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Abstract—Air pollution monitoring and control is becoming
a key priority in urban areas due to its substantial effect on
human morbidity and mortality. This paper presents a system
architecture for intelligent pollution visualization and future pol-
lution prediction by encompassing pollution measurements and
meteorological parameters. First, a pollution model using spatial
interpolation is built. By adding meteorological parameters this
model is further used to identify the pollution field evolution
and the position of potential sources of air pollution. Using
deep learning techniques, the system provides predictions for
future pollution levels as well as times to reaching alarming
thresholds. The whole system is encompassed in a fast, easy to
use web service and a client that visually renders the system
responses. The system is built and tested on data for the city
of Skopje. Although the spatial resolution of the system data is
low, the results are satisfactory and promising. Since the system
can be seamlessly deployed on an Internet of Things sensing
architecture, the improved data spatial resolution will improve
performance.

Index Terms—Intelligent System, Air Pollution Monitoring, Air
Pollution Prediction, Web System

I. INTRODUCTION

Air pollution is one of the key problems of major ur-
ban areas in developing and industrial countries, especially
where air quality measures are not available or minimally
implemented or enforced [1]. It is estimated that around 91%
of the world’s population lives in places where air quality
exceeds World Health Organization (WHO) guidelines, and
around 4.2 million deaths every year can be directly attributed
to exposure to ambient (outdoor) air pollution [2]. Chronic
exposure to air pollution increases the risk of cardiovascular
and respiratory mortality and morbidity, while acute short-term
inhalation of pollutants can induce changes in lung function
and the cardiovascular system exacerbating existing conditions
such as ischemic heart disease [3][4]. Air pollution contributes
to climate changes which in terms increases premature human
mortality [5].

Air quality monitoring and control is an essential part of
the concept of smart city which is becoming the standard to
which both developing and developed countries aspire, thus
the public mindfulness for the process is high. Many of the
world governments deploy and operate stations for air quality
monitoring and make the acquired data publicly available. In
general these stations have very high-quality sensory devices
that can record the state of a wide range of pollutants (like

CO, NO2, SO2, O3, PM - particulate matter, etc.). However, the
high costs of installing and maintaining these sites limits their
number - e.g. the wider Skopje area has 7 active monitoring
sites, separated from each other by several kilometers. In
such cases, the low spatial resolution is resolved by using
mathematical models that estimate the concentrations of the
pollutants over the complete geographical space of interest.
Although these models are complex and incorporate various
input parameters such as meteorological variables they can still
be inaccurate (due to highly variable meteorological conditions
[6]) which can lead to unsubstantiated inferences [7].

The aim of this research is to create an effective intelligent
air pollution prediction and visualization system build on the
top of Internet of Things. The system is to be composed of four
subsystems that work together to enable its functionalities. A
pollutant field building subsystem which is the core feeding its
results to the other subsystems for: pollution source detection,
pollution prediction, and time-to-event prediction. Taking into
account the measured pollutant concentrations from all avail-
able monitoring sites, the first objective is to build a pollution
model that gives insight of how the pollution field looks like.
The second objective is to identify the sources of pollution
as well as how will the pollutant field evolve in the future
due to the wind field. In addition, the obtained models are
to be presented to users in familiar quantities and in direct
correlation of the impact pollution has on their health. The
final objective is using deep learning techniques to predict the
time when pollution surpasses the alarming thresholds. The
whole system should provide a fast and easy way for users
to obtain and display relevant data and an intuitive graphical
user interface.

There are efforts made in overcoming the aforementioned
problems. In order to achieve good coverage of Beijing and
monitor the air quality in real time using automatic data pro-
cessing the authors of [8] developed a prototype hierarchical
system having Zig-Bee nodes in the endpoints gathering the
pollution readings and routers on top of the nodes that collect
the data, communicate between each other and transfer the
sensing data to information processing center that performs
the real-time observation of air quality. In [9] a Web-based
solution is presented. Using Java servlet and JavaLite a frame-
work for mining the air pollution data is developed, and further
spatial mining is used to explore the effects of meteorological
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conditions. A new approach to calculating air pollution levels
is proposed in [10]. The calculation is done through data fusion
and neural networks, using the meteorological variables as a
decision factor. In [11] the P-Sense system for air pollution
and monitoring is introduced. The system uses participatory
sensing to provide air pollution data in vast amounts and at
different granularity levels of time and space and thus provide
enough information for all concerned entities to be able to
analyze their problems and requirements. The authors of [12]
propose an air pollution and fog detection approach based on
the data gathered by a vehicle equipped with sensors such as
cameras and light detection and recognition instruments.

The rest of this paper is organized as follows. In the next
section the system architecture of our solution is presented.
The third section gives implementation details. In section four
the obtained results for the prediction accuracy are given. The
paper is concluded in section five.

II. SYSTEM ARCHITECTURE

The system is composed of four subsystems that work
together and each subsystem is dedicated to different system
objective. The overall architecture is given in Figure 1.

Fig. 1. System architecture

The sensor measurements feed the central subsystem, i.e.
spatial interpolation subsystem. The measurements can be ob-
tained from any sensor installed in the monitored area. Usually,
in big cities, there are measuring stations installed on a few
predefined locations. Apart from these sites, it is also possible
for citizens to participate with their own measurement, a
relatively new paradigm known as Participatory Sensing, or
Crowdsensing. E.g., temperature measurements obtained from
citizens smartphones, or pollution values obtained from home
air purifiers. Therefore, all available measurements can be used
as input data for this architecture. Apart from air pollution
sensors, meteorological data are also needed, and they can
be used from any available web service that provides such
data. In our solution, we used only wind speed and wind
direction, although the system can be expanded to include
other meteorological parameters.

In the following subsection, the other subsystems of the
architecture are explained in details, i.e. the mathematical
models and algorithms used to enable the functionality of the
system.

A. Spatial Interpolation

The first step in building the system is constructing an
interpolated pollutant field for all of the observed pollutants. A
well known method for spatial interpolation is used to generate
the pollutant field based on the collected data [13]. First,
for each pollutant, the monitoring sites’ data is filtered. All
pollutants are subjected to Kriging interpolation in order to
produce the pollutant fields, which are sampled with 500m
resolution. The Kriging process is accomplished in two steps.
First, an average value field is constructed to estimate mean
concentrations of the pollutants at each location using latitude
and longitude as predictive variables. Next, at each location
and hour, an anomaly field is created by applying simple
Kriging [14] to the differences between the current observation
and the mean value for that location. The concentration at each
location and hour is estimated as the sum of the time-invariant
average field and the time-varying anomaly field. This two-
step process helps reduce the reconstruction errors associated
with missing values. The interpolated pollutant field, P (x, t),
is estimated in two parts:

P (x, t) = S(x, t) +A(x, t) (1)

where S(x, t), is the time-invariant average field, A(x, t) is
the time-varying anomaly field, x is the location, and t is time.

The time-invariant average field is calculated using:

S(x) =
( N∑
n=1

K(n)(x)
(
p̄(n) −G(x(n))

))
+G(x) (2)

where K(n)(x) are the Kriging coefficients, p̄(n) is the esti-
mated mean pollutant concentration, and G(x) is the global
auxiliary function.

On the other hand, the time-varying anomaly field is calcu-
lated by:

A(x, t) =

N∑
n=1

K(n)(x, t)
(
p

(n)
t − p̄(n)

)
(3)

where K(n)(x, t) are the Kriging coefficients, p(n)
t is the

pollutant concentration, p̄(n) is the estimated mean pollutant
concentration.

For determining the Kriging coefficients a spherical model
is fitted to the variogram:

y(h) =


c0 + c( 3h

2h −
1
2 ( hα )3), 0 < h ≤ α

c0 + c, h > α

0, otherwise
(4)

where h is a distance and α is the fitted parameter. The
correlation function, R, that represents the correlation between
the data from the monitoring sites depending on the distance
between them, at zero distance is taken as one (R(0) ≈ 1 for



perfect data), even though the function diverges from unity
due to instrument noise.

Also, for determining the parameters of the global auxiliary
function in the stationary part,

G(x) = αλ(x)+βϕ(x)+δλ(x)2+εϕ(x)2+ηλ(x)ϕ(x)+κ

(5)

where α, β, δ, ε, η, κ are solved parameters, λ is the location’s
latitude, ϕ is the location’s longitude, and x is the location.
The Levenberg-Marquardt technique is used to solve the least-
squares problem, which proved to be better than the polyno-
mial regression algorithm. This function helps to minimize the
average Kriging error over the field.

One interesting feature added is how the level of pollutant
concentration is equivalent to the number of cigarettes smoked.
For many people, comparing air pollution to cigarette smoking
is more meaningful than the numbers of yearly deaths [15].

B. Sources Determination

The subsystem for pollution sources determination requires
accurate weather model as an extra layer for determining the
pollutant sources. Rather than adopting an existing weather
model, a simpler framework that relies only on short-term
changes in the air pollution field and a limited input of
weather data is adopted. To estimate surface fluxes, short-
term transport process and hour-by-hour changes in pollutant
concentration are considered, using the interpolated pollutant
fields constructed previously. Given a wind field, one can
predict how the pollutant field will evolve according to the
wind. By comparing the pollutant fields between two time
points one can estimate the pollutant fluxes that must have
occurred during the time interval due to the wind flow. The
estimation is further improved by considering both forward
and reverse evolution as well as an effective lifetime:

F (x, t) =
P (x + ~v(x, t)∆t, t+ ∆t)− e−∆t/τP (x, t)

2∆t
+

+
P (x, t)− e−∆t/τP (x− ~v(x, t)∆t, t+ ∆t)

2∆t

(6)

where P (x, t) is the pollutant field, ~v(x, t) is the weather
model, x is the location, t is time, ∆t is time difference, and
τ is the effective lifetime.

The use of both forward and reverse flow terms is desirable
as it allows for the partial cancellation of errors resulting from
inaccuracies in the pollution reconstruction and/or wind field.

After estimating the surface fluxes, the locations with
largest flux values that correspond to the pollutant sources
are identified. This noisy 2D surface is subjected to kernel
smoothing using the Gausian kernel as a convolution function
and the moving average values are calculated. Finally, the local
maxima is determined by observing the neighboring values
and comparing them with the current one, experimenting with
the window size. Even thought this approach might look naı̈ve,
it proved itself very effective in this research.

C. Forecasting

The data at disposal are multivariate time-series and thus
it is possible to frame a forecasting problem. The first set
of variables are the measurements of different pollutant con-
centrations from several monitoring sites close to the are of
interest. The second set are the wind field data (speed and
direction) near the area of interest. Recurrent neural networks
(RNNs) like Long Short-Term Memory (LSTM) are able
to almost seamlessly model problems with multiple input
variables [16]. When given the pollution data the system can
forecast the pollution at the next couple of hours. However,
the data is not framed as a supervising learning problem, but
modified in a way that a monitoring site is chosen to be a query
site and the pollutant concentration is predicted for the query
site for the given hour having the pollutant concentrations
and whether conditions in the prior time steps. Additionally,
the series are made stationary with differencing and seasonal
adjustment. Finally, the data is normalized.

In order to capture time or sequence dependent behaviour,
two stacked layers of 75 LSTM cells are used, unrolled during
training and prediction. The two stacked layers are used in
the network in order to remember longer patterns in the data.
The number of LSTM cells is chosen empirically in order
to prevent overfitting [17]. Some architectures apply regular
dropout to combination of layers as a regularization technique.
In this architecture the recurrent dropout is used in order to
further prevent overfitting and due to the fact of how LSTM
cells are designed to capture dependencies [18]. The mean
absolute error is used as objective function and Adam as
optimizer since it has shown itself as a better optimizer for
deep learning models then others [19].

D. Time-to-Event Prediction

The last functionality of the system is predicting the hours
until the alarming thresholds are surpassed. Recent research
in Survival Analysis, a study of expected duration of time
until one or more events happen [20], resulted in a framework
for time-to-event (TTE) prediction using deep learning, which
takes into account recurrent events, time varying covariates,
temporal patterns, sequences of varying length, learning with
censored data and flexible predictions. Appropriate model for
covering the first four points is RNN since the data used is
time-series processed in discrete steps. The last points can
be covered by appropriately choosing the objective function.
Taking into account the TTE for each monitoring site at
each timestamp - ynt for site n = 1, ..., N at timestamp
t = 0, 1, ..., Tn, measured pollutant concentrations and wind
field data up to particular time - xn0:t, and indication of whether
the datapoint is censored or not - unt , one can maximize the
objective function from survival analysis assuming that TTE
at each step follows some distribution governed by parameters
outputted from the model:

N∑
n=1

Tn∑
t=0

unt · log[Pr(Y nt = ynt |xn0:t)] + (1− unt )·

·log[Pr(Y nt > ynt |xn0:t)]

(7)



where Y ∼ is the Weibull distribution with parameters αt and

βt, and Θt =

(
αt
βt

)
= g(x0:t) is the output of the RNN.

This machine learning model uses special log-likelihood
loss for censored data to predict the distribution over time to
the next event. It is called WTTE-RNN because the Weibull
distribution is used with parameters outputted from the RNN
[21]. It might seem that training with censored data is not
appropriate but it is observed that no information can be
acquired about the parameter or the distribution of the TTE by
knowing the censoring time. All one needs is an assumption
that the distribution has some basic shape governed by few
parameters. The Weibull distribution is an obvious choice
for several reasons: has continuous and discrete variants,
is expressive, has closed forms, is similar to the Normal
distribution, has the weakest link property and has built in
regularization mechanisms.

In the system single recurrent layer made of two gated
recurrent units (GRU) is used, followed by a dense output
layer of dimensionality 2 with custom activation layer, alpha
and beta output values. The activation layer is a custom
function set to an exponential function for alpha and a sigmoid
function between 0 and max beta for the second parameter.
The rationale is that alpha should always be greater or equal
than 1 and beta should be between 0 (high confidence) and a
maximum value that acts as both regularizer and stabilizer. The
tuning parameters are: GRU with activation tanh and Adam
optimizer with learning rate 0.1.

III. SYSTEM IMPLEMENTATION

This section presents how the subsystems are integrated and
how the client renders the responses. We use the city of Skopje
as a case study because the pollution levels exceed alarming
thresholds during certain periods of the year. Two sets of
data sources (hourly data for the past five years) are used
to showcase the functionalities of the system. The first source
contains the measured pollutant concentrations obtained from
the Ministry of Environmental and Physical Planing of the Re-
public of Macedonia [22], measured at several monitoring sites
throughout the country, many of which are located in Skopje.
The monitoring sites measure the concentration of different
pollutants: carbon monoxide (CO), nitrogen dioxide (NO2),
ozone (O3), particulate matter (PM10 and PM2.5) and sulphur
dioxide (SO2) and not all sites measure the concentration of
all of the pollutants. There are missing values in the data, due
to site inactivity or faults in the measuring instruments. The
second dataset is obtained from DarkSky, a web weather API
[23], which provides data for many meteorological parameters,
but for this research only the wind speed and direction are
considered.

The system consists of a web service and a client that runs
in a browser. The web service is developed with the Node.js
run-time environment which utilizes faster programming lan-
guage, C++ in our case, in order to speed-up the calculations
needed for creating the pollutant fields as well as the source
determination. Node’s native add-on API was used to develop

binding between the environment and the low-level code. This
binding exposes the functionality as a native Node module that
can be used with simple function calls.

Express.js, a fast, minimalist web framework, was used
to develop the application that starts the server and listens
for requests. Once the server is started, the initialization step
commences. First, the data is loaded and cleansed. Next, all
of the intermediate objects are created. Last, the pollutant and
wind fields are calculated as well as the pollutant fluxes. The
parameters are stored in MongoDB.

The client is developed using the Angular platform. This
web application has several views responsible for displaying
the server responses and separating the different subsystems
that run on the server. Keras, a Python neural network library
that runs on top of Tensorflow, is used to build the neural
network models, train, predict and serialize the results.

Every URL query has the date-time and pollutant as com-
mon parameters, along with other specific parameters, where
the user can specify the date-time and pollutant for the results
of interest. The response from the server is a GeoJSON that
encodes geographical features. This format is easily parsed by
different libraries in order to display the data on a map.

The web service has four endpoints that comply with the
REST style.

The first is the ”Concentrations” endpoint, which returns
the pollutant field as a matrix of predicted concentration
values over the city, sampled with 500m resolution. Since the
matrix is dense and the algorithms are quite costly regarding
processing power, we utilized the OpenMP library in order to
process several locations in parallel. In that way we reduced
the processing time by almost threefold. The values are cached
using Redis, to prevent recalculations. Figure 2 shows how the
client displays the pollutant field.

The second is the ”Stations” endpoint, which returns the
measured pollutant concentrations from the different moni-
toring sites. Additionally, the user can query the pollutant
concentration at a specific location, by providing the latitude
and longitude for the location of interest. Besides the pollutant

Fig. 2. Pollutant field



Fig. 3. Monitoring sites

concentration, the server also returns information about how
many cigarettes the user ”smokes” in that particular location.
Figure 3 shows how the client displays the monitoring sites
using markers and pop-up on hover to display additional
information.

The third is the ”Sources” endpoint, which returns the
sources of pollution as latitude and longitude location. Figure 4
shows how the client displays the determined pollutant sources
using pulsing rings that animate on the source location.

Last is the ”Predictions” endpoint that returns matrix of
concentration values over the city but this time the values are
predicted for the future. That way, the users can see how the
pollutant field will evolve depending on the current conditions
(Figure 5). Also, the server returns information about how
many hours are left until the alarming thresholds are surpassed.

IV. PREDICTION ACCURACY

In this research there were only 18 monitoring sites through-
out the country and only 7 in Skopje, and not all sites measure
the concentration of all of the pollutants. Even though some

Fig. 4. Determined pollutant sources

Fig. 5. Predicted pollutant field

sites are couple of hundred kilometers apart, all of them had to
be taken into account when developing the models. However,
the obtain error when constructing the pollutant field is low,
depending largely on how the framework is defined.

For forecasting, a LSTM model is fitted to the data.
With early stopping enabled, the model finished earlier than
specified, despite the fact that the training and test loss had
constant lowering trend. After fitting the model, we plotted
the predicted and actual values and calculated the root mean
squared error using the test set for PM10 pollutant for the
monitoring site in the Skopje city center (Figure 6).

Regarding time-to-event prediction, the data is modified in
a way that complies with the proposed WTTE-RNN objec-
tive function and the defined network architecture. A sliding
window is used and the following steps are made: (i) data
for the past several days from the current time is captured,
adding empty rows if necessary; (ii) the time until the alarming
threshold are surpassed is determined, for every row in the
sample and whether that data is censored or not; (iii) the data

Fig. 6. PM10 pollutant concentration comparison for measuring site ’Centar’



Fig. 7. Time-to-event for pollutant PM10

is split into train and test set and modified accordingly and
the GRU model is fitted. In Figure 7 the Weibull 0.25 and
0.75 quantiles are shown, mode and mean for the α and β
parameters learned for PM10 pollutant measured in the Skopje
city center. Although, they don’t follow the data perfectly, one
can observe the matching trends.

TABLE I
MEAN SQUARE ERROR FOR DIFFERENT POLLUTANTS

Pollutant CO NO2 O3 PM10 PM2.5 SO2
MSE 0.24 0.06 46.27 0.25 12.48 0.08

The mean square error for all measurements in the Skopje
city center is given on Table I. The reason why the O3 and
PM2.5 pollutants have larger values is because O3 has a lot of
missing values that were removed in the quality control step,
while PM2.5 was measured by only three monitoring sites.

V. CONCLUSION

This paper presents a system for intelligent air pollution
visualization and prediction, that composed of four subsystems
cooperating together to enable its functionalities. The system
is very fast and consists of a web service and a client that
runs in a browser. Considering the data resolution the system
works with, the results are very promising. This system can be
very easily integrated with an Internet of Things solution for
sensing the air pollution which will significantly improve it’s
overall performance because of the improved data resolution.
Furthermore, the presented system is not constrained to air
pollution only, and can be easily adjusted to other types of
pollution that compromise quality of life in urban areas, e.g.
noise pollution.
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