time series (reduced to 5 in step 3) from the ankle accelerometer and

their derived series (steps 4 to 9) were used as input to this step.

2. Hip features. DFB feature selection considered only features extracted from the accelerom-

eter placed at the hip and determined the best feature set. Similarly, only features from the 6

original time series (reduced to 5 in step 3) from the hip accelerometer and their derived

series (steps 4 to 9) were used as input to this step.
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Table 3. Performance of different classifiers on the 4 final feature sets, depending on feature type with the segmentation strategy of 60s windows

without overlap.

Features Classifier Acc. AUC Prec. Recall Spec. F1 Time

Best Ankle (8 feat.) ERT 0.9970 0.9906 0.9339 0.8937 0.9988 0.9133 4.0

RF 0.9969 0.9883 0.9579 0.8633 0.9993 0.9081 4.7

Logistic 0.9967 0.9986 0.9259 0.8861 0.9987 0.9056 0.1

SVM 0.9917 0.9940 0.7137 0.8962 0.9934 0.7946 24.3

Best Hip (20 feat.) ERT 0.9967 0.9951 0.9171 0.8962 0.9985 0.9065 5.5

RF 0.9962 0.9906 0.8939 0.8962 0.9981 0.8951 6.9

Logistic 0.9977 0.9991 0.9528 0.9190 0.9992 0.9356 0.4

SVM 0.9970 0.9988 0.9533 0.8785 0.9992 0.9144 188.2

All (17 feat.) ERT 0.9954 0.9977 0.8600 0.8861 0.9974 0.8728 9.9

RF 0.9959 0.9959 0.8961 0.8734 0.9981 0.8846 8.2

Logistic 0.9963 0.9911 0.9023 0.8886 0.9982 0.8954 0.9

SVM 0.9954 0.9987 0.8391 0.9241 0.9968 0.8795 249.9

Best Ankle + Best Hip(28 feat.) ERT 0.9971 0.9966 0.9321 0.9038 0.9988 0.9177 7.8

RF 0.9972 0.9911 0.9514 0.8911 0.9992 0.9203 7.7

Logistic 0.9968 0.9992 0.9030 0.9190 0.9982 0.9109 0.5

SVM 0.9976 0.9993 0.9525 0.9139 0.9992 0.9328 204.7

Classifiers are ERT for Extremely Randomized Trees, RF for Random Forest, Logistic for logistic regression, SVM for Support Vector Machines. The SVM

parameters for the first feature set are: C = 10, γ = 0.01 and for all remaining feature sets: C = 0.1, γ = 0.0001. Acc. stands for Accuracy, AUC for Area

Under the receiver-operating characteristic Curve, Prec. for Precision, Recall (also known as sensitivity, hit rate, or true positive rate), Spec. for Specificity

(also known as true negative rate), F1 for F1 score (harmonic mean of precision and recall) and Time for Total time (in seconds) for building a model on the

training dataset and making predictions on the test dataset. The classifier with gray background has highest accuracy for the feature set, thus was selected

as best for that feature set. Other cells with gray background represent the best classifier for the feature set in regards to the metric (column).

https://doi.org/10.1371/journal.pone.0184216.t003

Table 4. Performance of different classifiers on the 4 final feature sets, depending on feature type with the segmentation strategy of 180s windows

with 120s overlap.

Features Classifier Acc. AUC Prec. Recall Spec. F1 Time

Best Ankle (17 feat.) ERT 0.9990 0.9930 0.9571 0.9750 0.9993 0.9659 5.0

RF 0.9988 0.9928 0.9509 0.9688 0.9993 0.9598 6.1

Logistic 0.9989 0.9994 0.9837 0.9406 0.9998 0.9617 0.3

SVM 0.9994 0.9972 1.0000 0.9625 1.0000 0.9809 25.2

Best Hip (20 feat.) ERT 0.9981 0.9976 0.9761 0.8938 0.9997 0.9331 7.1

RF 0.9978 0.9975 0.9564 0.8906 0.9994 0.9223 5.6

Logistic 0.9967 0.9988 0.8739 0.9094 0.9980 0.8913 0.4

SVM 0.9968 0.9994 0.8862 0.9000 0.9983 0.8930 141.4

All(12 feat.) ERT 0.9954 0.9977 0.8600 0.8861 0.9974 0.8728 9.9

RF 0.9975 0.9935 0.9102 0.9188 0.9987 0.9145 5.5

Logistic 0.9990 0.9962 1.0000 0.9344 1.0000 0.9661 0.3

SVM 0.9972 0.9964 0.8862 0.9250 0.9982 0.9052 24.8

Best Ankle + Best Hip(37 feat.) ERT 0.9988 0.9982 0.9399 0.9781 0.9991 0.9587 7.6

RF 0.9983 0.9964 0.9354 0.9500 0.9990 0.9426 7.6

Logistic 0.9985 0.9997 0.9470 0.9500 0.9992 0.9485 1.6

SVM 0.9984 0.9998 0.9613 0.9313 0.9994 0.9460 186.9

All naming conventions are the same as in Table 3. The SVM parameters for the first and third feature sets are: C = 10, γ = 0.001 and for the second and

forth feature sets: C = 0.1, γ = 0.0001.

https://doi.org/10.1371/journal.pone.0184216.t004
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3. All features. DFB feature selection considered all features extracted from both the hip and

ankle accelerometers and determined the best feature set. Therefore all features from the 12

original time series (reduced to 10 in step 3) from both accelerometers and their derived

series (steps 4 to 9) were used as input to this step.

Thereupon, steps 14 and 15 were executed three times to build classification models from

the three feature sets obtained by the three executions of step 13. Additionally, steps 14 and 15

were executed a forth time using the union of the best feature sets per accelerometer location

(i.e. union of items 1 and 2 in the previous list). The purpose of the fourth feature set (regarded

as ‘Best Ankle + Best Hip’ henceforth), is supplementary to the third feature set. Generally,

the third and fourth feature sets can be different because the DFB feature selection is not

guaranteed to find globally optimal feature sets, considering that its search strategy is highly

greedy.

Post-classification rules

By analyzing the jogging periods based on the golden standard labels (see Table 1 in the Data

management subsection), we were able to identify the distribution of the duration of jogging

periods and the duration of pauses between consecutive jogging periods that are not too far

apart, i.e. are smaller than an hour and a half. These distributions are shown in Fig 2. Aiming

to improve the recognition of jogging periods with reasonable durations and pauses between

them, we have defined the following rules, executed in the order they are defined:

Rule 1 Remove jogging periods that are shorter than or equal to 3 minutes.

Rule 2 Apply Rule 1 and afterwards merge adjacent jogging periods if the pause between them

is shorter than or equal to 5 minutes.

Rule 3 Apply Rule 2 and afterwards merge adjacent jogging periods if the pause between them

is shorter than or equal to the sum of their durations.

After merging adjacent jogging periods because of Rule 2 and Rule 3, the pause between

them is no longer considered as a pause, rather it is a part of the resulting jogging period

whose total duration is the sum of the durations of the two merged jogging periods and the

pause. The motivation for defining these rules are the field conditions under which the acceler-

ometer data was collected. The rules try to account for typical jogging scenarios. The rationale

for Rule 1 is that jogging periods shorter than or equal to 3 minutes are very unlikely for

intended sport rather they typically occur if the participant had a short burst of running (e.g.

to catch the bus). Such periods could be recognized by the classification algorithms, because

the nature of the recorded accelerometer readings could fit the model for running. However,

the health-associated benefits from such short and isolated periods of running are questionable

[1, 2, 37, 40] and our intention was to detect the intended jogging periods really done for

sport. The rationale for Rule 2 and Rule 3 is that a short pause of couple of minutes can be

allowed because the participant could be: waiting for a traffic light for crossing a road, doing

some stretching, have a little talk when meeting a friend, etc.

After applying Rule 1, some of the shorter jogging periods in Fig 2(a) were removed, thus

obtaining the distribution shown in Fig 4(a) and 4(d). Likewise, after applying Rule 2, some

jogging periods were merged, including the pause between them. Consequently, some of the

shorter pauses in Fig 2(b) were removed, thus obtaining the distribution shown in Fig 4(b)

and 4(e). For instance, if there was a pause of 3 minutes between two jogging periods of 5 and

7 minutes, after applying Rule 2 they were merged, resulting in one 15 minute jogging period.

Similarly, Rule 3, which is a more dynamic extension of Rule 2, merged jogging periods in case
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their total duration was greater than the pause between them. For example, jogging periods of

4 and 10 minutes separated by a pause of 6 minutes would be merged, resulting in one jogging

period of 20 minutes. After applying Rule 3, the final distribution of jogging periods per dura-

tion and pauses between jogging periods per duration is shown in Fig 4(c) and 4(f). Note that

data presented in Figs 2 and 4 derives from the golden standard labels for the participants in

the training and validation datasets. The test dataset was intentionally left out of the analysis so

it can remain independent and not influence the reasoning and definition of rules.

The purpose of the rules was to smooth and amend both the golden standard periods, as well

as the ones that were automatically recognized with the machine learning algorithms. There-

fore, the rules were applied on the golden standard periods and the recognized periods by the 4

classification algorithms (RF, ERT, logistic regression, SVM) using the best feature sets.

Converting predictions to jogging periods

However, for the segmentation strategy of 180s windows with 120s overlap, a same time period

of 60s is part of 3 consecutive windows that could potentially have different predicted activi-

ties. In that case, the final prediction for a 60s period is obtained by majority vote of the 3 pos-

sible predictions from the 3 windows in which the 60s belong to. Potentially, a 60s jogging

period could be preceded and followed by non-jogging activities. Therefore, because of the

majority vote, it could be outvoted and classified as non-jogging. This is physiologically plausi-

ble and corresponds to the realistic conditions in the field. However, as discussed in the previ-

ous section, such isolated jogging periods are not of interest and would be removed by Rule 1.

Similarly, an isolated pause could be outvoted and classified as jogging. Again, this is plausible

and relates to the purpose of Rule 2 and Rule 3.

Fig 4. Distribution of the duration (in minutes) of jogging periods ((a), (b) and (c)) and pauses between jogging periods ((d), (e) and (f)) in the

training and validation datasets based on the ‘golden standard’ labels after applying post-classification Rule 1 ((a) and (d)), Rule 2 ((b) and (e))

and Rule 3 ((c) and (f)).

https://doi.org/10.1371/journal.pone.0184216.g004
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Jogging period matching ratio

Considering the segmentation strategy of 60s and 180s windows, the datasets exclude border

periods where the activity changes from jogging to non-jogging or vice versa. Therefore, those

cases are not reflected in common classifier performance metrics, such as accuracy. Moreover,

when there is an overlap between adjacent windows, the accuracy is more difficult to interpret

in terms of jogging periods. On the other hand, comparing the jogging periods of recognized

activities addresses border periods, as well. To facilitate comparison of classification algorithms

in terms of recognized jogging periods, we define a metric jogging period matching ratio with

Eq (4). The length of correctly identified jogging period is matched, the length of jogging

period not identified by the classification algorithm is missed, and the length of jogging period

that were recognized, but were not present in the golden standard labels are other.

matching ratio ¼
matched

matched þmissed þ other
ð4Þ

The parameters used in Eq (4) intuitively correspond to the values in a classifier confusion

matrix. More precisely, matched relates to the True Positives, missed to the False Negatives and

other to the False Positives.

The jogging period matching ratio was computed after the best feature sets were deter-

mined for each sensor position. All classification models were also compared by it, to comple-

ment the more standard algorithm performance metrics.

Results

In this section we report the performance of the best feature set when the training dataset is

used for building classification models and the test set for evaluating the performance of the

algorithms. For each segmentation strategy, we used features extracted only from the acceler-

ometer placed at the hip, only from the accelerometer placed at the ankle or from both acceler-

ometers. Ultimately, we applied post-classification rules aiming to further improve the

performance.

Classifier performance

Table 3 shows the performance of the 4 different classifiers with the 4 final feature sets,

depending on feature types when using windows of 60s without overlap.

It is apparent that classifiers have very high accuracy (over 0.995). The logistic regression is

by far the fastest algorithm for building classification models and making predictions, while

offering best performance in almost all metrics and feature sets. Furthermore, the feature set

based only on the hip accelerometer results in a similar performance as when using both accel-

erometers for all classification algorithms.

Table 4 shows the performance when using 180s windows. In this case all classifiers have

very high accuracy (over 0.995). Regarding the accelerometer position, using the features only

from the ankle accelerometer yielded better performance than the ones from the hip acceler-

ometers, and was comparable to the feature sets from both accelerometers.

The feature importance estimated by Random Forest with 1000 trees with the Best Ankle

+ Best Hip feature set and the 180s windows are provided in Table 5. The best set was com-

posed of features from all time series (original and derived), thus justifying the generation of

new time series (steps from 4 to 9 in Fig 3). There were features from all types: basic statistics,

percentiles, auto-correlation and histograms. Noteworthy, there are not so many FFT-based

features in the final set. This is because these features are very sensitive to concept drift, which
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is a consequence of the difference in gait between the participants in the train and validation

sets. In fact, when features were ranked by concept drift in descending order in step 12 in Figs

2 and 3 for the 180s windows, in the top 100, 200 and 300 features, there were 75, 128 and 180

FFT-based features, respectively. On the other hand, when the features were ranked by impor-

tance in descending order, in the top 100, 200 and 300 features, there were only 24, 38 and 54

FFT-based features, respectively. Therefore, most of the FFT-based features are discarded in

step 12 in Fig 2.

Comparison to a baseline model

Aiming to compare our feature engineering approach with a baseline feature set, we have

applied the feature extraction method described in [67] and used in [26]. The first five coeffi-

cients of the FFT power spectrum for each of the 10 retained time series were used as baseline

feature set, as they yielded the best performance for a similar sensor setup (thigh and ankle

accelerometers) [67]. Thus, a set of 10 × 5 = 50 features was generated from both accelerome-

ters, and two additional feature sets of 25 each were generated from either the ankle or hip

accelerometer. It was done for both segmentation strategies. Using these features, we trained

the same 4 classifiers (i.e. RF, ERT, Logistic regression and SVM including parameter tuning).

To summarize the results, we have computed the maximum accuracy, AUC, precision, recall

and F1 score per sensor location from both approaches (i.e. baseline and proposed), as shown

in Table 6. It is evident that for almost all metrics and sensor locations, most notably for the

precision, recall and F1 score, the proposed method provides better results. The effect is more

evident in terms of matching ratio, as described in the following subsection.

Table 5. Feature importances estimated by Random Forest with 1000 trees with the Best Ankle + Best Hip feature set and the segmentation strat-

egy of 180s windows with 120s overlap.

# Feature name Score # Feature name Score

1 AnkleSteps auto-corr t = 1 0.1495 20 HipAxis1 quad fit c2 0.0045

2 AnkleSteps auto-corr t = 2 0.1239 21 FFT_amp(AnkleMag) IQR 0.0045

3 AnkleMag auto-corr t = 2 0.1065 22 1st_deriv(HipSteps) perc. 70 0.0044

4 AnkleSteps perc. 80 0.0980 23 HipAxis1 lin fit c1 0.0036

5 AnkleMag energy 0.0945 24 FFT_mag(AnkleSteps) perc. 90 0.0031

6 AnkleSteps hist [0, 0.57) 0.0725 25 FFT_freq(AnkleSteps) IQR 0.0031

7 HipAxis2 median 0.0716 26 FFT_freq(AnkleMag) max 0.0030

8 HipAxis3 perc. 60 0.0474 27 1st_deriv(AnkleMag) hist [-0.5, 0.5) 0.0029

9 HipAxis2 perc. 10 0.0332 28 delta(AnkleSteps) perc. 80 0.0028

10 HipAxis2 perc. 5 0.0324 29 delta(AnkleMag) perc. 80 0.0024

11 HipAxis2 perc. 70 0.0297 30 HipSteps perc. 80 0.0023

12 HipAxis1 perc. 80 0.0291 31 1st_deriv(HipSteps) perc. 20 0.0017

13 HipAxis1 perc. 10 0.0174 32 HipAxis1 hist [129, 259) 0.0014

14 HipMag median 0.0106 33 AnkleAxis2 min 0.0010

15 AnkleMag perc. 10 0.0101 34 HipAxis3 hist [0, 129) 0.0010

16 HipAxis2 min 0.0101 35 HipAxis2 hist [0, 129) 0.0008

17 HipAxis2 quad fit c2 0.0098 36 1st_deriv(AnkleSteps) hist [-2.9, -1.7) 0.0006

18 HipAxis1 min 0.0052 37 delta(HipAxis3) hist [-70, 89) 0.0004

19 delta(AnkleMag) perc. 75 0.0050

https://doi.org/10.1371/journal.pone.0184216.t005
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Evaluation on balanced datasets

Due to the high class imbalance in the datasets (see Table 2), there is a possibility for over-fit-

ting. To investigate whether that is the case, we have balanced the datasets by stratified under-

sampling of the majority class. After the random under-sampling of the training, validation

and test sets, for each participant there was an equal number of jogging and non-jogging

instances. The non-jogging instances were randomly selected from all non-jogging instances

of the participant.

Next, for both segmentation strategies using the 4 classifiers (i.e. RF, ERT, Logistic regres-

sion and SVM) different models were built using the same feature sets that were identified by

the proposed algorithm for each sensor location and additionally, using the baseline features

described in the previous subsection. Note that the feature sets used for the balanced datasets

are the ones identified with the feature selection process applied on the original datasets. For

the balanced datasets, the models were built from the training set and evaluated on the test,

while SVM parameter tuning was performed using the validation set.

The whole process of random under-sampling was repeated 100 times for each segmenta-

tion strategy and Table 7 shows the average performance on the balanced datasets of the base-

line and proposed approach for feature extraction per sensor location by the best obtained

result per metric. Evidently, for almost all metrics and sensor locations, the proposed method

provided better results, especially when both sensors are used. This demonstrates that the

selected feature sets by the proposed method on the highly imbalanced datasets are applicable

even on balanced datasets and are again better than the baseline method.

Table 6. Comparison of the baseline and proposed approach for feature extraction per sensor location by the best obtained value per metric.

Method Accuracy AUC Precision Recall Specificity F1

Ankle Baseline 0.9982 0.9993 0.9557 0.9749 0.9993 0.9393

Proposed 0.9994 0.9994 1.0000 0.9750 1.0000 0.9809

Hip Baseline 0.9977 0.9993 0.9426 0.9469 0.9991 0.9187

Proposed 0.9981 0.9994 0.9761 0.9190 0.9997 0.9356

Ankle + Hip Baseline 0.9987 0.9997 0.9579 0.9563 0.9993 0.9563

Proposed 0.9990 0.9998 1.0000 0.9781 1.0000 0.9661

All naming conventions are the same as in Table 3.

https://doi.org/10.1371/journal.pone.0184216.t006

Table 7. Average performance on the balanced datasets of the baseline and proposed approach for feature extraction per sensor location by the

best obtained value per metric.

Method Accuracy AUC Precision Recall Specificity F1

Ankle Baseline 0.9825 0.9947 0.9788 0.9851 0.9786 0.9820

Proposed 0.9827 0.9980 0.9789 0.9865 0.9787 0.9827

Hip Baseline 0.9830 0.9969 0.9803 0.9859 0.9789 0.9830

Proposed 0.9847 0.9971 0.9792 0.9904 0.9801 0.9848

Ankle + Hip Baseline 0.9817 0.9958 0.9780 0.9857 0.9777 0.9818

Proposed 0.9841 0.9972 0.9787 0.9899 0.9784 0.9842

All naming conventions are the same as in Table 3.

https://doi.org/10.1371/journal.pone.0184216.t007
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Post-classification rules and jogging period matching ratio

The jogging period matching ratio considers border periods where the activity changes from

jogging to non-jogging or vice versa. These cases are not reflected in the classification accuracy

and other metrics provided in Tables 3, 4 and 6, especially when the adjacent windows

overlap.

The post-classification rules were applied to the predictions of the classification model that

resulted in best accuracy per accelerometer position and segmentation strategy, and the jog-

ging period matching ratio was calculated, as shown in Fig 5. The feature sets obtained with

the proposed method result in better matching ratio compared to the baseline feature sets

regardless of the accelerometer position and segmentation strategy. This still stands after

applying the post-classification rules. For all feature sets, accelerometer position and segmenta-

tion strategy, Rule 1 and Rule 2 improve the jogging period matching ratio, whereas Rule 3

only sometimes improves it. All rules improve the matching ratio for the diary labels.

Fig 5. The jogging period matching ratio per feature set type and applied post-classification rule for the highest-accuracy classification model

obtained with the proposed and baseline feature sets.

https://doi.org/10.1371/journal.pone.0184216.g005
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Discussion

This study introduces a new algorithm based on machine learning techniques for detection of

intended jogging periods, using conventional accelerometer data recorded under field condi-

tions. Different classifiers with different feature selection methods have been applied using

only data from the accelerometer placed at the hip, from the accelerometer placed at the ankle,

or from both accelerometers. We found that for different evaluation metrics, different classifi-

cation models outperform depending on the chosen feature set (Tables 3 and 4). Our approach

used two different window lengths for segmentation. For the first segmentation strategy (i.e.

60s windows without overlap), the best accuracy is obtained using the accelerometer placed at

the hip, while for the second strategy (i.e. 180s windows with 120s overlap), the accelerometer

placed at the ankle performs better. However, both strategies result in a very good accuracy of

at least 0.99 and are superior to the baseline approach for feature extraction (see Table 6) in

regards to multiple metrics. Further, for both segmentation strategies it became evident that

using all features from both sensors does not offer a significant improvement than using only

one sensor.

To better estimate the performance of the models, we calculated the jogging period match-

ing ratio, using the classification models that had best accuracy for a particular feature set and

per segmentation strategy (best classifiers are marked with gray background in Tables 3 and

4). The highest matching ratio achieved by the proposed method was 0.875 and was obtained

with the 180s windows and only the ankle accelerometer, whereas the best baseline result was

0.819 with both accelerometers (Fig 5). In fact, the best proposed models yielded significantly

better matching ratio than the best baseline models regardless of the accelerometer position or

window length. In respect to the segmentation strategy, the 60s and 180s windows had best

matching ratio of 0.83 and 0.875, respectively.

To embed different jogging scenarios under field conditions, we applied 3 post-classifica-

tion rules. After applying Rule 1, which removes jogging periods that are shorter than or equal

to 3 minutes, the matching ratio was improved regardless of the feature set (proposed or base-

line), segmentation strategy or accelerometer position (see Fig 5). The best matching ratios

were 0.882 and 0.84 for the proposed and for the baseline method, respectively. The 60s and

180s windows resulted in 0.84 best matching ratio of 0.830 and 0.882, respectively.

Likewise, after applying Rule 2, which merges adjacent jogging periods if the pause between

them is shorter than or equal to 5 minutes, matching ratio was improved in all cases even

more dramatically than after applying Rule 1. The 60s windows resulted in best matching ratio

(0.936) compared to the matching ratio of the 180s windows (0.921, see Fig 5). Generally,

Rules 1 and 2 increased the matching ratio for all algorithms, segmentation strategies and fea-

ture sets, while being very intuitive and clear. Another notable consequence of Rule 2 is that

the best matching ratio for both segmentation strategies results from the data of one of the

accelerometers (i.e. the hip accelerometer for the 60s windows, and the ankle accelerometer

for the 180s window). Therefore, there is no benefit from using both sensors in terms of

obtaining the best matching ratio after applying Rule 2. Using two accelerometers doubles the

number of available features compared to when only one accelerometer is used, thus making it

more difficult for the feature selection algorithm to find the optimal feature set. The best

matching ratio of the baseline approaches was 0.878, which is significantly less than the match-

ing ratio 0.936 obtained the best proposed model for the hip accelerometer and 60s windows.

Rule 3, which merges adjacent jogging periods, is slightly more complex than Rule 1 and

Rule 2. Even though the overall best matching ratio (0.967) was obtained (Fig 5) after applying

Rule 3, in most cases Rule 3 actually degraded the matching ratio, especially for the longer win-

dows. This is also the case for baseline models. A classification error (i.e. incorrectly
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recognizing a jogging activity when the participant is not jogging or vice versa) at the begin-

ning and the end of the window degrades the matching ratio more for longer windows than

for shorter ones. For example, Rule 3 will merge a jogging period of 15 minutes, followed by a

non-jogging period of 30 minutes and then by a jogging period of 20 minutes into one 65 min-

ute jogging period. Such cases are plausible (e.g. jogging periods separated by another type of

physical exercise), but Rule 3 would misinterpret them as one jogging period. On the contrary,

Rule 2 limits the duration of the pause to maximum 5 minutes to reduce/minimize the impact

of misclassifications. Because Rule 3 is dynamic, in some corner-cases it might even exacerbate

the performance, therefore we suggest that Rules 1 and 2 are sufficient for this domain.

Fig 5 shows that Rules 1, 2 and 3 improved the diary matching ratio from 0.568 to 0.572,

0.625 and 0.672, respectively. Nonetheless, it was still significantly worse than all classification

algorithms, regardless of the feature set or segmentation strategy. This may be related to the

fact that reported jogging periods are subject to some uncertainties, such as accuracy of time

and recollection of the actual time window. Consequently, we can conclude that keeping a

diary for jogging periods activities has limited applicability because those periods can be

detected more accurately using a machine learning approach. Another benefit of using auto-

mated activity recognition is reducing the intrusiveness to participants, which may lead to bet-

ter consent to participate in the study.

Regarding the classifiers’ performance, SVMs required significantly more time than the

other classifiers (Tables 3 and 4). Logistic regression was by far the fastest, and ERT and RF

had comparable speed for this feature set size. SVMs had an additional complexity because

their parameters’ tuning time is not included in the reported times. For the other classifiers,

there was no benefit from parameter tuning. Regarding predictive performance, logistic

regression is most consistent and often the best. However, this may be because it was the wrap-

per algorithm used during feature selection, hence the selected feature sets were most suited

for it. Compared to a baseline method with hand-tailored features, the proposed approach for

feature engineering resulted in overall better performance per accelerometer location across

various metrics (see Table 6).

To investigate whether the performance would be improved with a larger training set, after

finding the best feature sets per sensor location and segmentation window we have also

repeated the experiments but used the union of the training and validation dataset (27 partici-

pants in total) for building a final classification models and the test dataset (12 participants)

for evaluating their performance. The same process was repeated with the baseline feature sets,

as well. The classification accuracy of different models varied insignificantly (changes usually

only in the 4-th decimal of the statistics presented in Tables 3, 4 and 6), not enough to improve

the jogging matching ratio significantly. The relative advantages and disadvantages of various

feature sets, sensor locations, classification algorithms and segmentation windows were the

same as when using only the set of 14 participants for training.

Based on the presented results, for detection of jogging periods we recommend: (i) using

shorter windows because they could be used for detection of other activities with shorter dura-

tion; (ii) application of post-classification rules to boost the performance; (iii) using logistic

regression because of its simplicity and speed, which allows real-time activity detection even

for devices with limited resources (battery or computing power) like smartphones or wear-

ables. However, if more activities need to be classified, similar study is needed to determine

the most suitable parameters, classification algorithms, window size, sensor placement,

domain-specific post classification rules, etc.

Other studies from the literature use accelerometer data to develop methods for specific

movements detection, including jogging or walking.
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The study in [27] identifies thirteen human activities using a dataset from 10 male partici-

pants generated in a controlled environment. They use three motion sensors (accelerometer,

gyroscope and linear acceleration sensor) at both wrist and pocket positions. The combination

of the two positions outperforms the wrist position alone, mainly at smaller segmentation win-

dows, especially for less-repetitive activities. Similar to our findings, they also report very high

jogging activity accuracy, using three classification algorithms: Naïve Bayes, k-Nearest Neigh-

bors (kNN) and Classification Trees. The main advantage of our study is that our dataset is col-

lected under field conditions with more participants (18 male and 21 female). Moreover, we

are focused on recognizing intended longer jogging periods, whereas in [27] each activity was

performed for only 3 minutes in total. Another advantage of our study is that all features in

our final sets are systematically extracted and selected in an automated process, whereas in

[27] the features have been manually generated based on literature study and by manual analy-

sis of the raw data.

The experiments in [29] demonstrate an algorithm which determines the optimal number

of activity sensors for accurate steps detection during dynamic activities in laboratory setting.

They found that only the thigh-ankle combination or single waist sensor could accurately dis-

tinguish between walking and jogging steps. Even though their experimental setup differs

from ours, our conclusions are coherent: the jogging activities can be accurately detected by

one sensor at either position, hip or ankle.

A study presented in [25] detects single steps and falls using a single tri-axial accelerometer.

The underlying idea was to implement an algorithm demanding minimal computational

requirements directly in the sensor device to pre-process the sensed data stream before send-

ing the information to a central point, where the information from different sensors is com-

bined to improve the accuracy. Their approach relies on hand-tailored features, specific to the

two atomic activities of interest. Although our study has generally different goals, the auto-

mated feature extraction and selection process can be used for identifying small number of fea-

tures that are computationally efficient and can be also computed on hardware with limited

resources. This can be a significant advantage over manually engineered features aimed at

detection of different activities.

The study presented in [24] demonstrates how the same types of sensors as the ones used in

our study can facilitate detection of driving periods. The approach is based on short-time Fou-

rier transform applied to the raw accelerometry data and focuses on frequency vibration

ranges that are specific to car driving. Although our results are not directly comparable, the

high AUC of 0.94 presented in their study is encouraging for our future research, aimed at

detection of other activities besides jogging.

The main discoveries of the study in [26] is that recalibrating the algorithm with data closer

to real-life conditions from an independent group of subjects is useful. Albeit their goal was

detection of sedentary behaviors, their findings highlight the main strengths of our study

design: using data collected under field conditions and evaluating the algorithms on an inde-

pendent group of participants.

Compared to other studies for activity recognition [27, 30, 32, 33], the final feature sets

obtained by the proposed feature engineering method were considerably smaller (up to 20 fea-

tures). This is important because it improves the speed of the classification models, while sim-

plifying them. In comparison to studies that use small number of features [60], the advantage

of our approach is the automatic identification of optimal feature sets, instead of using apriori

determined features. Even though the proposed feature engineering methodology considers a

high dimensional feature space, it eventually yields very concise and robust feature sets. As a

matter of fact, it should be used only in the modeling phase of machine learning problems

involving sensory data. Then, the outcome of the analysis (i.e. the final feature sets and the
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identified optimal machine learning algorithm) can be used for building and deploying in pro-

duction low dimensional models.

Conclusions

In this study, we have created a system for automatic identification of jogging periods of ado-

lescents based on conventional accelerometer data collected under field conditions. Compared

to a golden standard generated by visual inspection of data, the detected jogging periods by

machine learning based approach were significantly more accurate than the reported jogging

periods in participants diaries.

In order to improve the jogging matching ratio, i.e. the length of correctly identified jogging

periods related to the total time including the missed one, we applying post-classification rules

created by domain experts, which considered jogging breaks and very short jogging periods.

We discovered that the post classification rules had significantly greater impact on improving

the matching ratio than the choice of classification algorithm or sliding window length.

We have also analyzed the accuracy of jogging period identification depending on the num-

ber of accelerometers and their position (i.e. at the hip or ankle). We could show that by using

the data from one accelerometer at either position (e.g. the commonly used hip) the jogging

periods can be recognized with the same accuracy as when using data from two sensor loca-

tions, i.e. from hip and ankle. This can reduce the cost of epidemiological studies, as well as the

intrusiveness to participants, because they would have to wear only one sensor instead of two.

Hopefully, this may also increase the compliance of potential subjects to participate in the

study. Since in epidemiological studies physical activity is typically monitored by an acceler-

ometer placed at the hip, our algorithm can be applied to evaluate jogging periods

retroactively.

Also, the findings of our study should be assessed for recognizing activities in independent

cohorts of adolescents. This is important because other epidemiological studies have available

data, but lack labels (even self-reported) and therefore have limited ability for estimation of

physical activities. Another way to obtain labeled data is from a controlled environment,

which could be utilized to train models, and use it for recognizing activities performed under

field conditions.
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