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Abstract

The monoids of powers in varieties of f-idempotent groupoids and
commutative f-idempotent groupoids, where f is an irreducible groupoid
power with a length at least 3, are constructed. It is shown that these
monoids are free over a countable set of irreducible groupoid powers.
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1 Introduction and preliminary notes

A groupoid G = (G, -) is an algebra with one binary operation. We denote by
Tx = (Tx,-) the groupoid of terms over a nonempty set X. The terms are
denoted by ¢, u,v,w,... For any term v of T, the length |v| of v and the set
of subterms P(v) of v are defined as:

|z =1, [tu] =|t|+]ul; P(z) = {z}, P(tu) = {tu} U P(t) U P(u),

for any x € X and any t,u € Tx. We denote by E = (E,-) the groupoid of
terms over one-element set {e}. The elements of F are called groupoid powers
and are denoted by f,g,h,.... They are introduced in [6] and are used in
several papers: [1], [2], [7].

Further on we use the shortlex ordering of terms (denoted by <), i.e.
terms are ordered so that a term of a particular length comes before any longer
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term, and amongst terms of equal length lexicographical ordering is used, with
terms earlier in the lexicographical ordering coming first. Then T is a linearly
ordered set.

A term t is said to be order-reqular if t € X or (t = tity and t; < t3).
Specially, a groupoid power f is said to be order-reqular if f =e or (f = fife
and f1 < fa).

We denote by T. = (T, ®) the free commutative groupoid over X defined
n [2] by: T. = {t € Tx : every subterm of ¢ is order-regular} and the opera-
tion ® by tbue T, = (tou=tuift <u;t©u=ut if u < t). We denote by
E. = (E.,®) the free commutative groupoid over {e}.

For any groupoid G = (G, ), each groupoid power f induces a trans-
formation f¢ : G — G, called the interpretation of f in G, defined by:
f%(a) = pu(f) for every a € G, where ¢, : E — G is the homomorphism from
E into G such that ¢,(e) = a. In other words, for any fi, fo € E and a € G,

e(a) =a, (fif2)%(a) = f(a)fy ().

We write f(a) instead of f%(a) when G is understood, and specially when
G=Txor G=E.

Define an other operation ”o” on E by fog= f(g). Clearly, the interpre-
tation of f in E is presented as:

cog=goe=g, (fif2)og=_(fiog)(fa0yg), (1)

for any g, f1, fo € E. Note that, for any groupoid G, the triple (E¢, o/, %),

where E¢ = {f¢: f € E} and o’ is an operation in EG defined by f¢ o’hG
(f o )€, is a monoid. The following statements are shown in [6].

Proposition 1.1 If f,g € E and t,u € T, then:
a) | f(@)[=1f]-1t]; t e P(f(t));
b) f(t) = f(u) =t =u;
o) f()=glw)A([t|=lul V [fl=]g]) & (f=gArt=u);
d) f(t) = g()/\It!>IUI<:>(3'h€E)(t=h()/\ = f(h)).

The corresponding translation of Prop.1.1 when Tx is substituted by E is
obvious.

A groupoid power f is said to be irreducible in (F,o,e) if f # e and
f=goh=g=e V h=e. Itis reducible in (F,o,e)if f = go h for some
g,h € E\{e}. If f = goh, then g and h are left and right divisors of f,
respectively.

It is shown in [6] that (E, o, e) is a free cancelative monoid over the set of
irreducible groupoid powers and that the monoids (E,o,e) and (E.,o,e) are
1somorphic.
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2 Examples

Let V be a variety of groupoids and let Ey, = (Ey,-) be the free groupoid in
V over {e}. The elements of Ey can be considered as powers in groupoids of
V. Namely, for every G € V and f € Ey, we define a transformation f¢ as
an interpretation of f in G. We say that f¢ is a V-power in G ([6]). We
denote by V, the variety of commutative groupoids in V and by (Ey, o, e) and
(Ey,,0,€) the monoids of powers in V and V., respectively. For any variety
V of groupoids the following two questions arise: (A) Is the monoid (Ey, o, e)
free? (B) Are the monoids (Ey, o,e) and (Ey,, o, e) isomorphic?

The following examples show that, in general, both questions may have
negative answers. We use the free groupoids constructed in [5], [4] and [3].
Example 2.1 Let V = Var(z? ~ z). The groupoid Ry = (Ry, *) defined by
Ry={teTx: (VueTx)u®>¢ P(t)} and

t,u € Ry = [txu=tu,ifut; txu=tif u=1,
is V-free over X. The carrier of the free groupoid Ey, = (Ey, *) over {e} is
Ey = {e}, i.e. the V-powers are trivial. The monoid (Ey,o,e) is not free.
The monoid (Ey,, o, ¢e) coincides with (Fy,o,e) and thus these two monoids
are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for
this variety.
Example 2.2 Let U = Var(z?y? ~ zy). The conjunction of the identities
ry? ~ ry and %y ~ xy is an axiom system of U as well ([4]). The carrier of
the free groupoid Ey = (Fy, *) over {e} is Ey = {e,e?} where e x e = €? =
exe? = e?xe = e?xe?. The monoid (Ey, o, €) is not free. The monoid (Fy,, o, €)
coincides with (Ey, o, e) and thus these two monoids are isomorphic. Hence,
the answer of (A) is negative and of (B) is positive for the variety U.
Example 2.3 Let W = Var(zy? ~ xy). Then the following identities hold
in W for any m,n € N: a2y ~ zy and, specially, 2"2™ =~ z"*!, where 2"
is defined by z' = z, 2F*! = zFz. As a special case of the main result of
[4], we obtain that the groupoid (Eyy, *), defined by Ey = {€" : n € N} and
e" x ™ = ™! is free in W over {e}. It remains to define a monoid (Ey, o, €)
that satisfies the conditions (1).

Assume that (Eyy, ®,e) and (Ey, ®,e) are two monoids that satisfy (1).
By induction on length | f| one can show that for all f,g € Ey, f &g =
f ® g, i.e. there is at most one groupoid with the desired properties. The
conditions (1) suggest the following definition of o: €™ o " = ™"~ One
can show that (Eyy, o, ¢€) is a free monoid over {e?} (e? is the only irreducible
power), i.e. (E)y,o,e) is isomorphic with the additive monoid of nonnegative
integers (Ng, +,0). By Example 2.2 we obtain that W, = U and, moreover,
Ey = Ey, = Ey, = {e,¢?} and (Ey,0,¢e) = (Ey,,0,¢) = (Ew,,o,e¢), where
70" is defined by: eoe =e,e0e? = e?2o0e = e?0e? = e Thus, the monoids
(Ew,o0,¢e) and (Ew,, o, e) are not isomorphic. Therefore, the answer of (A) is
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positive and of (B) is negative in this case.

3 Powers in f-idempotent groupoids

Let f be a fixed element of £\ {e} and denote by V/ the variety of groupoids
satisfying the identity f(x) ~ x. The elements of V/ are called f-idempotent
groupoids. For f = e", the identity f(x) ~ x becomes z" ~ x, where z* is
defined as in Example 2.3, and the groupoids are said to be n-idempotent. This
variety is denoted by V(™.

It is shown in [6] that the monoid of groupoid powers in the variety V™,
n > 3, 1s free over the set of irreducible powers that belong to the set E\wm) =
{9€ E:(Vhe E) h™ ¢ P(g)}. Is an analogous result true for the variety V/,
if f is any groupoid power? We will ask for an answer to this question when
f is any irreducible element (not necessarily f = e").

Free groupoids in the variety V/ when f is an irreducible element in (E, o, e)
are described in [5] (Th.1, Th.2). Namely, R (C Tx) is defined by

and an operation * on Ry is defined by:

CR = usp—4 W if uve Ry
HUS Ry = uRr= t, if uwv = f(1).

Then R; = (Ry,*) is a free groupoid in V/ over X. Put
Ey={gc E:(Vhe E) f(h) & P(9)}-

Here Ey stands for Ey;. Clearly, f # e, since f is irreducible in (E, 0,e). We
will show that for any irreducible f € E, | f| > 3, (Ef,o0,e) is a free monoid
over a countable generating set.

Proposition 3.1 (Ef,o,e) is a submonoid of (E,o,e).

Proof. It suffices to show that go h € Ey, for any g,h € Ey. Suppose that
there are g,h € Ey such that goh & E;. Clearly, g # e. Let g € Ef be an
element with the smallest length, such that goh ¢ Ey. Then, for g = g1g2, by
induction on | g |, we have gy o h, gooh € Ey. Since go h & Ey, it follows that
there is p € F such that g o h = f o p. The following three cases are possible:
|h| = |p|, |h| > |p|and |h| < |p|. We obtain a contradiction in all the
cases using Prop.1.1, namely b) for the first case and c) for the last two cases.
Hence, go h € Ejy.

Proposition 3.2 Ifgoh € Ey, then g,h € Ey.
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Proof. If g = e or h = e, then the claim is obvious. Assume that g # e # h.
Since goh € Ey, it follows that for every p € E, fop & P(goh). By induction
on | g| one can show that h € P(go h) and thus P(h) C P(g o h). Therefore,
fop ¢ P(h) which implies that h € E. Suppose that there are g, h € E such
that go h,h € Ef and g ¢ E;. Since g € Ly, it follows that ¢ = f o p, for
some p € E, and thus we would have goh = (fop)oh = fo(poh). This is
a contradiction, since goh € Ey and fo(poh) & Ey.

Proposition 3.3 An element g € Ey is irreducible in (Ey, 0, ¢€) if and only
if g is irreducible in (E, o, e).

Proof. Suppose that g is reducible in (F,o0,e). Then g = p o g for some
p,q € E\ {e}. By Prop.3.2, po g € Ey implies that p,q € E; and thus g is
reducible in (Ey, o, e), that contradicts the assumption. The converse is clear.

It is shown in [6] that for every p € E \ {e} there is a unique sequence
D1y - -+, Pn of trreducible elements in (E,o,e) such thatp = pyopyo...op,. As
a consequence of this and Prop.3.3 we obtain:

Corollary 3.4 For every h € Ej \ {e}, there is a uniquely determined
sequence qi, qa, - . ., ¢y of irreducible elements in Ey such that h = ¢ 0g20. . .0qy.

Proposition 3.5 There are countably many irreducible elements in the mo-
noid (Ey,o,e), when | f| > 3.

Proof. If | f| = 3, then f = e%ec or f = ee?. They are both irreducible in
(E,o,e). Take f = e?e. Put q; = €%, qu11 = eq,. For every positive integer
k there is an irreducible element ¢, € Ey. Thus, there are infinitely many
irreducible elements in . Symmetrically for f = ee®.

Let f = e", for a fixed n > 3. (Note that " is an irreducible element in
(E,0,¢), for every positive integer n > 2.) Then ¢; = e(...(e(ee€)), qr+1 = €qx

n—1

defines an infinite sequence of irreducible elements in (Ey, o, e). In general, let
f, | f]=mn >3, beirreducible in (E,o,e). Then e2e € P(f) or ee? € P(f). If
e?e € P(f), then we define ¢; to have the same "form” as f, putting e?e instead
of ee?. Then: ¢; € Ey is irreducible in (Ey, 0, e) and the sequence defined by:
¢1, Qe41 = eqy consists of irreducible elements in (Ey,o0,e). Similarly for the
case ee? € P(f).

By Prop. 3.1, 3.5 and Cor.3.4 it follows:

Theorem 3.6 For every irreducible element f € E, | f| > 3, the monoid
(Ef,0,€e) is a free monoid over a countable set of irreducible elements in

(E,o0,e).
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4 The commutative case

Let V/¢ be the variety of commutative f-idempotent groupoids. First, we
present the construction of free commutative f-idempotent groupoids, where
f is an irreducible element in (F,o0,¢e) and | f| > 3. Note that, if f € E\ E,
then f should be replaced with the ”corresponding” groupoid power f € E,
determined by the homomorphism ¢ : E — E. such that ¢(e) = e. Put
Y(f) = f for any f € E. Thus, for f = fif» we obtain that f = f; ® f,. The
justification for the replacement of f € E\ E. by f € E. is the commutativity of
every groupoid in V/¢. For instance, let G € V/¢ and let f = (e%e)e? € E'\ E..
The groupoid power f is irreducible, since | f| = 5 is a prime number ([6]).
Then, for every a € G, f%(a) = a, i.e. (a*a)a® = a. Since G is commutative,
a = (a’a)a® = a®(a*a) = a*(aa®) = f(a), where f = e?(ee?) € E.. Since every

f € E'\ E. can be replaced by f € E., we assume that f € E.,.
Define the carrier of the free groupoid Ry, in V/¢ by:

Ry ={teT,: VueT.) f(u) €P(t)}
Directly from the definition of R;. we obtain

Proposition 4.1 a) X C R;. CT,; te Ry. = P(t) C Ry..
b)t,Lue Ry = [tOu€e Ry, & (Yve Rp)tOu# f(v)].
c)t,Lue Ry = [tOug Ry & (ve Rp)tOu= f(v)].

Proof. a) and ¢) are clear.
b) If t ® u € Ry., then by the definition of Ry, f(v) ¢ P(t ® u) for every
v € T, and thus f(v) € {t ® u}, i.e. f(v) #t®u. Since T, O Ry, it follows
that v € Ry.. The converse is obvious.

Define an operation * on Ry, by:

tOu, it tOue Ry

t,ueRfC:>t*u={ v, if tOu= f(v)for some v € Ry..

Clearly, t * u is a uniquely determined element of Ry, when t © u € Ry..
If t ©u & Ry, then by Prop.4.1 ¢), there is v € Ry, such that t ® u = f(v).
If there is v; € Ry, such that t ®© u = f(vy), then f(v) = f(v1). By Prop.1.1
b), it follows that v; = v. Thus, v = ¢ * u is a uniquely determined element of
Ry.. Hence, Ry, = (Ry., *) is a groupoid.

R;. is a commutative f-idempotent groupoid. Namely, denote by f, the
interpretation of f in Ry., defined by:

e.(t) =t and (f1 © f2)«(t) = (f1)«(t) x (f2)«(t), if f = f1 O fa2 € E..

We will show that ¢« u = u * t and that f.(w) = w, for every t,u, w € Ry.. If
tOu€ Ry, thentxu=t0Ou=u0t=uxt. ftOu& Ry, thentxu=1v
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for some v € Ry, such that t ®u = f(v). However, t ®©u = v ®t in T, and
sou®t= f(v). Thus, uxt =v =t*u. Let f = fifo and w € Ry.. Since
f1, f2 are proper subterms of f it follows that (f;).(w) = fi(w), for i = 1,2.
Therefore, fu(w) = (fi © fa)(w) = (fi)«(w) * (f2)(w) = fi(w) * fo(w) = w.
Hence, Ry, € V7.

By induction on the length of terms one can show that X is the smallest
generating set for Ry..

The universal mapping property for Ry, in V’¢ over X holds. Namely,
let G = (G,:) € V¢and A : X — G is a mapping. Denote by ¢ the
homomorphism from T, into G that is an extension of A and put ¢ = ¢|r for
It suffices to show that ¢(t* u) = p(t)¢(u), for any t,u € Ry.. lf t ©u € Ry,
then txu =t ®u, so p(t*xu) = ot ©u) = p(t)p(u). If t ©u & Ry, then
txu = v, where v € Ry, and t ©u = f(v). Thus p(txu) = p(v) = [G € V| =
f(e(v)) = [ is a homomorphism | = ¢(f(v)) = ¢(t ©® u) = ¢(t)p(u). Hence,
Y = @|g,, is a homomorphism from Rj. into G such that ¢ is an extension of
A. Therefore, Ry, = (Ry, ) is V/*-free groupoid over X.

Note that Ry, = (Ry.,*) is a cancellative groupoid. Namely, let ¢, u,v €
Ricand let txu=txv. ftOu,t©v € Ry, thent ©u=1t®vin T.. Since
the groupoid T, is injective, i.e. 1 ®@ 29 =1 O Yo = {x1, 22} = {y1,y2}, one
obtains that {t,u} = {t,v},ie. u=v. ftOu, tOvV &€ Ry, then tOu = f(wy),
toOv = f(wy), for some wy, wy € Ry.. However, wy = txu = txv = w,, and thus
f(wy) = f(ws). Therefore, tOu=t0Ov,ie. u=v. IftOu € Ry, tOv & Ry,
then txu = txv is not possible in Ry.. Namely, txu =t©u and t*v = w, for
some w € Ry, such that t®v = f(w). Thus, tOu = txu = txv = w. Using this,
one obtains that tOv = f(tOu), i.e. tOv = (1Of2)(tOu) = fL(tOU)O f2(tOu)
in T. which implies that {¢t,v} = {fi(t © u), fo(t ®© uw)}. Hence, t = f1(t © u)
or t = fo(t ® u). None of this is possible, since |[t| # | fi| - (|[t| + |u]).
Symmetrically for the case t © u € Ry, t ©v € Ry.. Thus, Ry, is left
cancellative, and by commutativity it is right cancellative.

Theorem 4.2 The groupoid Ry, = (Ry., ) is free in VI over X and it is
cancellative.

Now, consider the monoid of powers for the variety V/¢. Put

Eje={g9€ E.: (Yhe E.) f(h) & P(g)}-

0

Define an operation "o” on Ef. according to (1), as a restriction of the
operation ”o” in (E,, o, e). By a direct verification one can show that analogous
propositions like Prop.3.1-Prop.3.5 hold, putting (E/., o, e) instead of (E, o, €)

and (E., o, e) instead of (E,o,¢). Thus,

Theorem 4.3 For every irreducible element f € E., | f| > 3, the monoid
(Efc,0,€) is free over a countable set of irreducible elements in (E.,o,e€).

The answer of (A) and of (B) is positive for (Ey,0,e) and (Ef., o, e).
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