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Abstract. The protein function is tightly related to classification of proteins in 

hierarchical levels where proteins share same or similar functions. One of the 

most relevant protein classification schemes is the structural classification of 

proteins (SCOP). The SCOP scheme has one negative drawback; due to its 

manual classification methods, the dynamic of classification of new proteins is 

much slower than the dynamic of discovering novel protein structures in the 

protein data bank (PDB). In this work, we propose two approaches for 

automated protein classification. We extract protein descriptors from the 

structural coordinates stored in the PDB files. Then we apply C4.5 algorithm to 

select the most appropriate descriptor features for protein classification based 

on the SCOP hierarchy. We propose novel classification approach by 

introducing a bottom-up classification flow, and a multi-level classification 

approach. The results show that these approaches are much faster than other 

similar algorithms with comparable accuracy.  

Keywords: Structural Classification of Proteins (SCOP), C4.5 Classification, 

Protein function prediction. 

1   Introduction 

Proteins play vital structural and functional role in every cell in living organisms. 

They are constructed by long chains of amino acid residues folding into complex 

three-dimensional polypeptide chain structures. This three-dimensional representation 

of a residue sequence and the way this sequence folds in the 3D space are very 

important to understand the logic in which a function of a protein is based on. In fact, 

the concept of function typically acts as an umbrella term for all types of activities 

that a protein is involved in, be it cellular, molecular or physiological. Also, 

evolutionary evidence could potentially be derived from conserved protein structures 

existed in multiple spices. The knowledge of protein function is a crucial link in the 

development of new drugs, better crops, and even development of synthetic 

biochemicals. 



Since the determining of the first 3D structure of the protein myoglobin, up to now, 

the complexity and the variety of the protein structures has increased as the number of 

the new determined macromolecules has. Therefore, a need for a classification of 

proteins is obvious, which may result in a better understanding of these complicated 

three-dimensional structures, their functions, and the deeper evolutionary procedures 

that led to their creation. In molecular biology, many classification schemes and 

databases (CATH [16], FSSP [15] and SCOP [2]) have been developed in order to 

describe the different kinds of similarity between proteins. 

The Structural Classification of Proteins - SCOP database [2] describes the 

evolutionary relationships between proteins of known structure. It has been accepted 

as the most relevant and the most reliable classification hierarchy [3]. This is due to 

the fact that SCOP strictly builds its classification decisions based on visual 

observations of the structural elements of the proteins made by human experts. 

Therefore, this manual approach during the classification process of new structures 

clarifies that SCOP is completely biased towards reliable and precise protein 

classification. The main levels of the SCOP hierarchy are Family, Superfamily, Fold, 

and Class. Using the terminology of the SCOP database, two proteins that belong to 

the same fold share a common three-dimensional pattern with the same major 

secondary structure elements (SSEs) in the same arrangement with the same 

topological connections. In the SCOP hierarchy, folds are grouped into different 

classes, where a class is defined by the topographical arrangement of the secondary 

structures of its member proteins. Although SCOP is highly reliable and precise 

system, it has one negative drawback. Namely, due to its manual classification 

methods, the dynamic of classification of new proteins in SCOP can’t follow the 

dynamic of discovering novel protein structures stored in PDB (38.200 proteins 

classified in SCOP vs. 59.800 protein entries in PDB in August 2009). This clearly 

brings in front the necessity of a system which will classify proteins in a precise and 

reliable manner as SCOP does, but in an automated fashion.  

There are various approaches for protein classification which are trying to offer 

efficient and completely automated protein classification. These approaches have 

different characteristics in terms of algorithm for determining protein similarity. 

Basically, the protein similarity metric used defines the complexity and the efficiency 

of the classification approach. 

One way to determine protein similarity is to use sequence alignment algorithms 

like Needleman–Wunch [19], BLAST [18], PSI-BLAST [17] etc. They offer fast and 

efficient recognition of overlapping subsequences in two protein structures which 

leads to detection of closely related protein structures, but these methods cannot 

recognize proteins with remote homology.  

Instead of sequence alignment methods, structure alignment methods like CE [5], 

MAMMOTH [6], DALI [7], etc. are used to detect and highlight distant homology 

relations between protein structures. In general these methods are very precise and 

efficient and they have high degree of successful mapping of existing structures in 

new proteins. Structure alignment methods perform one-against-all proteins 

comparison in order to find the most similar existing protein to a novel protein 

structure. Having in mind that the number of classified proteins, for example in 

SCOP, is ever increasing and that structure alignment methods are quite cost 

expensive, the speed of classification with these methods is always questioned. For 



example CE takes 209 days [5] to classify 11.000 novel protein structures. The 

bottom-up classification approaches proposed in this paper took around 6 hours to 

classify 9.994 proteins. 

There are numerous research approaches that combine sequence and structure 

alignment of the proteins. SCOPmap [8] is a system that uses a pipelined architecture 

for the classification. SCOPmap uses four sequence alignment methods: BLAST [18], 

PSI-BLAST [17], RPS-BLAST and COMPASS [11] and two structure alignment 

methods: VAST [20] and DaliLite [10]. This pipelined approach brings to front high 

complexity of the classification process. FastSCOP [9] is another, more efficient 

system than SCOPmap which is based on 3D-BLAST [21] and MAMMOTH [6]. 3D-

BLAST is structure alignment method that is used as a preprocessing filter to produce 

the top 10 scores. Afterwards, these top 10 results are used by MAMMOTH in order 

to find the most similar protein structures to the query structure. Although fastSCOP 

possesses high precision, the used combination of methods eventually in future, 

considering the ever increasing number of novel proteins, will produce increasing 

classification complexity. 

Instead of using the alignment methods, the classification based on the mapping of 

the protein structure in the high-dimensional uniform descriptor space can be found as 

very promising. In [14] protein descriptor is formed by first producing distance 

matrix, which is treated as image, and local and global protein features are extracted 

from the image histograms. The whole descriptor dimension is 33, consisted from 24 

local features and 9 global features. This protein descriptor afterwards is used for 

protein classification into the SCOP hierarchy based on the E-predict algorithm [14]. 

In [1] protein descriptor is generated solely from the protein sequence information in 

order to avoid complex structure comparison. The protein descriptor gives 

information for the number of different amino acids, the hydrophobicity, the polarity, 

the Van der Waals volume, the polarizability and for the secondary structures in the 

protein structure. With this protein descriptor, proteins are classified hierarchically 

into the SCOP hierarchy with Naive Bayes and boosted C4.5 methods [1].  

In this work, we propose two classification processes based on generated protein 

descriptors in combination with C4.5 decision tree classification algorithm. As a 

classification scheme, the SCOP classification hierarchy is used. First we introduce 

the classification flow that is based on a bottom-up classification according to the 

SCOP hierarchy. The implemented classification logic is original and new due to the 

fact that according to the related work there were no protein classification approaches 

which use similar classification architecture. Second we adjust the multi-level 

modification of the C.4.5 decision tree algorithm to solve the SCOP classification. 

The implemented approaches introduce tremendous speed up compared with the 

structure alignment algorithms. They are ~816 times faster than CE [5] and ~68 times 

faster than MAMMOTH [6]. They are less correct than fastSCOP [9] which has 

accuracy of 98% for the SUPERFAMILY level compared with our 84% for bottom-

up approach and 80% for multi-level approach. However, our algorithms are ~70 

times faster than MAMMOTH. 

In section 2 we present the classification process architecture and the used 

classification methods. Section 3 presents the experimental results, while the section 4 

concludes the paper. 



2   Classification process architecture and methods 

The classification process architecture has three main features. First, this architecture 

is based, and it uses the SCOP classification scheme. Second, it uses 3D protein 

descriptor [13] which transforms the protein tertiary structure into N-dimensional 

feature vector, and additionally gives some other protein structural features. And 

finally, as a classification algorithm decision trees trained with C4.5 are used. 

 

 

Fig. 1. Classification process architecture 

Chronologically (as can be seen from the Fig. 1) the system is consisted of two 

phases: training phase and testing or classification phase. The training or offline data 

flow takes into consideration the knowledge given in the SCOP hierarchical database 

to build predicative classification flow for each SCOP hierarchy level. The training 

procedure can be divided in two general processes. The first one is the descriptor 

extraction (shown on Fig. 2) and data set generation process. Descriptors consisting of 

450 features (416 of them describe the protein’s geometry, while 34 of them give 

information for the primary and secondary protein structure) are generated for each 

protein forming a training set for the C4.5 decision tree algorithm. This descriptor 

relies on the geometric 3D structure of the proteins. After triangulation, normalization 

and voxelization of the 3D protein structures, the Spherical Trace Transform is 

applied to them to produce geometry - based descriptors, which are completely 

rotation invariant. 

 



Fig. 2. Protein descriptor generation process 

The second process is the process of forming and training of the decision trees for 

the protein classifiers. We propose two approaches in solving this classification task. 

First one is the bottom-up classification approach, while the second one is the multi-

level modification of the C4.5 algorithm. The classification logic of both classifiers is 

based on the fact that the SCOP classification hierarchy is tree–like hierarchy, 

providing only one parent node for every child node in the hierarchy. According to 

this fact, if we know the domain of the protein, then we know the upper SCOP levels 

(the whole hierarchy) for that protein. These two classification approaches are 

explained in the following subsections. 

2.1 Bottom-up classification approach 

Basically this classification flow is by all means very much similar to the classical 

top – down approach, except that the starting point is changed.  Instead of starting the 

classification from the root, it is started from the leafs.  

 

 



Fig. 3. Bottom-up classification approach 

 

Decision trees are built for each level of the SCOP hierarchy, providing separate 

trees for classification in class, fold, superfamily, family and domain. Also we provide 

additional level-specific decision trees that are trained for classification in specific 

cases. Namely if we use domain specific decision tree trained for all protein instances 

it is obvious that this classifier will be low accurate. In cases when we know the upper 

level of the SCOP hierarchy of a given protein, than we can use additional decision 

trees trained on the subset of the protein data taking into account only the descendant 

proteins grouped in the lower levels of the SCOP hierarchy. In this way, there are 

class specific, fold specific, superfamily specific and family specific decision trees for 

determination of domain. Also, additional decision trees are built for determination of 

one-level up SCOP levels (class specific decision trees for fold determination etc.). 

These decision trees are afterwards used in the classification process of novel 

proteins.  

As can be seen from the Fig. 3, the unknown protein is passed through the domain 

specific classifier. If the domain classifier correctly classifies unknown protein, then 

there is no need to classify the protein in the upper levels. The classification process 

can associate the upper hierarchy labels from the background knowledge extracted 

from the SCOP hierarchy. If the domain classifier incorrectly classifies the protein, 

than the protein is being preceded to the classifier into the higher level of the 

hierarchy, in this case the decision tree for family determination. If the classified 

family is correct, than the rest of the levels of the hierarchy for the protein are known, 

except the domain, which remains unknown. To correct this, we precede the protein 

to the level-specific decision tree for determination of domain, trained only with 

instances from the predicted family. In this way we lower the false positive hits in the 

classification flow if we use separate decision trees for separate SCOP levels. If the 

classified family is mistaken, the classifier continues one level up into the hierarchy, 

in this case it continues with predicting the superfamily level of the new protein. This 

step is also the next step if the family specific decision tree mistakes the protein 

domain. Otherwise the classification is finished. The process of protein classification 

continues with the backward recursion explained in the previous paragraph until it 

reaches the top level of the SCOP hierarchy, the class level. If there is no success in 

recognizing the correct protein domain, then the protein is announced as a protein 

with unknown SCOP label, possibly a candidate for a new label in the SCOP 

hierarchy. 

2.2 Multi-level modification of the C4.5 algorithm 

Traditional single-label classification is concerned with learning from a set of 

examples that are associated with a single label l from a set of disjoint labels L, |L|>1. 

If |L|=2, then the learning problem is called a binary classification problem, while if 

|L|>2, then it is called a multi-class classification problem. The problem of classifying 

proteins in SCOP hierarchy is a standard multi-class or multi-level classification 

problem. 



For the purposes of the protein classification, we have used and readapted the 

modification of the C4.5 algorithm [22] for multi-label data. In order to automate the 

SCOP classification we need to: (1) have information about the hierarchy of classes, 

(2) calculate the entropy, and (3) check the membership of the new protein in the 

existing hierarchy. We have provided flat text file with the SCOP hierarchy labels 

organized in tree-like manner. The modification of the C4.5 algorithm for multi-label 

data is made by changing the entropy calculation: 

 

 
(1) 

 

where p(ci) = relative frequency of class ci and q(ci) = 1−p(ci). Also there is 

allowed multiple labels in the leaves of the tree. 

By applying the multi-label C4.5 classification the end result is one decision tree 

that can classify new protein structures in branch of the SCOP hierarchy at once. 

3   Experimental Results 

All of the experiments were conducted on a PC with a 2.2 GHz Intel Core 2 CPU and 

2GB RAM. The SCOP hierarchy from the last two versions SCOP1.71 and SCOP 

1.73 were downloaded and integrated into Oracle 10g database. The protein descriptor 

generation was made in C++. The bottom-up classification approach was 

implemented in C#.NET by using the C4.5 decision trees generated by WEKA data 

mining toolkit. The multi-level modification of the C4.5 algorithm was implemented 

in C#.NET. 

In the training phase, 73.642 out of 75.930 classified protein chains from SCOP 

v1.71 were used for training the decision trees for both classification strategies. For 

the bottom-up approach, instead of having one decision tree for each level of the 

SCOP hierarchy, ensemble of decision trees is used for each level of the SCOP 

hierarchy. The idea for ensemble of trees came as a result of the huge memory 

requirements of the approach with one tree per level. The number of trees per 

ensemble in one level and number of output classes per tree in each level are 

presented in Table 1. 

Table 1.  Number of trees per ensemble in one level and number of output classes per tree in 

each level.  

Level Classes per tree Number of trees per level 

CLASS 11 1 

FOLD 256 5 

SUPERFAMILY 169 12 
FAMILY 341 11 

DOMAIN 659 14 

 

In the test phase, 3.576 protein chains from the SCOP v1.73 were taken. We have 

selected only those proteins that were not previously classified in the SCOP v1.71, 



and the domain of the selected protein from the SCOP v1.73 must be present in the 

SCOP v1.71 hierarchy. 

The classification results for our proposed classification approaches, bottom-up 

classification approach and multi-level modified C4.5 approach are shown on the 

Table 2 and Table 3 respectively. 

Table 2.  Results of the classification with the bottom-up approach. 

Level Correctly classified Incorrectly classified Accuracy 

CLASS 3154 422 88,2% 

FOLD 3027 549 84,65% 
SUPERFAMILY 2993 583 83,69% 

FAMILY 2886 690 80,7% 

DOMAIN 2839 737 79,39% 

Table 3.  Results of the classification with the multi-level modification of C4.5. 

Level Correctly classified Incorrectly classified Accuracy 

CLASS 3050 526 85,29% 
FOLD 2957 619 82,69% 

SUPERFAMILY 2864 712 80,09% 

FAMILY 2839 737 79,38% 
DOMAIN 2821 755 78,88% 
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Fig. 4. Classification accuracy comparison of our approaches and the approaches presented in 

[14] and [1].  

We have compared our results with the protein classification approaches given in 

[1] and [14]. The dataset used in [1] is based on SCOP v1.67 and consists of 311 

training proteins taken from 27 most populated SCOP folds with no more than 35% 

sequence similarity between any two proteins. This approach presents only 

classifications by class and fold levels of the SCOP hierarchy. The dataset used in 

[14] is based on SCOP v1.69, and the test proteins are taken among two consequence 

SCOP versions. This approach provides only classification results for the fold level of 

the SCOP hierarchy. On Fig.4 we show the comparison results between classification 

results given in [1], [14], and our bottom-up approach and multi-level modification of 



C4.5 algorithm. As can be seen from the obtained results, the precision of the 

classification is satisfying. In classifying fold in [14] the precision is 92% for SCOP 

v1.69 when E-predict is used as a classification algorithm, but if C4.5 decision tree is 

used as classifier the precision for fold prediction is 82%. From this point of view our 

classifiers have comparable accuracy and produce classification results for the whole 

SCOP hierarchy, not by partial levels. It should be mentioned here, that fastSCOP [9] 

predicts the protein superfamily with 98% accuracy compared with 84% accuracy in 

our bottom-up classifier, but our bottom-up classifier classifies proteins nearly ~70 

times faster then fastSCOP thus providing much higher efficiency.  

Also we have conducted the speed performance testing (as shown on the Fig. 5) of 

our classification approaches compared with the CE [5] and MAMMOTH [6] 

approaches. We have randomly selected around 10.000 proteins and passed them to 

all four systems. The bottom-up classification lasted 6 hours on a Intel Core 2 Duo 

machine with 2 GB RAM, while multi-level C4.5 modification lasted around 11,5 

hours (~1,95 times slower) on the same machine. The MAMMOTH results are 

obtained on Intel Pentium 2.8 GHz machine, while the CE results are obtained on Sun 

Ultra Sparc II machine.  
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Fig. 5. Speed comparison of protein classification by using different classification approaches. 

4   Conclusion 

The objective of this paper was to make empirical tests of the usefulness and the 

contribution of the different protein features to the decision tree classification 

precision and the usefulness of the bottom-up classification approach and multi-level 

modification of the C4.5 algorithm. It is evident that these approaches which use 

protein descriptor and decision tree algorithms for classification introduces high level 

of efficiency which can be concluded from the time taken to classify unknown protein 

and the percent of correctly classified proteins. The multi-level modification of C4.5 

does not find as many rules as would be found by learning all the levels individually. 

This is to be expected, as the criteria for choosing nodes in the decision tree are 

slightly different, and a different amount of information is available.  



The provided comparison with some other relevant works proves the satisfying 

results obtained with this work. In the future we plan to extend the classification in 

order to solve the problem of classification of proteins in novel SCOP branches. 
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