Monoids of Powers in Varieties of f-Idempotent Groupoids

Vesna Celakoska-Jordanova

Faculty of Natural Sciences and Mathematics
"Ss. Cyril and Methodius University", Skopje, R. Macedonia
vesnacj@pmf.ukim.mk

Copyright © 2013 V. Celakoska-Jordanova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The monoids of powers in varieties of f-idempotent groupoids and commutative f-idempotent groupoids, where f is an irreducible groupoid power with a length at least 3, are constructed. It is shown that these monoids are free over a countable set of irreducible groupoid powers.

Mathematics Subject Classification: 08B20; 03C05

Keywords: Variety of groupoids, free groupoid, groupoid power, monoid

1 Introduction and preliminary notes

A groupoid $G = (G, \cdot)$ is an algebra with one binary operation. We denote by $\mathbf{T}_X = (T_X, \cdot)$ the groupoid of terms over a nonempty set X. The terms are denoted by t, u, v, w, \ldots For any term v of T_X , the length |v| of v and the set of subterms P(v) of v are defined as:

$$|x| = 1, |tu| = |t| + |u|; P(x) = \{x\}, P(tu) = \{tu\} \cup P(t) \cup P(u),$$

for any $x \in X$ and any $t, u \in T_X$. We denote by $\mathbf{E} = (E, \cdot)$ the groupoid of terms over one-element set $\{e\}$. The elements of E are called *groupoid powers* and are denoted by f, g, h, \ldots They are introduced in [6] and are used in several papers: [1], [2], [7].

Further on we use the shortlex ordering of terms (denoted by \leq), i.e. terms are ordered so that a term of a particular length comes before any longer

term, and amongst terms of equal length lexicographical ordering is used, with terms earlier in the lexicographical ordering coming first. Then T_X is a linearly ordered set.

A term t is said to be order-regular if $t \in X$ or $(t = t_1t_2 \text{ and } t_1 \leq t_2)$. Specially, a groupoid power f is said to be order-regular if f = e or $(f = f_1f_2 \text{ and } f_1 \leq f_2)$.

We denote by $\mathbf{T}_c = (T_c, \odot)$ the free commutative groupoid over X defined in [2] by: $T_c = \{t \in T_X : \text{ every subterm of } t \text{ is order-regular}\}$ and the operation \odot by $t, u \in T_c \Rightarrow (t \odot u = tu \text{ if } t \leq u; t \odot u = ut \text{ if } u < t)$. We denote by $\mathbf{E}_c = (E_c, \odot)$ the free commutative groupoid over $\{e\}$.

For any groupoid $G = (G, \cdot)$, each groupoid power f induces a transformation $f^G : G \to G$, called the *interpretation* of f in G, defined by: $f^G(a) = \varphi_a(f)$ for every $a \in G$, where $\varphi_a : E \to G$ is the homomorphism from E into G such that $\varphi_a(e) = a$. In other words, for any $f_1, f_2 \in E$ and $a \in G$,

$$e^{\mathbf{G}}(a) = a, \ (f_1 f_2)^{\mathbf{G}}(a) = f_1^{\mathbf{G}}(a) f_2^{\mathbf{G}}(a).$$

We write f(a) instead of $f^{G}(a)$ when G is understood, and specially when $G = \mathbf{T}_{X}$ or $G = \mathbf{E}$.

Define an other operation " \circ " on E by $f \circ g = f(g)$. Clearly, the interpretation of f in \mathbf{E} is presented as:

$$e \circ g = g \circ e = g, \ (f_1 f_2) \circ g = (f_1 \circ g)(f_2 \circ g),$$
 (1)

for any $g, f_1, f_2 \in E$. Note that, for any groupoid G, the triple (E^G, \circ', e^G) , where $E^G = \{f^G : f \in E\}$ and \circ' is an operation in E^G defined by $f^G \circ' h^G = (f \circ h)^G$, is a monoid. The following statements are shown in [6].

Proposition 1.1 If $f, g \in E$ and $t, u \in T_X$, then:

- a) $|f(t)| = |f| \cdot |t|$; $t \in P(f(t))$;
- b) $f(t) = f(u) \Rightarrow t = u$;
- c) $f(t) = g(u) \land (|t| = |u| \lor |f| = |g|) \Leftrightarrow (f = g \land t = u);$
- d) $f(t) = g(u) \land |t| > |u| \iff (\exists ! h \in E) (t = h(u) \land g = f(h)).$

The corresponding translation of Prop.1.1 when T_X is substituted by E is obvious.

A groupoid power f is said to be *irreducible* in (E, \circ, e) if $f \neq e$ and $f = g \circ h \Rightarrow g = e \lor h = e$. It is *reducible* in (E, \circ, e) if $f = g \circ h$ for some $g, h \in E \setminus \{e\}$. If $f = g \circ h$, then g and h are *left* and *right divisors* of f, respectively.

It is shown in [6] that (E, \circ, e) is a free cancelative monoid over the set of irreducible groupoid powers and that the monoids (E, \circ, e) and (E_c, \circ, e) are isomorphic.

2 Examples

Let \mathcal{V} be a variety of groupoids and let $\mathbf{E}_{\mathcal{V}} = (E_{\mathcal{V}}, \cdot)$ be the free groupoid in \mathcal{V} over $\{e\}$. The elements of $E_{\mathcal{V}}$ can be considered as powers in groupoids of \mathcal{V} . Namely, for every $\mathbf{G} \in \mathcal{V}$ and $f \in E_{\mathcal{V}}$, we define a transformation $f^{\mathbf{G}}$ as an interpretation of f in \mathbf{G} . We say that $f^{\mathbf{G}}$ is a \mathcal{V} -power in \mathbf{G} ([6]). We denote by \mathcal{V}_c the variety of commutative groupoids in \mathcal{V} and by $(E_{\mathcal{V}_c}, \circ, e)$ and $(E_{\mathcal{V}_c}, \circ, e)$ the monoids of powers in \mathcal{V} and \mathcal{V}_c , respectively. For any variety \mathcal{V} of groupoids the following two questions arise: (A) Is the monoid $(E_{\mathcal{V}}, \circ, e)$ free? (B) Are the monoids $(E_{\mathcal{V}}, \circ, e)$ and $(E_{\mathcal{V}_c}, \circ, e)$ isomorphic?

The following examples show that, in general, both questions may have negative answers. We use the free groupoids constructed in [5], [4] and [3]. **Example 2.1** Let $\mathcal{V} = \text{Var}(x^2 \approx x)$. The groupoid $\mathbf{R}_{\mathcal{V}} = (R_{\mathcal{V}}, *)$ defined by $R_{\mathcal{V}} = \{t \in T_X : (\forall u \in T_X) \ u^2 \notin P(t)\}$ and

 $t, u \in R_{\mathcal{V}} \Rightarrow [t * u = tu, \text{if } u \neq t; \ t * u = t, \text{if } u = t],$

is \mathcal{V} -free over X. The carrier of the free groupoid $\mathbf{E}_{\mathcal{V}} = \{E_{\mathcal{V}}, *\}$ over $\{e\}$ is $E_{\mathcal{V}} = \{e\}$, i.e. the \mathcal{V} -powers are trivial. The monoid $(E_{\mathcal{V}}, \circ, e)$ is not free. The monoid $(E_{\mathcal{V}_c}, \circ, e)$ coincides with $(E_{\mathcal{V}}, \circ, e)$ and thus these two monoids are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for this variety.

Example 2.2 Let $\mathcal{U} = \text{Var}(x^2y^2 \approx xy)$. The conjunction of the identities $xy^2 \approx xy$ and $x^2y \approx xy$ is an axiom system of \mathcal{U} as well ([4]). The carrier of the free groupoid $\mathbf{E}_{\mathcal{U}} = (E_{\mathcal{U}}, *)$ over $\{e\}$ is $E_{\mathcal{U}} = \{e, e^2\}$ where $e * e = e^2 = e * e^2 = e^2 * e = e^2 * e^2$. The monoid $(E_{\mathcal{U}}, \circ, e)$ is not free. The monoid $(E_{\mathcal{U}_c}, \circ, e)$ coincides with $(E_{\mathcal{U}}, \circ, e)$ and thus these two monoids are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for the variety \mathcal{U} .

Example 2.3 Let $W = \text{Var}(xy^2 \approx xy)$. Then the following identities hold in W for any $m, n \in \mathbb{N}$: $xy^n \approx xy$ and, specially, $x^nx^m \approx x^{n+1}$, where x^k is defined by $x^1 = x$, $x^{k+1} = x^kx$. As a special case of the main result of [4], we obtain that the groupoid $(E_W, *)$, defined by $E_W = \{e^n : n \in \mathbb{N}\}$ and $e^n * e^m = e^{n+1}$ is free in W over $\{e\}$. It remains to define a monoid (E_W, \circ, e) that satisfies the conditions (1).

Assume that $(E_{\mathcal{W}}, \oplus, e)$ and $(E_{\mathcal{W}}, \otimes, e)$ are two monoids that satisfy (1). By induction on length |f| one can show that for all $f, g \in E_{\mathcal{W}}, f \oplus g = f \otimes g$, i.e. there is at most one groupoid with the desired properties. The conditions (1) suggest the following definition of \circ : $e^m \circ e^n = e^{m+n-1}$. One can show that $(E_{\mathcal{W}}, \circ, e)$ is a free monoid over $\{e^2\}$ (e^2 is the only irreducible power), i.e. $(E_{\mathcal{W}}, \circ, e)$ is isomorphic with the additive monoid of nonnegative integers $(\mathbf{N}_0, +, 0)$. By Example 2.2 we obtain that $\mathcal{W}_c = \mathcal{U}$ and, moreover, $E_{\mathcal{U}} = E_{\mathcal{U}_c} = E_{\mathcal{W}_c} = \{e, e^2\}$ and $(E_{\mathcal{U}}, \circ, e) = (E_{\mathcal{U}_c}, \circ, e) = (E_{\mathcal{W}_c}, \circ, e)$, where " \circ " is defined by: $e \circ e = e, e \circ e^2 = e^2 \circ e = e^2 \circ e^2 = e^2$. Thus, the monoids $(E_{\mathcal{W}_c}, \circ, e)$ and $(E_{\mathcal{W}_c}, \circ, e)$ are not isomorphic. Therefore, the answer of (A) is

positive and of (B) is negative in this case.

3 Powers in f-idempotent groupoids

Let f be a fixed element of $E \setminus \{e\}$ and denote by \mathcal{V}^f the variety of groupoids satisfying the identity $f(x) \approx x$. The elements of \mathcal{V}^f are called f-idempotent groupoids. For $f = e^n$, the identity $f(x) \approx x$ becomes $x^n \approx x$, where x^k is defined as in Example 2.3, and the groupoids are said to be n-idempotent. This variety is denoted by $\mathcal{V}^{(n)}$.

It is shown in [6] that the monoid of groupoid powers in the variety $\mathcal{V}^{(n)}$, $n \geq 3$, is free over the set of irreducible powers that belong to the set $E_{\mathcal{V}^{(n)}} = \{g \in E : (\forall h \in E) \ h^n \notin P(g)\}$. Is an analogous result true for the variety \mathcal{V}^f , if f is any groupoid power? We will ask for an answer to this question when f is any irreducible element (not necessarily $f = e^n$).

Free groupoids in the variety \mathcal{V}^f when f is an irreducible element in (E, \circ, e) are described in [5] (Th.1, Th.2). Namely, R_f ($\subseteq T_X$) is defined by

$$R_f = \{ u \in T_X : (\forall t \in T_X) \ f(t) \notin P(u) \}$$

and an operation * on R_f is defined by:

$$u, v \in R_f \Rightarrow u * v = \begin{cases} uv, & \text{if } uv \in R_f \\ t, & \text{if } uv = f(t). \end{cases}$$

Then $\mathbf{R}_f = (R_f, *)$ is a free groupoid in \mathcal{V}^f over X. Put

$$E_f = \{g \in E : (\forall h \in E) \mid f(h) \not\in P(g)\}.$$

Here E_f stands for $E_{\mathcal{V}^f}$. Clearly, $f \neq e$, since f is irreducible in (E, \circ, e) . We will show that for any irreducible $f \in E$, $|f| \geq 3$, (E_f, \circ, e) is a free monoid over a countable generating set.

Proposition 3.1 (E_f, \circ, e) is a submonoid of (E, \circ, e) .

Proof. It suffices to show that $g \circ h \in E_f$, for any $g, h \in E_f$. Suppose that there are $g, h \in E_f$ such that $g \circ h \not\in E_f$. Clearly, $g \neq e$. Let $g \in E_f$ be an element with the smallest length, such that $g \circ h \not\in E_f$. Then, for $g = g_1g_2$, by induction on |g|, we have $g_1 \circ h$, $g_2 \circ h \in E_f$. Since $g \circ h \not\in E_f$, it follows that there is $p \in E$ such that $g \circ h = f \circ p$. The following three cases are possible: |h| = |p|, |h| > |p| and |h| < |p|. We obtain a contradiction in all the cases using Prop.1.1, namely b) for the first case and c) for the last two cases. Hence, $g \circ h \in E_f$.

Proposition 3.2 If $g \circ h \in E_f$, then $g, h \in E_f$.

Proof. If g = e or h = e, then the claim is obvious. Assume that $g \neq e \neq h$. Since $g \circ h \in E_f$, it follows that for every $p \in E$, $f \circ p \notin P(g \circ h)$. By induction on |g| one can show that $h \in P(g \circ h)$ and thus $P(h) \subseteq P(g \circ h)$. Therefore, $f \circ p \notin P(h)$ which implies that $h \in E_f$. Suppose that there are $g, h \in E$ such that $g \circ h, h \in E_f$ and $g \notin E_f$. Since $g \notin E_f$, it follows that $g = f \circ p$, for some $p \in E$, and thus we would have $g \circ h = (f \circ p) \circ h = f \circ (p \circ h)$. This is a contradiction, since $g \circ h \in E_f$ and $f \circ (p \circ h) \notin E_f$.

Proposition 3.3 An element $g \in E_f$ is irreducible in (E_f, \circ, e) if and only if g is irreducible in (E, \circ, e) .

Proof. Suppose that g is reducible in (E, \circ, e) . Then $g = p \circ q$ for some $p, q \in E \setminus \{e\}$. By Prop.3.2, $p \circ q \in E_f$ implies that $p, q \in E_f$ and thus g is reducible in (E_f, \circ, e) , that contradicts the assumption. The converse is clear.

It is shown in [6] that for every $p \in E \setminus \{e\}$ there is a unique sequence p_1, \ldots, p_n of irreducible elements in (E, \circ, e) such that $p = p_1 \circ p_2 \circ \ldots \circ p_n$. As a consequence of this and Prop.3.3 we obtain:

Corollary 3.4 For every $h \in E_f \setminus \{e\}$, there is a uniquely determined sequence q_1, q_2, \ldots, q_n of irreducible elements in E_f such that $h = q_1 \circ q_2 \circ \ldots \circ q_n$.

Proposition 3.5 There are countably many irreducible elements in the monoid (E_f, \circ, e) , when $|f| \ge 3$.

Proof. If |f| = 3, then $f = e^2 e$ or $f = ee^2$. They are both irreducible in (E, \circ, e) . Take $f = e^2 e$. Put $q_1 = e^2, q_{k+1} = eq_k$. For every positive integer k there is an irreducible element $q_k \in E_f$. Thus, there are infinitely many irreducible elements in E_f . Symmetrically for $f = ee^2$.

Let $f = e^n$, for a fixed $n \ge 3$. (Note that e^n is an irreducible element in (E, \circ, e) , for every positive integer $n \ge 2$.) Then $q_1 = \underbrace{e(\dots(e(ee))}_{}, q_{k+1} = eq_k$

defines an infinite sequence of irreducible elements in (E_f, \circ, e) . In general, let $f, |f| = n \ge 3$, be irreducible in (E, \circ, e) . Then $e^2e \in P(f)$ or $ee^2 \in P(f)$. If $e^2e \in P(f)$, then we define q_1 to have the same "form" as f, putting e^2e instead of ee^2 . Then: $q_1 \in E_f$ is irreducible in (E_f, \circ, e) and the sequence defined by: $q_1, q_{k+1} = eq_k$ consists of irreducible elements in (E_f, \circ, e) . Similarly for the case $ee^2 \in P(f)$.

By Prop. 3.1, 3.5 and Cor.3.4 it follows:

Theorem 3.6 For every irreducible element $f \in E$, $|f| \ge 3$, the monoid (E_f, \circ, e) is a free monoid over a countable set of irreducible elements in (E, \circ, e) .

4 The commutative case

Let \mathcal{V}^{fc} be the variety of commutative f-idempotent groupoids. First, we present the construction of free commutative f-idempotent groupoids, where f is an irreducible element in (E, \circ, e) and $|f| \geq 3$. Note that, if $f \in E \setminus E_c$, then f should be replaced with the "corresponding" groupoid power $\overline{f} \in E_c$ determined by the homomorphism $\psi : \mathbf{E} \to \mathbf{E}_c$ such that $\psi(e) = e$. Put $\psi(f) = \overline{f}$ for any $f \in E$. Thus, for $f = f_1 f_2$ we obtain that $\overline{f} = \overline{f_1} \odot \overline{f_2}$. The justification for the replacement of $f \in E \setminus E_c$ by $\overline{f} \in E_c$ is the commutativity of every groupoid in \mathcal{V}^{fc} . For instance, let $\mathbf{G} \in \mathcal{V}^{fc}$ and let $f = (e^2 e)e^2 \in E \setminus E_c$. The groupoid power f is irreducible, since |f| = 5 is a prime number ([6]). Then, for every $a \in G$, $f^G(a) = a$, i.e. $(a^2 a)a^2 = a$. Since \mathbf{G} is commutative, $a = (a^2 a)a^2 = a^2(a^2 a) = a^2(aa^2) = \overline{f}(a)$, where $\overline{f} = e^2(ee^2) \in E_c$. Since every $f \in E \setminus E_c$ can be replaced by $\overline{f} \in E_c$, we assume that $f \in E_c$.

Define the carrier of the free groupoid R_{fc} in \mathcal{V}^{fc} by:

$$R_{fc} = \{ t \in T_c : (\forall u \in T_c) \ f(u) \notin P(t) \}.$$

Directly from the definition of R_{fc} we obtain

Proposition 4.1 a) $X \subseteq R_{fc} \subseteq T_c$; $t \in R_{fc} \Rightarrow P(t) \subseteq R_{fc}$.

- b) $t, u \in R_{fc} \Rightarrow [t \odot u \in R_{fc} \Leftrightarrow (\forall v \in R_{fc}) \ t \odot u \neq f(v)].$
- c) $t, u \in R_{fc} \implies [t \odot u \notin R_{fc} \iff (\exists v \in R_{fc}) \ t \odot u = f(v)].$

Proof. a) and c) are clear.

b) If $t \odot u \in R_{fc}$, then by the definition of R_{fc} , $f(v) \not\in P(t \odot u)$ for every $v \in T_c$, and thus $f(v) \not\in \{t \odot u\}$, i.e. $f(v) \neq t \odot u$. Since $T_c \supseteq R_{fc}$, it follows that $v \in R_{fc}$. The converse is obvious.

Define an operation * on R_{fc} by:

$$t, u \in R_{fc} \Rightarrow t * u = \begin{cases} t \odot u, & \text{if } t \odot u \in R_{fc} \\ v, & \text{if } t \odot u = f(v) \text{ for some } v \in R_{fc}. \end{cases}$$

Clearly, t * u is a uniquely determined element of R_{fc} when $t \odot u \in R_{fc}$. If $t \odot u \notin R_{fc}$, then by Prop.4.1 c), there is $v \in R_{fc}$, such that $t \odot u = f(v)$. If there is $v_1 \in R_{fc}$ such that $t \odot u = f(v_1)$, then $f(v) = f(v_1)$. By Prop.1.1 b), it follows that $v_1 = v$. Thus, v = t * u is a uniquely determined element of R_{fc} . Hence, $\mathbf{R}_{fc} = (R_{fc}, *)$ is a groupoid.

 \mathbf{R}_{fc} is a commutative f-idempotent groupoid. Namely, denote by f_* the interpretation of f in \mathbf{R}_{fc} , defined by:

$$e_*(t) = t$$
 and $(f_1 \odot f_2)_*(t) = (f_1)_*(t) * (f_2)_*(t)$, if $f = f_1 \odot f_2 \in E_c$.

We will show that t * u = u * t and that $f_*(w) = w$, for every $t, u, w \in R_{fc}$. If $t \odot u \in R_{fc}$, then $t * u = t \odot u = u \odot t = u * t$. If $t \odot u \notin R_{fc}$, then t * u = v

for some $v \in R_{fc}$, such that $t \odot u = f(v)$. However, $t \odot u = u \odot t$ in T_c and so $u \odot t = f(v)$. Thus, u * t = v = t * u. Let $f = f_1 f_2$ and $w \in R_{fc}$. Since f_1, f_2 are proper subterms of f it follows that $(f_i)_*(w) = f_i(w)$, for i = 1, 2. Therefore, $f_*(w) = (f_1 \odot f_2)_*(w) = (f_1)_*(w) * (f_2)_*(w) = f_1(w) * f_2(w) = w$. Hence, $\mathbf{R}_{fc} \in \mathcal{V}^{fc}$.

By induction on the length of terms one can show that X is the smallest generating set for \mathbf{R}_{fc} .

The universal mapping property for \mathbf{R}_{fc} in \mathcal{V}^{fc} over X holds. Namely, let $\mathbf{G} = (G, \cdot) \in \mathcal{V}^{fc}$ and $\lambda : X \to G$ is a mapping. Denote by φ the homomorphism from \mathbf{T}_c into \mathbf{G} that is an extension of λ and put $\psi = \varphi|_{R_{fc}}$. It suffices to show that $\varphi(t*u) = \varphi(t)\varphi(u)$, for any $t, u \in R_{fc}$. If $t \odot u \in R_{fc}$, then $t*u = t \odot u$, so $\varphi(t*u) = \varphi(t)\varphi(u)$. If $t \odot u \notin R_{fc}$, then t*u = v, where $v \in R_{fc}$ and $t \odot u = f(v)$. Thus $\varphi(t*u) = \varphi(v) = [\mathbf{G} \in \mathcal{V}^{fc}] = f(\varphi(v)) = [\varphi \text{ is a homomorphism }] = \varphi(f(v)) = \varphi(t \odot u) = \varphi(t)\varphi(u)$. Hence, $\psi = \varphi|_{R_{fc}}$ is a homomorphism from \mathbf{R}_{fc} into \mathbf{G} such that ψ is an extension of λ . Therefore, $\mathbf{R}_{fc} = (R_{fc}, *)$ is \mathcal{V}^{fc} -free groupoid over X.

Note that $\mathbf{R}_{fc} = (R_{fc}, *)$ is a cancellative groupoid. Namely, let $t, u, v \in R_{fc}$ and let t * u = t * v. If $t \odot u, t \odot v \in R_{fc}$, then $t \odot u = t \odot v$ in \mathbf{T}_c . Since the groupoid \mathbf{T}_c is injective, i.e. $x_1 \odot x_2 = y_1 \odot y_2 \Rightarrow \{x_1, x_2\} = \{y_1, y_2\}$, one obtains that $\{t, u\} = \{t, v\}$, i.e. u = v. If $t \odot u, t \odot v \notin R_{fc}$, then $t \odot u = f(w_1)$, $t \odot v = f(w_2)$, for some $w_1, w_2 \in R_{fc}$. However, $w_1 = t * u = t * v = w_2$, and thus $f(w_1) = f(w_2)$. Therefore, $t \odot u = t \odot v$, i.e. u = v. If $t \odot u \in R_{fc}, t \odot v \notin R_{fc}$, then t * u = t * v is not possible in \mathbf{R}_{fc} . Namely, $t * u = t \odot u$ and t * v = w, for some $u \in R_{fc}$ such that $t \odot v = f(u)$. Thus, $t \odot u = t * u = t * v = w$. Using this, one obtains that $t \odot v = f(t \odot u)$, i.e. $t \odot v = (f_1 \odot f_2)(t \odot u) = f_1(t \odot u) \odot f_2(t \odot u)$ in \mathbf{T}_c which implies that $\{t, v\} = \{f_1(t \odot u), f_2(t \odot u)\}$. Hence, $t = f_1(t \odot u)$ or $t = f_2(t \odot u)$. None of this is possible, since $|t| \neq |f_i| \cdot (|t| + |u|)$. Symmetrically for the case $t \odot u \notin R_{fc}$, $t \odot v \in R_{fc}$. Thus, \mathbf{R}_{fc} is left cancellative, and by commutativity it is right cancellative.

Theorem 4.2 The groupoid $\mathbf{R}_{fc} = (R_{fc}, *)$ is free in \mathcal{V}^{fc} over X and it is cancellative.

Now, consider the monoid of powers for the variety \mathcal{V}^{fc} . Put

$$E_{fc} = \{ g \in E_c : (\forall h \in E_c) \ f(h) \notin P(g) \}.$$

Define an operation " \circ " on E_{fc} according to (1), as a restriction of the operation " \circ " in (E_c, \circ, e) . By a direct verification one can show that analogous propositions like Prop.3.1–Prop.3.5 hold, putting (E_{fc}, \circ, e) instead of (E_f, \circ, e) and (E_c, \circ, e) instead of (E_f, \circ, e) . Thus,

Theorem 4.3 For every irreducible element $f \in E_c$, $|f| \ge 3$, the monoid (E_{fc}, \circ, e) is free over a countable set of irreducible elements in (E_c, \circ, e) .

The answer of (A) and of (B) is positive for (E_f, \circ, e) and (E_{fc}, \circ, e) .

References

- [1] V. Celakoska-Jordanova, Free groupoids in the class of power left and right idempotent groupoids, International Journal of Algebra, Vol.2, (2008), no. 10, 451 461
- [2] V. Celakoska-Jordanova, Free power-commutative groupoids, Math. Slovaca (accepted).
- [3] G. Čupona, N. Celakoski, On groupoids with the identity $xy^2 = xy$, Contributions Sec. Math. Tech. Sci., MANU, **XVIII**, **1–2** (1997), 5 16.
- [4] \acute{G} . Čupona, N. Celakoski, On groupoids with the identity $x^2y^2 = xy$, Contributions Sec. Math. Tech. Sci., MANU, **XVIII**, **1–2** (1997), 5 15.
- [5] G. Čupona, S. Ilić, Free groupoids with $x^n = x$, II, Novi Sad J.Math., Vol.29, No.1. (1999), 147 154.
- [6] G. Čupona, N. Celakoski, S. Ilić, *Groupoid powers*, Bulletin Mathématique, **25 (LI)** Skopje, R. Macedonia, (2001), 5 12.
- [7] G. Čupona, N. Celakoski, S. Ilić, On monoassociative groupoids, Bulletin Mathématique, **26** (LII) (2002), 5-16.

Received: March 12, 2013