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Abstract: The classification of proteins based on their structure plays an important role in the deduction or discovery of 
protein function. Furthermore, the large number of potential classes causes problems for many classification strategies, 
increasing the likelihood that the classifier will reach local optima while trying to distinguish between all of the possible 
structural categories. In this paper, we present an efficient system for protein classification by using 3D structure 
content representation.  We use a 3D structure-based approach for the efficient classification of protein molecules. The 
method relies on descriptors extracted from the known protein structure. These descriptors integrate geometry-based 
and biological features of the protein. An ART neural network algorithm is introduced to achieve dimensionality 
reduction, thus improving the overall performance of the system. In this work, a hierarchical strategy, using Boosted 
C4.5 algorithm, is applied for structural classification based on the SCOP (Structural Classification of Proteins) 
hierarchy. The SCOP database was used to evaluate the effectiveness of the multi-level approach of this system.
Key words: Data mining, protein classification.

INTRODUCTION

The structure of a protein molecule is the main 
factor which determines its chemical properties as 
well as its function, hence the 3D representation of a 
residue sequence and the way this sequence folds in 
the 3D space are very important. The 3D protein 
structures are stored in the world-wide repository 
Protein Data Bank (PDB) [1] which is the primary 
repository for experimentally determined proteins 
structures. With the technology innovation the number 
of 3D protein structures increases every day. 

At present, the Structural Classification of Protein
(SCOP) database [2], which is manually constructed 
by human experts, is believed to maintain the most 
accurate structural classification. Manual classification 
provides reliable results. However, it is labour 
intensive. The gap between protein holdings of PDB 
and SCOP databases continues to grow [3]. Hence, 
developing an efficient and accurate classifier of 
protein structures will have a vital impact on
effectively classifying high-throughput newly-
discovered structures.

In this paper we present a system for classification 
of protein molecules from the existing protein 
database. We use the PDB files to extract the 
information about the 3D structure of the protein. 
After proper positioning of the structures, the 
Spherical Trace Transform is applied to them to 
produce descriptor vectors, which are completely 
rotation invariant. We have applied the method given 
in [4] to extract geometry descriptor. Additionally, 
biological properties of the protein are taken as in [5], 
forming better integrated descriptor.

Protein 3D structure data are with high 
dimensionality and very immense, which could easily
overwhelm the processing and storage capacity of a
centralized database system. Unsupervised learning 
Artificial Neural Networks (ANNs) are able to 
discover both regularities and irregularities in the 
redundant input data. As a result of the dimensionality 
reduction obtained easily from the outputs of these 
algorithms, computation can be done faster and with 
lower costs. We have chosen the ART ANN models
[6],[7] for dimensionality reduction. These models 
have both long- and short- term memory and are able 
to distinguish the two, which we consider to be an 
advantage because whenever a new protein is added to 
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the system the existing model is only adapted to the 
change introduced by that protein.

There are many algorithms used for protein 
classification as Naive Bayesian classifier, nearest 
neighbour classifier, decision trees and so on. Our 
approach is to use decision tree classification 
algorithm which will classify the structures according 
to the SCOP classification hierarchy. We believe a 
classification scheme should take advantage of such a 
natural hierarchy as SCOP. By using a multi-level 
classification strategy, one can cut down on the 
number of potential outcomes, which is useful when 
faced with noisy, real-world data that is not clearly
separable. The proposed strategy should eliminate 
many of the issues that arise from a large multi-class 
decision problem [8],[9].

The proposed system architecture and research 
methods are given in section 2, experiments and 
evaluation results are given in section 3 and section 4
concludes the paper.

1. System architecture 
In this paper we present a system for efficient 

classification of protein molecules based on structural 
features of the molecules stored in protein database.
The general system architecture is shown on Figure 1.

As can be seen the descriptor generation process of 
the system extracts the geometrical and biological 
features of the protein molecule, thus forming the real 
valued descriptor. The dimensionality of the descriptor 
is 416 features for the geometrical part, and 34 
features for the biological part, thus giving the 
dimensionality of 450 in the resulting descriptor for 
one protein.

When classifying the proteins according to SCOP 
classification, and using knowledge discovery in data 
techniques, the dimensionality of the descriptor is 
crucial factor. The number of 450 features in the 
descriptor is very high, thus the process of 
classification can be very slow. We apply dimension 
reduction of the descriptor by using ART ANN. The 
dimensionality of the descriptor is reduced from 450 
to 88 features (from 416 features to 54 features for the 
geometrical part and from 34 features to 34 features 
for the biological part).

The Boosted C4.5 decision tree algorithm is 
applied to the datasets produced on the basis of the 
new descriptor. We have built trees for class, fold and 
superfamily levels in the SCOP classification 
database. These classification trees can be further used 
for assigning the appropriate SCOP level for new 
protein entries in the database.

There are two phases in protein classification: 
offline and online phase, which are shown on Figure 
1.

The offline phase refers to the process of 
generating descriptors for all proteins in the database 
and then training the models for the dimensionality 
reduction and classification modules of the system.

The online phase refers to the process of 
classification of a protein that has an unknown SCOP 
hierarchy. For this protein the corresponding 
descriptor is extracted at first, which is then used in 
the previously trained models for dimensionality 
reduction and classification. In result the computed 
SCOP hierarchy is assigned to the protein. 

Figure 1. Protein classification system architecture
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2. Research methods

2.1. Protein Descriptor Extraction

The information about protein structure is stored in 
PDB files. They contain information about their 3D 
structure and their biological properties. For each 
atom of the protein, the coordinates of the origin are 
presented and also information about the type of the 
atom. Information about the amino acid sequence, 
secondary structure elements, and some other futures 
are also contained in the PDB file. 

Figure 2. Process of protein descriptor extraction

As can be seen from the figure 2, since the exact 
3D position of each atom and its radius are known 
(according to PDB file), it may be represented by a 
triangulated sphere. The protein is comprised of a set 
of spheres, along with the corresponding vertices and 
the connections among them. To provide translation 
and scale invariance, the center of mass is calculated 
and the protein is translated so the new center of mass 
is at the origin. The distance dmax between the new 
origin and the most distant vertex is computed and 
protein is scaled, so dmax =1. 

After triangulation, we perform voxelization. 
Voxelization transforms the continuous 3D-space, into 
the discrete 3D voxel space. The voxelization 
proceeds in three steps: discretization, sampling, and 
storing. Discretization divides the continuous 3D-
space into voxels. With sampling, depending on 
positions of the polygons of a 3D-mesh model, to each 
voxel vabc, a value is attributed. Usually, vabc is a scalar 
value, and we used real voxel grid, where vabc is equal 
to the fraction of the total surface area S of the mesh 
which is inside the region µabc  (1).
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2, where Sj is the area of Tj . If all 
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For each newly obtained triangle, the center of 
gravity G is computed, and the voxel µabc is 
determined. Finally, the attribute vabc is incremented 
by δ. The quality of approximation is set by the 
parameter pmin.

The information contained in a voxel grid can be 
processed further to obtain both correlated information 
and more compact representation of voxel attributes as 
a feature. We applied the 3D Discrete Fourier 
Transform (3D-DFT) to obtain a spectral domain 
feature vector which also provides rotation invariance 
of the descriptor. 

A 3D-array of complex numbers F = [fabc] is 
transformed into another 3D-array by (3).
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Since we apply the 3D-DFT to a voxel grid with 
real-valued attributes, we shift the indices so that 
(a;b;c) is translated into (a–M/2; b–N/2; c–P/2). Let 
M=N=P and we introduce the abbreviation (4).
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Thus, the origin (0;0;0) is shifted to (N/2;N/2;N/2), 
and we adjust with (5). 
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We take magnitudes of low-frequency coefficients 
as components of the vector. Since the 3D-DFT input 
is a real-valued array, the symmetry is present among 
obtained coefficients, so the feature vector is formed 
from all non-symmetrical coefficients (6). 
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1 ≤ |p | + | q | + | s |≤ k ≤ N/2 (6)

We normalize f’pqs by dividing by |f’000|. Then, we 
form the feature vector by the scaled values of f’pqs. 
This vector presents geometrical properties of the 
protein, and consists of 416 real valued features.

Additionally, characteristic attributes of the 
primary and secondary structure of the protein 
molecules are extracted, forming attribute-based 
descriptor vectors. This part of the descriptor consists 
of 34 real valued features appended to the end of the 
geometry based descriptor. More specifically, 
concerning the primary structure, the ratio of the 
amino acids’ occurrences, the hydrophobic amino 
acids ratio and the ratio of the helix types’ occurrences 
in a protein are calculated. Concerning the secondary 
structure, the number of Helices, Sheets and Turns in a 
protein are also calculated. These features and the 
weights assigned to them are listed in Table 1.

Secondary structure 
features

Weight

Number of HELICES 1 %
Number of SHEETS 1 %
Number of TURNS 1 %
Primary structure features Weight
Hydrophobic residue ratio 6 %
Helix type 1 %
Residue ratio 90 %

Table 1. Structural features and their weights.

2.2. ART Algorithm

ART networks develop stable recognition codes by 
self-organization in response to arbitrary sequences of 
input patterns. They were designed to solve the so 
called stability-plasticity dilemma: how to continue to 
learn from new events without forgetting previously 
learned information. ART networks model several 
features such as robustness to variations in intensity), 
detection of signals mixed with noise, and both short-
and long-term memory to accommodate variable rates 
of change in the environment. There are several 
variations of ART-based networks: ART1 (three-layer 
network with binary inputs), Fuzzy ART (with analog 
inputs, representing neuro-fuzzy hybrids which inherit 
all key features of ART), their supervised versions 
ARTMAP and FuzzyARTMAP and many others. 

In Figure 3 typical representation of an ART 
Artificial Neural Network is given. Winning F2 
category nodes are selected by the attentional 
subsystem. Category search is controlled by the 
orienting subsystem. If the degree of category match 
at the F1 layer is lower than the so called vigilance 
level ρ, a reset signal will be triggered, which will 
deactivate the current winning F2 node for the period 
of presentation of the current input. An ART network 
is built up of three layers: the input layer (F0), the 
comparison layer (F1) and the recognition layer (F2) 
with N, N and M neurons, respectively.

Figure 3. Architecture of the ART network

The input layer stores the input pattern, and each 
neuron in the input layer is connected to its 
corresponding node in the comparison layer via one-
to-one, non-modifiable links. Nodes in the F2 layer 
represent input categories. The F1 and F2 layers 
interact with each other through weighted bottom- up 
and top-down connections that are modified when the 
network learns. There are additional gain control 
signals in the network (not shown in Figure 3) that 
regulate its operation, but those will not be detailed 
here. The learning process of the network can be 
described as follows: At each presentation of a non-
zero binary input pattern x (xj {0, 1}; j = 1, 2, …, N), 
the network attempts to classify it into one of its 
existing categories based on its similarity to the stored 
prototype of each category node. More precisely, for 
each node i in the F2 layer, the bottom-up activation Ti

is calculated, which can be expressed as

Mi
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where | · | is the norm operator (for a vector u it is: 
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prototype of category i, and  > 0 is a parameter. Then 
the F2 node I that has the highest bottom-up 
activation, i.e. TI = max{Ti | i = 1, …, M}, is selected 
(realizing so called winner-takes-all competition). The 
weight vector of the winning node (wI) will then be 
compared to the current input at the comparison layer. 
If they are similar enough, i.e. if they satisfy the 
matching condition:
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where ρ is a system parameter called vigilance (0 < 
ρ  1), then the F2 node I will capture the current 
input and the network learns by modifying wi:

old
I

old
I

new
I wxww )1()(    (9)

where  is the learning rate (0 <   1) (the case 
when =1 is called “fast learning”). All other weights 
in the network remain unchanged.

If, however, the stored prototype wI does not 
match the input sufficiently, i.e. if the condition (8) is 
not met, the winning F2 node will be reset (by 
activating the reset signal in Figure 3) for the period of 
presentation of the current input. Then another F2 
node (or category) is selected with the highest Ti, 
whose prototype will be matched against the input, 
and so on. This “hypothesis-testing” cycle is repeated 
until the network either finds a stored category whose 
prototype matches the input well enough, or allocates 
a new F2 node in which case learning takes place 
according to (9).

The number of developed categories can be
controlled by setting the vigilance ρ: the higher the 
vigilance level, the larger number of more specific 
categories will be created. At its extreme, if ρ = 1, the 
network will create a new category for every unique 
input pattern.

When using the ART algorithm as a middle layer 
in our system we only use the pure 3D features of the 
protein, that is the first 416 attributes of the protein 3D 
descriptor, as input to the ART neural network. In this 

way we reduce the dimensionality of the vector and 
reduce the time and resources needed for training of 
the classification algorithm.

2.3. Classification Strategy

The C4.5 classification algorithm uses the concept 
of entropy as follows. Suppose that we have a 
candidate split S, which partitions the training data set 
T into several subsets T1, T2, . . . , Tk . The mean 
information requirement can then be calculated as the 
weighted sum of the entropies for the individual 
subsets. We then define our information gain to be the 
increase in information produced by partitioning the 
training data T according to this candidate split S. At 
each decision node, C4.5 chooses the optimal split to 
be the split that has the greatest information gain.

The boosting method combines multiple models 
by explicitly seeking models that complement one 
another. Boosting encourages new models to become 
experts for instances handled incorrectly by earlier 
ones. Additionally boosting weights a model’s
contribution by its performance.

Figure 4 depicts the classification strategy. The 
general idea is to first classify proteins at the class 
level, grouping them based on global features. Once 
this partitioning is complete, the resulting subsets 
(each subset corresponds to one class) we subdivide 
further, classifying each protein by fold. The intent of
this step is to improve accuracy by using a 
increasingly fine grained classification model, 
separating the data based on more local, fold-specific 
attributes than a typical decision tree that is forced to 
distinguish between all possible classes. The same 
step is applied for the superfamily level.

Figure 4. Multi-level classification strategy
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3. Experiments and Evaluation Results
We have implemented a system for protein classi-

fication. The system is built on Microsoft Visual 
Studio.NET 2005, while the data is stored in a SQL 
Server 2005 database. The database contains 6873 
proteins and is a representative sample of the SCOP 
database in which each SCOP hierarchy is represented 
in approximately the same proportion as in the whole 
SCOP database.

We have performed several experiments using 
different datasets for training the classification 
algorithm, but also a comparison of the classification 
performance of the system with and without using 
structural features in the protein descriptor and with 
and without using the ART algorithm as a middle 
layer. 

When using the ART algorithm as a middle layer 
the vigilance parameter is set to 10%. This value was 
obtained empirically as the optimal taking into 
account the classification accuracy and complexity. 
Using this parameter we reduce the descriptor vector 
length from 416 (this refers only to the pure 3D 
features) to 56. Using lower values produces big 
information loss, and higher values increase the 
dimensionality both of which are unjustifiable for the 
system performance.

The Boosted C4.5 algorithm is evaluated using 10 
fold cross-validation. The minimum number of objects 
per leaf, which reflects in pre-pruning, is set to 2. The 
confidence factor, which reflects in post-pruning, is 
set to 0.25. 
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Class 6873 2770 45.30% 47.04%
Fold 6873 1710 29.88% 30.76%
Super 
Family

6873 3300 53.01% 55.9%

Table 2. Classification results on protein descriptor 
without biological features, with and without using 

ART

Table 2 shows the results when using a training set 
consisted of 6873 proteins, i.e. the whole database. 
The protein descriptor is consisted of 416 attributes 
representing its 3D structure, but without the 
additional structural features. The results indicate that 
using only the pure 3D structure information is not 
enough to perform a precise classification. When 
using the ART as a middle layer the classification 
precision increases, that is due to the fact that more 
information can be taken into account when the 
decision tree splits on a given attribute. Also the 
proportion of attributes (in terms of the whole vector) 

present in the C4.5 tree increases. Considering the 
building of the decision trees and their evaluation, 
when using ART, the time needed is reduced by 3 
times.
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Class 869 752 87.54% 89.64%
Fold 869 556 68.98% 73.19%
Super 
Family

869 758 88.23% 93.09%

Table 3. Classification results on protein 
descriptor with biological features, with and without 

using ART

Table 3 shows the results when using a training set 
consisted of 869 proteins. The dataset is resampled 
from the whole database with the corresponding class 
attribute represented in approximately the same 
proportions as in the whole database. The protein 
descriptor is consisted of 450 attributes, including the 
additional structural features. We use a smaller dataset 
because the time needed for classification when ART 
is not used, exceeds several hours. With the additional 
information integrated in the descriptor we get much 
higher precision, that is especially evident in the case 
of Fold Hierarchy level classification. That is due to 
the fact that the additional attributes bring more 
suitable information for the aim of classifying a 
protein in a SCOP class hierarchy. Once again the 
usage of ART as a middle layer, outperforms the 
standard classification both in precision and in time.
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Class 118 66 105 60
Fold (flat) 242 123 225 98
Fold (multi-
level)

35 18 32 15

Super 
Family (flat)

418 240 380 207

Super 
Family 
(multi-level)

30 16 28 14

Table 4. Average decision tree size and number of 
leaves for each of the classification

variations tested

Using a separate decision tree for each level of the 
SCOP hierarchy predicting all possible outcomes for 
the level is referred to as flat classification. Table 4
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clearly shows the advantage of using a multi-level 
classification scheme compared to a flat classification 
scheme. Smaller decision trees have higher accuracy 
than larger trees. Locally optimizing information tends 
to produce small, shallow, accurate trees. By using the 
multi-level scheme we overcome the large decision 
trees problems like noise, fragmentation and subtree 
replication. When ART is applied the trees are even 
smaller and more accurate.

4. Conclusion

We have presented a system for protein molecules 
classification by using information both about their 3D 
structure and biological properties. We have applied 
the voxel-based method for generating geometry de-
scriptor. Additionally, characteristic attributes of the 
primary and secondary structure of the protein mole-
cules were extracted, forming attribute-based descri-
ptor vectors. 

The dimensionality of the produced descriptors can 
be crucial for classification purposes. Therefore we 
have applied the ART algorithm for reducing the 
dimensionality of the descriptors, thus improving the 
performance of the system in both precision and 
computation time.

The multi-level strategy we present here is meant 
to be general. It can be applied to any domain where 
the data falls into a natural hierarchy (or one where 
such a hierarchy can be readily deduced). In addition, 
any classification strategy can be used at the different 
levels of the hierarchy. If a certain method is found to 
be more effective at one stage, it can be used there and 
replaced with something else at the others.

The SCOP database, which provides a hierarchical 
structural classification level of the proteins, was used 
to evaluate the classification. The results show that our 
system can achieve high precision for some levels of 
the SCOP hierarchy (over 93% for the Super Family 
level). Even the lowest result of approximately 70% 
precision for the Fold  level is satisfactory. 

Our future work will be concentrated on increasing
the precision of the classification by using hierarchical 
multi-label classification decision trees that will be 
able to classify the whole SCOP hierarchy at once. 
Also, we will investigate new 3D descriptors and 
incorporate additional characteristics in the 
descriptors.
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Abstract: The classification of proteins based on their structure plays an important role in the deduction or discovery of protein function. Furthermore, the large number of potential classes causes problems for many classification strategies, increasing the likelihood that the classifier will reach local optima while trying to distinguish between all of the possible structural categories. In this paper, we present an efficient system for protein classification by using 3D structure content representation.  We use a 3D structure-based app​roach for the efficient classification of protein mo​​​lecules. The method relies on de​scri​ptors extracted from the known protein structure. These descriptors integrate geometry-based and biological features of the protein. An ART neural network algorithm is introduced to achieve dimensionality reduction, thus improving the overall performance of the system. In this work, a hierarchical strategy, using Boosted C4.5 algorithm, is applied for structural classification based on the SCOP (Structural Classification of Proteins) hierarchy. The SCOP database was used to eva​lu​a​te the effectiveness of the multi-level approach of this system.
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Introduction


The structure of a protein molecule is the main factor which determines its chemical properties as well as its fun​​​c​ti​on, hence the 3D re​pre​sen​ta​ti​on of a re​​sidue se​qu​ence and the way this sequence folds in the 3D space are very important. The 3D pro​tein structu​​res are stored in the world-wide re​po​si​tory Protein Da​ta Bank (PDB) [1] which is the pri​​mary repo​si​​to​​ry for experimentally de​ter​mi​ned pro​​teins stru​ctu​res. With the technology inno​va​ti​​on the number of 3D pro​​tein structures increases every day. 


At present, the Structural Classification of Protein (SCOP) database [2], which is manually constructed by human experts, is believed to maintain the most accurate structural classification. Manual classification provides reliable results. However, it is labour intensive. The gap between protein holdings of PDB and SCOP databases continues to grow [3]. Hence, developing an efficient and accurate classifier of protein structures will have a vital impact on effectively classifying high-throughput newly-discovered structures.

In this paper we present a system for classification of pro​te​in molecules from the existing protein database. We use the PDB files to extract the information about the 3D stru​ctu​re of the protein. After proper positioning of the stru​ctures, the Spherical Trace Tran​sform is applied to them to produ​ce de​scri​ptor vec​tors, which are co​m​ple​tely rotati​on in​va​riant. We have applied the me​thod given in [4] to ex​tract geometry descriptor. Addi​tionally, biolo​​gi​​cal pro​per​ties of the protein are ta​ken as in [5], for​​ming better in​te​gra​ted descriptor.

Protein 3D structure data are with high dimensionality and very immense, which could easily overwhelm the processing and storage capacity of a centralized database system. Unsupervised learning Artificial Neural Networks (ANNs) are able to discover both regularities and irregularities in the redundant input data. As a result of the dimensionality reduction obtained easily from the outputs of these algorithms, computation can be done faster and with lower costs. We have chosen the ART ANN models [6],[7] for dimensionality reduction. These models have both long- and short- term memory and are able to distinguish the two, which we consider to be an advantage because whenever a new protein is added to the system the existing model is only adapted to the change introduced by that protein.

There are many algorithms used for protein classifi​​ca​​t​ion as Naive Bayesian classifier, nearest neigh​​bour cla​​​​ssi​fi​er, de​ci​si​on trees and so on. Our approach is to use decision tree classification algorithm which will classify the structures according to the SCOP classification hierarchy. We believe a classification scheme should take advantage of such a natural hierarchy as SCOP. By using a multi-level classification strategy, one can cut down on the number of potential outcomes, which is useful when faced with noisy, real-world data that is not clearly separable. The proposed strategy should eliminate many of the issues that arise from a large multi-class decision problem [8],[9].

The proposed system architecture and research methods are given in section 2, experiments and evaluation results are given in section 3 and se​​cti​on 4 concludes the paper.

1. System architecture 

In this paper we present a system for efficient classification of pro​te​in molecules based on structural features of the molecules stored in protein data​ba​​se. The general system architecture is shown on Figure 1.


As can be seen the descriptor generation process of the system extracts the geometrical and biological features of the protein molecule, thus forming the real valued descriptor. The dimensionality of the descriptor is 416 features for the geometrical part, and 34 features for the biological part, thus giving the dimensionality of 450 in the resulting descriptor for one protein.


When classifying the proteins according to SCOP classification, and using knowledge discovery in data techniques, the dimensionality of the descriptor is crucial factor. The number of 450 features in the descriptor is very high, thus the process of classification can be very slow. We apply dimension reduction of the descriptor by using ART ANN. The dimensionality of the descriptor is reduced from 450 to 88 features (from 416 features to 54 features for the geometrical part and from 34 features to 34 features for the biological part).


The Boosted C4.5 decision tree algorithm is applied to the datasets produced on the basis of the new descriptor. We have built trees for class, fold and superfamily levels in the SCOP classification database. These classification trees can be further used for assigning the appropriate SCOP level for new protein entries in the database. 

There are two phases in pro​​tein classification: offline and on​line phase, which are shown on Figure 1.


The offline phase refers to the process of generating descriptors for all proteins in the database and then training the models for the dimensionality reduction and classification modules of the system.

The online phase refers to the process of classification of a protein that has an unknown SCOP hierarchy. For this protein the corresponding descriptor is extracted at first, which is then used in the previously trained models for dimensionality reduction and classification. In result the computed SCOP hierarchy is assigned to the protein. 

[image: image1.png]End-user ™)
off-line phase

BB . %

2)

on-line phase

= il
o
o

T

resulting SCOP
hierarchy

classificator
trained model

classificator
training

Classification

'eature vector (descriptor) extraction

™1

feature descriptor
extraction generation

ART neural
network
training

ART trained
model

Dimensionality reduction process







Figure 1. Protein classification system architecture


2. Research methods


2.1. Protein Descriptor Extraction

The information about protein structure is stored in PDB files. They contain in​for​ma​​tion about their 3D stru​cture and their biological pro​​per​ties. For each atom of the protein, the coor​di​na​tes of the origin are pre​sented and also information about the type of the atom. Information about the ami​​​no acid sequence, secondary structure elements, and some other futures are al​so con​​tained in the PDB file. 
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Figure 2. Process of protein descriptor extraction

As can be seen from the figure 2, since the exact 3D po​si​ti​on of each atom and its ra​​di​us are known (according to PDB file), it may be re​presented by a triangulated sphere. The protein is com​pr​i​sed of a set of spheres, along with the co​rre​spon​d​ing ver​​​ti​ces and the connections among them. To provide translation and scale invariance, the cen​​​ter of mass is calculated and the protein is tran​sla​ted so the new center of mass is at the origin. The dis​tance dmax between the new origin and the most di​stant ver​tex is computed and protein is scaled, so dmax =1. 


After triangulation, we perform voxelization. Voxe​​​​li​​​za​​tion transforms the continuous 3D-space, into the di​​​​s​​crete 3D voxel space. The voxelization proceeds in three steps: discretization, sampling, and sto​​ring. Di​scre​​​​​tization divides the con​ti​nu​ous 3D-space into vo​xels. With sampling, de​​pen​ding on positions of the po​ly​​​gons of a 3D-mesh mo​del, to each voxel vabc, a va​lue is attributed. Usually, vabc is a scalar value, and we used real voxel grid, whe​re vabc is equal to the fraction of the total sur​fa​ce area S of the mesh which is inside the region µabc  (1).

		

[image: image3.wmf]S


I


area


abc


abc


}


{


Ç


=


m


u


, 0 ≤ a,b,c ≤ N - 1.

		(1)





Each triangle Tj of a model is subdivided into pj2 co​in​cident triangles each of which has the surface area equal to δ = Sj / pj2, where Sj is the area of Tj . If all ver​tices of the triangle Tj lie in the same cuboid re​gi​on µabc, then we set pj = 1, otherwise we use (2) to determine the value of pj.
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For each newly obtained triangle, the center of gravi​​ty G is computed, and the voxel µabc is determined. Fi​nally, the attribute vabc is incremented by δ. The qu​a​lity of approximation is set by the parameter pmin.

The information contained in a voxel grid can be pro​​ce​ssed further to obtain both correlated in​for​ma​ti​on and more compact representation of voxel attri​bu​tes as a feature. We applied the 3D Discrete Fourier Transform (3D-DFT) to obtain a spectral domain feature vector which also provides rotation in​va​ri​ance of the descriptor.  


A 3D-array of complex numbers F = [fabc] is transformed into another 3D-array by (3).
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Since we apply the 3D-DFT to a voxel grid with real-va​lued attributes, we shift the indices so that (a;b;c) is translated into (a–M/2; b–N/2; c–P/2). Let M=N=P and we introduce the abbreviation (4).
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Thus, the origin (0;0;0) is shifted to (N/2;N/2;N/2), and we adjust with (5). 
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We take magnitudes of low-frequency coeffi​ci​ents as com​​ponents of the vector. Since the 3D-DFT in​​put is a real-valued array, the sy​mme​try is pre​​sent among ob​tained coefficients, so the feature vec​​tor is formed from all non-sy​mme​tri​cal coefficients (6). 

		1 ≤ |p | + | q | + | s |≤ k ≤ N/2

		(6)





We normalize f’pqs by dividing by |f’000|. Then, we form the feature vector by the scaled va​lues of f’pqs. This vector presents geometrical pro​per​ties of the protein, and consists of 416 real valued features.

Additionally, characteristic attributes of the primary and secondary structure of the protein molecu​les are ex​​tracted, forming attribute-based descriptor vectors. This part of the descriptor consists of 34 real valued features appended to the end of the geometry based descriptor. More specifically, concerning the pri​​​ma​​​​ry structure, the ratio of the amino acids’ occu​rre​n​​ces, the hy​dro​pho​bic ami​no acids ratio and the ra​tio of the he​lix types’ occu​rren​ces in a protein are cal​​cu​la​ted. Con​​cer​ning the se​con​dary structure, the num​ber of He​lices, Sheets and Turns in a protein are al​so cal​cu​​la​ted. These features and the weights assigned to them are listed in Table 1.


		Secondary structure features

		Weight



		Number of HELICES

		1 %



		Number of SHEETS

		1 %



		Number of TURNS

		1 %



		Primary structure features

		Weight



		Hydrophobic residue ratio

		6 %



		Helix type

		1 %



		Residue ratio

		90 %





Table 1. Structural features and their weights.


2.2. ART Algorithm


ART networks develop stable recognition codes by self-organization in response to arbitrary sequences of input patterns. They were designed to solve the so called stability-plasticity dilemma: how to continue to learn from new events without forgetting previously learned information. ART networks model several features such as robustness to variations in intensity), detection of signals mixed with noise, and both short- and long-term memory to accommodate variable rates of change in the environment. There are several variations of ART-based networks: ART1 (three-layer network with binary inputs), Fuzzy ART (with analog inputs, representing neuro-fuzzy hybrids which inherit all key features of ART), their supervised versions ARTMAP and FuzzyARTMAP and many others. 

In Figure 3 typical representation of an ART Artificial Neural Network is given. Winning F2 category nodes are selected by the attentional subsystem. Category search is controlled by the orienting subsystem. If the degree of category match at the F1 layer is lower than the so called vigilance level ρ, a reset signal will be triggered, which will deactivate the current winning F2 node for the period of presentation of the current input. An ART network is built up of three layers: the input layer (F0), the comparison layer (F1) and the recognition layer (F2) with N, N and M neurons, respectively.
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Figure 3. Architecture of the ART network

The input layer stores the input pattern, and each neuron in the input layer is connected to its corresponding node in the comparison layer via one-to-one, non-modifiable links. Nodes in the F2 layer represent input categories. The F1 and F2 layers interact with each other through weighted bottom- up and top-down connections that are modified when the network learns. There are additional gain control signals in the network (not shown in Figure 3) that regulate its operation, but those will not be detailed here. The learning process of the network can be described as follows: At each presentation of a non-zero binary input pattern x (xj ({0, 1}; j = 1, 2, …, N), the network attempts to classify it into one of its existing categories based on its similarity to the stored prototype of each category node. More precisely, for each node i in the F2 layer, the bottom-up activation Ti is calculated, which can be expressed as
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where | · | is the norm operator (for a vector u it is: 
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 ), wi is the (binary) weight vector or prototype of category i, and ( > 0 is a parameter. Then the F2 node I that has the highest bottom-up activation, i.e. TI = max{Ti | i = 1, …, M}, is selected (realizing so called winner-takes-all competition). The weight vector of the winning node (wI) will then be compared to the current input at the comparison layer. If they are similar enough, i.e. if they satisfy the matching condition:

		

[image: image11.wmf]r


³


x


x


w


I


I




		(8)





where ρ is a system parameter called vigilance (0 < ρ ( 1), then the F2 node I will capture the current input and the network learns by modifying wi:
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where ( is the learning rate (0 < ( ( 1) (the case when (=1 is called “fast learning”). All other weights in the network remain unchanged.


If, however, the stored prototype wI does not match the input sufficiently, i.e. if the condition (8) is not met, the winning F2 node will be reset (by activating the reset signal in Figure 3) for the period of presentation of the current input. Then another F2 node (or category) is selected with the highest Ti, whose prototype will be matched against the input, and so on. This “hypothesis-testing” cycle is repeated until the network either finds a stored category whose prototype matches the input well enough, or allocates a new F2 node in which case learning takes place according to (9).


The number of developed categories can be controlled by setting the vigilance ρ: the higher the vigilance level, the larger number of more specific categories will be created. At its extreme, if ρ = 1, the network will create a new category for every unique input pattern.


When using the ART algorithm as a middle layer in our system we only use the pure 3D features of the protein, that is the first 416 attributes of the protein 3D descriptor, as input to the ART neural network. In this way we reduce the dimensionality of the vector and reduce the time and resources needed for training of the classification algorithm.

2.3. Classification Strategy

The C4.5 classification algorithm uses the concept of entropy as follows. Suppose that we have a candidate split S, which partitions the training data set T into several subsets T1, T2, . . . , Tk . The mean information requirement can then be calculated as the weighted sum of the entropies for the individual subsets. We then define our information gain to be the increase in information produced by partitioning the training data T according to this candidate split S. At each decision node, C4.5 chooses the optimal split to be the split that has the greatest information gain.

The boosting method combines multiple models by explicitly seeking models that complement one another. Boosting encourages new models to become experts for instances handled incorrectly by earlier ones. Additionally boosting weights a model’s contribution by its performance.


Figure 4 depicts the classification strategy. The general idea is to first classify proteins at the class level, grouping them based on global features. Once this partitioning is complete, the resulting subsets (each subset corresponds to one class) we subdivide further, classifying each protein by fold. The intent of this step is to improve accuracy by using a increasingly fine grained classification model, separating the data based on more local, fold-specific attributes than a typical decision tree that is forced to distinguish between all possible classes. The same step is applied for the superfamily level. 
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Figure 4. Multi-level classification strategy

3. Experiments and Eva​lu​​ation Results

We have implemented a system for pro​te​in classi​fi​ca​​​tion. The system is built on Mi​crosoft Vi​sual Studio.NET 2005, while the da​ta is sto​​red in a SQL Server 2005 database. The database contains 6873 proteins and is a representative sample of the SCOP database in which each SCOP hierarchy is represented in approximately the same proportion as in the whole SCOP database.

We have performed several experiments using different datasets for training the classification algorithm, but also a comparison of the classification performance of the system with and without using structural features in the protein descriptor and with and without using the ART algorithm as a middle layer. 


When using the ART algorithm as a middle layer the vigilance parameter is set to 10%. This value was obtained empirically as the optimal taking into account the classification accuracy and complexity. Using this parameter we reduce the descriptor vector length from 416 (this refers only to the pure 3D features) to 56. Using lower values produces big information loss, and higher values increase the dimensionality both of which are unjustifiable for the system performance.


The Boosted C4.5 algorithm is evaluated using 10 fold cross-validation. The minimum number of objects per leaf, which reflects in pre-pruning, is set to 2. The confidence factor, which reflects in post-pruning, is set to 0.25. 


		Hierarchy level

		Training set size

		Correctly classified

		Correctly classified (%)

		Correctly classified (%) (using ART)



		Class

		6873

		2770

		45.30%

		47.04%



		Fold

		6873

		1710

		29.88%

		30.76%



		Super Family

		6873

		3300

		53.01%

		55.9%





Table 2. Classification results on protein descriptor without biological features, with and without using ART

Table 2 shows the results when using a training set consisted of 6873 proteins, i.e. the whole database. The protein descriptor is consisted of 416 attributes representing its 3D structure, but without the additional structural features. The results indicate that using only the pure 3D structure information is not enough to perform a precise classification. When using the ART as a middle layer the classification precision increases, that is due to the fact that more information can be taken into account when the decision tree splits on a given attribute. Also the proportion of attributes (in terms of the whole vector) present in the C4.5 tree increases. Considering the building of the decision trees and their evaluation, when using ART, the time needed is reduced by 3 times.

		Hierarchy level

		Training set size

		Correctly classified

		Correctly classified (%)

		Correctly classified (%) (using ART)



		Class

		869

		752

		87.54%

		89.64%



		Fold

		869

		556

		68.98%

		73.19%



		Super Family

		869

		758

		88.23%

		93.09%





Table 3. Classification results on protein descriptor with biological features, with and without using ART

Table 3 shows the results when using a training set consisted of 869 proteins. The dataset is resampled from the whole database with the corresponding class attribute represented in approximately the same proportions as in the whole database. The protein descriptor is consisted of 450 attributes, including the additional structural features. We use a smaller dataset because the time needed for classification when ART is not used, exceeds several hours. With the additional information integrated in the descriptor we get much higher precision, that is especially evident in the case of Fold Hierarchy level classification. That is due to the fact that the additional attributes bring more suitable information for the aim of classifying a protein in a SCOP class hierarchy. Once again the usage of ART as a middle layer, outperforms the standard classification both in precision and in time.

		Hierarchy level

		Tree size

		Number of leaves

		Tree size (using ART)

		Number of leaves  (using ART)



		Class

		118

		66

		105

		60



		Fold (flat)

		242

		123

		225

		98



		Fold (multi-level)

		35

		18

		32

		15



		Super Family (flat)

		418

		240

		380

		207



		Super Family (multi-level)

		30

		16

		28

		14





Table 4. Average decision tree size and number of leaves for each of the classification


variations tested

Using a separate decision tree for each level of the SCOP hierarchy predicting all possible outcomes for the level is referred to as flat classification. Table 4 clearly shows the advantage of using a multi-level classification scheme compared to a flat classification scheme. Smaller decision trees have higher accuracy than larger trees. Locally optimizing information tends to produce small, shallow, accurate trees. By using the multi-level scheme we overcome the large decision trees problems like noise, fragmentation and subtree replication. When ART is applied the trees are even smaller and more accurate.


4. Conclusion


We have presented a system for protein mo​​le​cules cla​ssification by using information both about their 3D stru​​cture and biological properties. We have applied the voxel-based method for generating geo​me​​try de​scri​ptor. Additionally, characteristic attr​i​bu​tes of the pri​​ma​ry and secondary structure of the pro​te​in mo​le​cu​les we​re extracted, forming attribute-based de​scri​ptor vec​​​tors. 

The dimensionality of the produced descriptors can be crucial for classification purposes. Therefore we have applied the ART algorithm for reducing the dimensionality of the descriptors, thus improving the performance of the system in both precision and computation time.


The multi-level strategy we present here is meant to be general. It can be applied to any domain where the data falls into a natural hierarchy (or one where such a hierarchy can be readily deduced). In addition, any classification strategy can be used at the different levels of the hierarchy. If a certain method is found to be more effective at one stage, it can be used there and replaced with something else at the others.

The SCOP data​base, which pro​vides a hierarchical stru​ctural classification level of the pro​teins, was used to eva​​​luate the classi​fi​ca​ti​on. The results show that our system can achieve high precision for some levels of the SCOP hierarchy (over 93% for the Super Family level). Even the lowest result of approximately 70% precision for the Fold  level is satisfactory. 

Our future work will be concentrated on increasing the precision of the classification by using hierarchical multi-label classification decision trees that will be able to classify the whole SCOP hierarchy at once. Also, we will investigate new 3D de​scri​​ptors and incorporate additional characteristics in the descriptors. 
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