ISSN 0351-336X

TERNARY GROUPOID POWERS

VESNA CELAKOSKA-JORDANOVA

Dedicated to Professor Gorgi Čupona

Abstract. The notion of ternary groupoid powers is introduced and some of its properties are investigated. In particular, it is shown that the set ${\cal E}$ of ternary groupoid powers, under a suitably defined binary operation, is a cancellative monoid and that this monoid is free over the set of its irreducible elements

In the paper [1] groupoid powers are considered to be elements of a term groupoid over the one element set $\{e\}$. Following this note, we introduce in the present work the notion of ternary groupoid powers and investigate some of their properties. The main results of the paper are Theorem 1 and Theorem 2.

Let G be a nonempty set. The mapping $[\]:G^3\to G$ from the third cartesian power of G into G is called a ternary operation. The set G together with the ternary operation [] is called a ternary groupoid, or shortly, 3-groupoid and will be denoted by (G, []) or shortly by G. The ternary groupoid of ternary terms over a given nonempty set X will be denoted by $\mathbf{T}_X = (T_X, [\])$ and its elements by t, u, v, ... The groupoid \mathbf{T}_X is injective, i.e. if $t_i, u_i \in T_X$, for i = 1, 2, 3, then $[t_1t_2t_3] = [u_1u_2u_3] \Rightarrow t_1 = u_1, t_2 = u_2, t_3 = u_3.$

For any term $t \in T_X$ we define the length |t| of t and the set of subterms P(t)of t in the following inductive way:

$$|x| = 1, |[t_1t_2t_3]| = |t_1| + |t_2| + |t_3|$$
$$P(x) = \{x\}, P([t_1t_2t_3]) = \{[t_1t_2t_3]\} \cup P(t_1) \cup P(t_2) \cup P(t_3),$$

for any $x \in X$ and any $t_1, t_2, t_3 \in T_X$. If X is an one-element set $\{e\}$, then we write $\mathbf{E} = (E, [\])$ instead of $\mathbf{T}_{\{e\}} = (E, [\])$ $(T_{\{e\}},[\,])$. Note that $E=\{e,[\stackrel{3}{e}],[\,ee[\stackrel{3}{e}]\,],[\,e[\stackrel{3}{e}]e\,],[\,[\stackrel{3}{e}]ee\,],\dots\}$, where $[\stackrel{3}{e}]$ stands for $[\,eee\,]$. Its elements are called *ternary groupoid powers* and are denoted by f, g, h, \dots

The number of ternary groupoid powers of length 2n+1 is denoted by $\delta(2n+1)$, where n is any nonnegative integer. By induction on length it can be obtained the

²⁰⁰⁰ Mathematics Subject Classification. Primary: 08B20.

Key words and phrases. Ternary groupoid, ternary groupoid powers.

following recurrent formula:

$$\delta(1) = 1$$
, $\delta(2n+1) = \sum \delta(i)\delta(j)\delta(k)$,

where (i, j, k) is an ordered 3-tuple of odd positive integers such that i + j + k = 2n + 1, for n > 1.

By a result of P. Hall ([3]), $\delta(2n+1)$ can be obtained by the explicit formula

$$\delta(2n+1) = \frac{(3n)!}{(2n+1)! \, n!}.$$

Let $G = (G, [\])$ be a 3-groupoid and $\mathbf{E} = (E, [\])$ be the ternary groupoid of ternary terms over the set $\{e\}$. Every $f \in E$ induces a transformation $f^G : G \to G$, called an *interpretation* of f in G, defined by:

$$(\forall a \in G) \ f^{\mathbf{G}}(a) = \varphi_a(f),$$

where $\varphi_a: E \to G$ is the homomorphism from **E** into **G**, such that $\varphi_a(e) = a$. In other words, for any $f, g, h \in E$,

$$e^{G}(a) = a, [fgh]^{G}(a) = [f^{G}(a)g^{G}(a)h^{G}(a)].$$
 (1)

We will usually write f(a) instead of $f^{G}(a)$ when G is understood.

By induction on the length of f, for any $f \in E$ and $t \in T_X$ it is shown that the following proposition holds.

Proposition 1. If $t \in T_X$ and $f \in E$, then:

a)
$$| f(t) | = | f | \cdot | t |$$
 b) $t \in P(f(t))$.

Proof. a) If |f| = 1, then f = e, and $|f(t)| = |e(t)| = |t| = 1 \cdot |t| = |f| \cdot |t|$. If |f| = 3, then $f = \begin{bmatrix} 3 \\ e \end{bmatrix}$, and $|f(t)| = |\begin{bmatrix} 3 \\ e \end{bmatrix}(t)| = |[e(t)e(t)e(t)]| = |[ttt]| = |t| + |t| + |t| = 3 \cdot |t| = |f| \cdot |t|$. Therefore, the statement is true for |f| = 1 and |f| = 3. Suppose that $|f(t)| = |f| \cdot |t|$ for any ternary groupoid power with odd length less than or equal to 2k - 1 and let |f(t)| = 2k + 1. Then, $f = [f_1f_2f_3]$, where f_1, f_2, f_3 have odd lengths less than or equal to 2k - 1, $|f_1| + |f_2| + |f_3| = |f|$ and

 $|f(t)| = |[f_1f_2f_3](t)| = |[f_1(t)f_2(t)f_3(t)]| = |f_1(t)| + |f_2(t)| + |f_3(t)| = |f_1||t| + |f_2||t| + |f_3||t| = (|f_1| + |f_2| + |f_3|) \cdot |t| = |f| \cdot |t|.$

b) If |f| = 1, then f = e, f(t) = e(t) = t, and $t \in P(t) = P(f(t))$. If |f| = 3, then f(t) = [eee](t) = [e(t)e(t)e(t)] = [ttt], and $P(f(t)) = P([ttt]) = \{[ttt]\} \cup P(t)$. From the fact that $t \in P(t)$, it follows that $t \in P(f(t))$. Suppose that the claim is true for any $f \in E$, such that |f| = 1, 3, ..., 2k - 1. Then, $f = [f_1f_2f_3]$, where f_1, f_2, f_3 have odd lengths less than or equal to 2k - 1 and $t \in P(f_i(t))$ for i = 1, 2, 3. By this, since $P(f(t)) = P([f_1(t)f_2(t)f_3(t)]) = \{f(t)\} \cup P(f_1(t)) \cup P(f_2(t)) \cup P(f_3(t))$, it follows that $t \in P(f(t))$.

By induction on the length of f, injectivity of \mathbf{T}_X and Prop.1 a), it can be shown that the following proposition holds.

Proposition 2. Let f and g be ternary groupoid powers and $t, u \in T_X$. Then:

a)
$$f(t) = f(u) \Rightarrow t = u$$
.
b) $f(t) = g(t) \Rightarrow f = g$.
c) $f(t) = g(u) \land (|f| = |g| \lor |t| = |u|) \Leftrightarrow f = g \land t = u$.

Proposition 3. Let f and g be ternary groupoid powers and $t, u \in T_X$. Then: $f(t) = g(u) \land |t| > |u| \Leftrightarrow (\exists ! h \in E \setminus \{e\}) \ (t = h(u) \land g = f(h)).$

Proof. Let f(t) = g(u) and |t| > |u|. If |f| = 1, than f = e, and therefore t = g(u). If h = g, then t = h(u) and g = e(g) = e(h) = f(h). Clearly, $g \neq e$, because if the opposite is true, we would have f(t) = u and then by Prop.1 a), |f||t| = |u|, that contradicts |t| > |u|.

Suppose that the statement is true for $|f|=1,3,\ldots,2k-1$. If |f|=2k+1, then $f=[f_1f_2f_3]$, where $|f_1|,|f_2|,|f_3|$ are less than or equal to 2k-1. If f(t)=g(u), then $|g|=|[g_1g_2g_3]|\geq 2k+1$, and $[f_1(t)f_2(t)f_3(t)]=[g_1(u)g_2(u)g_3(u)]$. From the fact that \mathbf{T}_X is injective, it follows that $f_1(t)=g_1(u)$. By the inductive supposition, there is $h\in E\setminus\{e\}$, such that t=h(u). Then g(u)=f(t)=f(h(u))=(f(h))(u) and thus by the Prop.2 b), it follows that g=f(h).

If $h' \neq e$ is a ternary groupoid power that has the property t = h'(u) and g = f(h'), then by h'(u) = h(u) and Prop.2 b), we obtain that h' = h. Hence, $h \neq e$ is a unique ternary groupoid power with that property.

The converse is also true. Namely, if there is a unique ternary groupoid power $h \neq e$, such that t = h(u) and g = f(h), then |t| = |h||u| > |u| and g(u) = (f(h))(u) = f(h(u)) = f(t).

The corresponding translations of the above properties that can be done when $\mathbf{T}_X = (T_X, [\])$ is replaced by $\mathbf{E} = (E, [\])$, are obvious.

Define a binary operation \circ on the set E of ternary groupoid powers by:

$$f, g \in E \implies f \circ g = f(g).$$
 (2)

The operation \circ is well defined by the formula (1), and therefore, (E, \circ) is a groupoid. We obtain an algebra $(E, [\], \circ)$ with one ternary and one binary operation such that for any $g, f_1, f_2, f_3 \in E$

$$e \circ g = g, [f_1 f_2 f_3] \circ g = [(f_1 \circ g)(f_2 \circ g)(f_3 \circ g))].$$
 (3)

Note that \circ is right distributive with respect to the operation []. We will show the following

Theorem 1. The groupoid (E, \circ) is a cancellative monoid.

Proof. Let $f, g, h \in E$. By the induction on |f|, one can show that $(f \circ g) \circ h = f \circ (g \circ h)$. If |f| = 1, then f = e, and therefore, $(f \circ g) \circ h = (e \circ g) \circ h = g \circ h = e \circ (g \circ h) = f \circ (g \circ h)$. Suppose that the proposition is true for any $f \in E$ with odd length, less than or equal to 2k - 1. Let |f| = 2k + 1 and $f = [f_1f_2f_3]$. Then f_1, f_2, f_3 have odd lengths, less than or equal to 2k - 1, and thus $(f_i \circ g) \circ h = f_i \circ (g \circ h)$, for i = 1, 2, 3. Hence,

```
 (f \circ g) \circ h = ([f_1 f_2 f_3] \circ g) \circ h = [(f_1 \circ g)(f_2 \circ g)(f_3 \circ g)] \circ h = \\ = [((f_1 \circ g) \circ h)((f_2 \circ g) \circ h)((f_3 \circ g) \circ h)] = [(f_1 \circ (g \circ h))(f_2 \circ (g \circ h))(f_3 \circ (g \circ h))] = \\ = [f_1 f_2 f_3] \circ (g \circ h) = f \circ (g \circ h).
```

Clearly, $e \in E$ is the identity element for the operation \circ . Namely, for any $g \in E$, by (1) and (2), we obtain that $e \circ g = e(g) = g$, i.e. e is a left identity. By induction on |g| one can show that e is a right identity. If |g| = 1, then g = e,

and therefore, $g \circ e = e \circ e = e = g$. Suppose that $g \circ e = g$ holds, for any $g \in E$ with odd length, less than or equal to 2k-1. Let |g|=2k+1 and $g=[g_1g_2g_3]$. Then $g_i \circ e = g_i$, where g_i has an odd length, less than or equal to 2k-1, for i=1,2,3. Therefore, $g \circ e = [g_1g_2g_3] \circ e = [(g_1 \circ e)(g_2 \circ e)(g_3 \circ e)] = [g_1g_2g_3] = g$, i.e. e is a right identity.

Hence, (E, \circ) is a semigroup with identity element, i.e. (E, \circ, e) a monoid.

The monoid (E, \circ, e) is left cancellatve, i.e. $f \circ g = f \circ h \Rightarrow g = h$. Namely, if f = e, then g = h. Suppose that implication holds for any $f \in E$ with odd length, less than or equal to 2k-1. If |f|=2k+1 and $f=[f_1f_2f_3]$, then f_i has an odd length, less than or equal to 2k-1 and $f_i \circ g = f_i \circ h \Rightarrow g = h$, for i=1,2,3. Thus, $f \circ g = [f_1f_2f_3] \circ g = [(f_1 \circ g)(f_2 \circ g)(f_3 \circ g)]$ and $f \circ h = [f_1f_2f_3] \circ h = [(f_1 \circ h)(f_2 \circ h)(f_3 \circ h)]$. By $f \circ g = f \circ h$ and the injectivity of $\mathbf{E} = (E,[])$ it follows that $f_i \circ g = f_i \circ h$, for i=1,2,3. By the inductive supposition, we obtain that g = h.

That (E, \circ, e) is right cancellative can be shown analogously.

A ternary groupoid power f is said to be *irreducible* in (E, \circ, e) if and only if

$$f \neq e \land (f = g \circ h \Rightarrow g = e \lor h = e).$$
 (4)

A ternary groupoid power f is said to be *reducible* in (E, \circ, e) if and only if there are $g, h \in E \setminus \{e\}$ such that $f = g \circ h$.

Proposition 4. If the length |f| of the ternary groupoid power f is a prime number, then f is irreducible in (E, \circ, e) .

Proof. Let $f = g \circ h$. By Prop.1 we obtain that $|f| = |g| \cdot |h|$. If |f| is a prime number, then |g| = 1 or |h| = 1, i.e. (4) holds.

Proposition 5. If g, h, p_1, p_2 are ternary groupoid powers, such that p_1 and p_2 are irreducible in (E, \circ, e) and if $g \circ p_1 = h \circ p_2$, then g = h and $p_1 = p_2$.

In other words: If $f \in E \setminus \{e\}$ is reducible, then it has a uniquely determined left and right divisors and the right divisor is irreducible.

Proof. If |g| = 1, then g = e and $p_1 = g \circ p_1 = h \circ p_2$. From the irreducibility of p_1 and p_2 we obtain that h = e. Thus, g = h and $p_1 = p_2$. Suppose that the proposition is true for $|g| \le 2k + 1$, i.e.

$$|g| \le 2k+1 \land g \circ p_1 = h \circ p_2 \Rightarrow g = h \land p_1 = p_2.$$

Let |g| = 2k + 3. (Clearly, $h \neq e$. Namely, if h = e, then we would have $g \circ p_1 = h \circ p_2 = e \circ p_2 = p_2$, and that contradicts the assumption that p_2 is irreducible.) Then $g = [g_1g_2g_3]$ and $h = [h_1h_2h_3]$, where g_1, g_2, g_3 have odd lengths less than or equal to 2k + 1. From $g \circ p_1 = [(g_1 \circ p_1)(g_2 \circ p_1)(g_3 \circ p_1)]$, $h \circ p_2 = [(h_1 \circ p_2)(h_2 \circ p_2)(h_3 \circ p_2)]$ and $g \circ p_1 = h \circ p_2$, and by the injectivity of (E, []), it follows that $g_i \circ p_1 = h_i \circ p_2$, i = 1, 2, 3. By the inductive supposition we obtain that $g_i = h_i$, i = 1, 2, 3 and $p_1 = p_2$. Thus, g = h and $p_1 = p_2$. \square

The monoid (E, \circ, e) of ternary groupoid powers is characterized by the following property.

Proposition 6. For every $f \in E \setminus \{e\}$ in the monoid (E, \circ, e) of ternary groupoid powers, there is a uniquely determined sequence of irreducible elements p_1, \ldots, p_n , such that $f = p_1 \circ p_2 \circ \cdots \circ p_n$, or $f = p_1$, if f is irreducible.

Proof. If f is irreducible or the length |f| of f is a prime number, then the statement is clear. If f is reducible, then by the Prop.5, there is a uniquely determined pair (g_1, p) of ternary groupoid powers, such that $f = g_1 \circ p$ and p is irreducible. The same discussion can be repeated for g_1 , too. This procedure will end after finite number of steps, because $|f| > |g_1| > \dots$

By Prop.6 it follows that the set P of irreducible elements in (E, \circ, e) is a generating set for (E, \circ, e) . Clearly, P is a countable set. The monoid (E, \circ, e) has the universal mapping property for the class of monoids over P. Namely, let $(M, \cdot, 1_M)$ be a monoid and let $\lambda : P \to M$ be a mapping. Define a mapping $\varphi : E \to M$ by: $\varphi(e) = 1_M, \varphi(p_i) = \lambda(p_i)$ for any $p_i \in P$, and for any reducible $f \in E, \varphi(f) = \varphi(p_1 \circ p_2 \circ \cdots \circ p_n) = \lambda(p_1) \cdot \lambda(p_2) \cdot \cdots \cdot \lambda(p_n)$. Clearly, φ is an extension of λ and it is easily shown that φ is a homomorphism from (E, \circ, e) into $(M, \cdot, 1_M)$. Therefore, (E, \circ, e) has the the universal mapping property for the class of monoids over P. Thus, we have shown the following

Theorem 2. The monoid (E, \circ, e) of ternary groupoid powers is free over the countable set of irreducible elements in (E, \circ, e) .

REFERENCES

 $[1]\,$ Ć. Čupona, N. Celakoski, S. Ilić, Groupoid powers, Bull. Math. SMM, 25 (LI) (2001), 5 – 12

FACULTY OF NATURAL SCIENCES AND MATHEMATICS, "SS. CYRIL AND METHODIUS" UNIVERSITY, SKOPJE, MACEDONIA

 $E ext{-}mail\ address: wesnacj@pmf.ukim.mk}$

^[2] A. Borowiec, W. A. Dudek, S. Duplij, Basic Consepts of Ternary Hopf Algebras, Journal of Kharkov National University, ser. Nuclei, Particles and Fields, 529, N 3(15) (2001), 21 – 29

^[3] P. M. Kohn, Universal algebra, Harper & Row, New York, Evanston and London, 1965