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Abstract

The monoids of powers in varieties of f -idempotent groupoids and
commutative f -idempotent groupoids, where f is an irreducible groupoid
power with a length at least 3, are constructed. It is shown that these
monoids are free over a countable set of irreducible groupoid powers.
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1 Introduction and preliminary notes

A groupoid G = (G, ·) is an algebra with one binary operation. We denote by
TX = (TX , ·) the groupoid of terms over a nonempty set X. The terms are
denoted by t, u, v, w, . . . For any term v of TX , the length | v | of v and the set
of subterms P (v) of v are defined as:

| x | = 1, | tu | = | t | + | u |; P (x) = {x}, P (tu) = {tu} ∪ P (t) ∪ P (u),

for any x ∈ X and any t, u ∈ TX . We denote by E = (E, ·) the groupoid of
terms over one-element set {e}. The elements of E are called groupoid powers
and are denoted by f, g, h, . . .. They are introduced in [6] and are used in
several papers: [1], [2], [7].

Further on we use the shortlex ordering of terms (denoted by ≤), i.e.
terms are ordered so that a term of a particular length comes before any longer
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term, and amongst terms of equal length lexicographical ordering is used, with
terms earlier in the lexicographical ordering coming first. Then TX is a linearly
ordered set.

A term t is said to be order-regular if t ∈ X or (t = t1t2 and t1 ≤ t2).
Specially, a groupoid power f is said to be order-regular if f = e or (f = f1f2

and f1 ≤ f2).
We denote by Tc = (Tc,�) the free commutative groupoid over X defined

in [2] by: Tc = {t ∈ TX : every subterm of t is order-regular} and the opera-
tion � by t, u ∈ Tc ⇒ (t� u = tu if t ≤ u; t� u = ut if u < t). We denote by
Ec = (Ec,�) the free commutative groupoid over {e}.

For any groupoid G = (G, ·), each groupoid power f induces a trans-
formation fG : G → G, called the interpretation of f in G, defined by:
fG(a) = ϕa(f) for every a ∈ G, where ϕa : E → G is the homomorphism from
E into G such that ϕa(e) = a. In other words, for any f1, f2 ∈ E and a ∈ G,

eG(a) = a, (f1f2)
G(a) = fG

1 (a)fG
2 (a).

We write f(a) instead of fG(a) when G is understood, and specially when
G = TX or G = E.

Define an other operation ”◦” on E by f ◦ g = f(g). Clearly, the interpre-
tation of f in E is presented as:

e ◦ g = g ◦ e = g, (f1f2) ◦ g = (f1 ◦ g)(f2 ◦ g), (1)

for any g, f1, f2 ∈ E. Note that, for any groupoid G, the triple (EG , ◦′, eG),
where EG = {fG : f ∈ E} and ◦′ is an operation in EG defined by fG ◦′hG =
(f ◦ h)G , is a monoid. The following statements are shown in [6].

Proposition 1.1 If f, g ∈ E and t, u ∈ TX, then:
a) | f(t) | = | f | · | t |; t ∈ P (f(t));
b) f(t) = f(u) ⇒ t = u;
c) f(t) = g(u) ∧ (| t | = | u | ∨ | f | = | g |) ⇔ (f = g ∧ t = u);
d) f(t) = g(u) ∧ | t | > | u | ⇔ (∃ ! h ∈ E) (t = h(u) ∧ g = f(h)).

The corresponding translation of Prop.1.1 when TX is substituted by E is
obvious.

A groupoid power f is said to be irreducible in (E, ◦, e) if f �= e and
f = g ◦ h ⇒ g = e ∨ h = e. It is reducible in (E, ◦, e) if f = g ◦ h for some
g, h ∈ E \ {e}. If f = g ◦ h, then g and h are left and right divisors of f ,
respectively.

It is shown in [6] that (E, ◦, e) is a free cancelative monoid over the set of
irreducible groupoid powers and that the monoids (E, ◦, e) and (Ec, ◦, e) are
isomorphic.
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2 Examples

Let V be a variety of groupoids and let EV = (EV , ·) be the free groupoid in
V over {e}. The elements of EV can be considered as powers in groupoids of
V. Namely, for every G ∈ V and f ∈ EV , we define a transformation fG as
an interpretation of f in G. We say that fG is a V-power in G ([6]). We
denote by Vc the variety of commutative groupoids in V and by (EV , ◦, e) and
(EVc , ◦, e) the monoids of powers in V and Vc, respectively. For any variety
V of groupoids the following two questions arise: (A) Is the monoid (EV , ◦, e)
free? (B) Are the monoids (EV , ◦, e) and (EVc , ◦, e) isomorphic?

The following examples show that, in general, both questions may have
negative answers. We use the free groupoids constructed in [5], [4] and [3].
Example 2.1 Let V = Var(x2 ≈ x). The groupoid RV = (RV , ∗) defined by
RV = {t ∈ TX : (∀u ∈ TX) u2 �∈ P (t)} and

t, u ∈ RV ⇒ [t ∗ u = tu, if u �= t; t ∗ u = t, if u = t],
is V-free over X. The carrier of the free groupoid EV = (EV , ∗) over {e} is
EV = {e}, i.e. the V-powers are trivial. The monoid (EV , ◦, e) is not free.
The monoid (EVc, ◦, e) coincides with (EV , ◦, e) and thus these two monoids
are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for
this variety.
Example 2.2 Let U = Var(x2y2 ≈ xy). The conjunction of the identities
xy2 ≈ xy and x2y ≈ xy is an axiom system of U as well ([4]). The carrier of
the free groupoid EU = (EU , ∗) over {e} is EU = {e, e2} where e ∗ e = e2 =
e∗e2 = e2∗e = e2∗e2. The monoid (EU , ◦, e) is not free. The monoid (EUc , ◦, e)
coincides with (EU , ◦, e) and thus these two monoids are isomorphic. Hence,
the answer of (A) is negative and of (B) is positive for the variety U .
Example 2.3 Let W = Var(xy2 ≈ xy). Then the following identities hold
in W for any m,n ∈ N: xyn ≈ xy and, specially, xnxm ≈ xn+1, where xk

is defined by x1 = x, xk+1 = xkx. As a special case of the main result of
[4], we obtain that the groupoid (EW , ∗), defined by EW = {en : n ∈ N} and
en ∗ em = en+1 is free in W over {e}. It remains to define a monoid (EW , ◦, e)
that satisfies the conditions (1).

Assume that (EW ,⊕, e) and (EW ,⊗, e) are two monoids that satisfy (1).
By induction on length | f | one can show that for all f, g ∈ EW , f ⊕ g =
f ⊗ g, i.e. there is at most one groupoid with the desired properties. The
conditions (1) suggest the following definition of ◦: em ◦ en = em+n−1. One
can show that (EW , ◦, e) is a free monoid over {e2} (e2 is the only irreducible
power), i.e. (EW , ◦, e) is isomorphic with the additive monoid of nonnegative
integers (N0,+, 0). By Example 2.2 we obtain that Wc = U and, moreover,
EU = EUc = EWc = {e, e2} and (EU , ◦, e) = (EUc , ◦, e) = (EWc , ◦, e), where
”◦” is defined by: e ◦ e = e, e ◦ e2 = e2 ◦ e = e2 ◦ e2 = e2. Thus, the monoids
(EW , ◦, e) and (EWc , ◦, e) are not isomorphic. Therefore, the answer of (A) is
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positive and of (B) is negative in this case.

3 Powers in f-idempotent groupoids

Let f be a fixed element of E \ {e} and denote by Vf the variety of groupoids
satisfying the identity f(x) ≈ x. The elements of Vf are called f -idempotent
groupoids. For f = en, the identity f(x) ≈ x becomes xn ≈ x, where xk is
defined as in Example 2.3, and the groupoids are said to be n-idempotent. This
variety is denoted by V(n).

It is shown in [6] that the monoid of groupoid powers in the variety V(n),
n ≥ 3, is free over the set of irreducible powers that belong to the set EV(n) =
{g ∈ E : (∀h ∈ E) hn �∈ P (g)}. Is an analogous result true for the variety Vf ,
if f is any groupoid power? We will ask for an answer to this question when
f is any irreducible element (not necessarily f = en).

Free groupoids in the variety Vf when f is an irreducible element in (E, ◦, e)
are described in [5] (Th.1, Th.2). Namely, Rf (⊆ TX) is defined by

Rf = {u ∈ TX : (∀t ∈ TX) f(t) �∈ P (u)}
and an operation ∗ on Rf is defined by:

u, v ∈ Rf ⇒ u ∗ v =

{
uv, if uv ∈ Rf

t, if uv = f(t).

Then Rf = (Rf , ∗) is a free groupoid in Vf over X. Put

Ef = {g ∈ E : (∀h ∈ E) f(h) �∈ P (g)}.
Here Ef stands for EVf . Clearly, f �= e, since f is irreducible in (E, ◦, e). We
will show that for any irreducible f ∈ E, | f | ≥ 3, (Ef , ◦, e) is a free monoid
over a countable generating set.

Proposition 3.1 (Ef , ◦, e) is a submonoid of (E, ◦, e).
Proof. It suffices to show that g ◦ h ∈ Ef , for any g, h ∈ Ef . Suppose that
there are g, h ∈ Ef such that g ◦ h �∈ Ef . Clearly, g �= e. Let g ∈ Ef be an
element with the smallest length, such that g ◦ h �∈ Ef . Then, for g = g1g2, by
induction on | g |, we have g1 ◦ h, g2 ◦ h ∈ Ef . Since g ◦ h �∈ Ef , it follows that
there is p ∈ E such that g ◦ h = f ◦ p. The following three cases are possible:
| h | = | p |, | h | > | p | and | h | < | p |. We obtain a contradiction in all the
cases using Prop.1.1, namely b) for the first case and c) for the last two cases.
Hence, g ◦ h ∈ Ef .

Proposition 3.2 If g ◦ h ∈ Ef , then g, h ∈ Ef .
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Proof. If g = e or h = e, then the claim is obvious. Assume that g �= e �= h.
Since g ◦h ∈ Ef , it follows that for every p ∈ E, f ◦p �∈ P (g ◦h). By induction
on | g | one can show that h ∈ P (g ◦ h) and thus P (h) ⊆ P (g ◦ h). Therefore,
f ◦ p �∈ P (h) which implies that h ∈ Ef . Suppose that there are g, h ∈ E such
that g ◦ h, h ∈ Ef and g �∈ Ef . Since g �∈ Ef , it follows that g = f ◦ p, for
some p ∈ E, and thus we would have g ◦ h = (f ◦ p) ◦ h = f ◦ (p ◦ h). This is
a contradiction, since g ◦ h ∈ Ef and f ◦ (p ◦ h) �∈ Ef .

Proposition 3.3 An element g ∈ Ef is irreducible in (Ef , ◦, e) if and only
if g is irreducible in (E, ◦, e).

Proof. Suppose that g is reducible in (E, ◦, e). Then g = p ◦ q for some
p, q ∈ E \ {e}. By Prop.3.2, p ◦ q ∈ Ef implies that p, q ∈ Ef and thus g is
reducible in (Ef , ◦, e), that contradicts the assumption. The converse is clear.

It is shown in [6] that for every p ∈ E \ {e} there is a unique sequence
p1, . . . , pn of irreducible elements in (E, ◦, e) such that p = p1 ◦ p2 ◦ . . .◦ pn. As
a consequence of this and Prop.3.3 we obtain:

Corollary 3.4 For every h ∈ Ef \ {e}, there is a uniquely determined
sequence q1, q2, . . . , qn of irreducible elements in Ef such that h = q1◦q2◦. . .◦qn.

Proposition 3.5 There are countably many irreducible elements in the mo-
noid (Ef , ◦, e), when | f | ≥ 3.

Proof. If | f | = 3, then f = e2e or f = ee2. They are both irreducible in
(E, ◦, e). Take f = e2e. Put q1 = e2, qk+1 = eqk. For every positive integer
k there is an irreducible element qk ∈ Ef . Thus, there are infinitely many
irreducible elements in Ef . Symmetrically for f = ee2.

Let f = en, for a fixed n ≥ 3. (Note that en is an irreducible element in
(E, ◦, e), for every positive integer n ≥ 2.) Then q1 = e(. . . (e(ee))︸ ︷︷ ︸

n−1

, qk+1 = eqk

defines an infinite sequence of irreducible elements in (Ef , ◦, e). In general, let
f , | f | = n ≥ 3, be irreducible in (E, ◦, e). Then e2e ∈ P (f) or ee2 ∈ P (f). If
e2e ∈ P (f), then we define q1 to have the same ”form” as f , putting e2e instead
of ee2. Then: q1 ∈ Ef is irreducible in (Ef , ◦, e) and the sequence defined by:
q1, qk+1 = eqk consists of irreducible elements in (Ef , ◦, e). Similarly for the
case ee2 ∈ P (f).

By Prop. 3.1, 3.5 and Cor.3.4 it follows:

Theorem 3.6 For every irreducible element f ∈ E, | f | ≥ 3, the monoid
(Ef , ◦, e) is a free monoid over a countable set of irreducible elements in
(E, ◦, e).
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4 The commutative case

Let Vfc be the variety of commutative f -idempotent groupoids. First, we
present the construction of free commutative f -idempotent groupoids, where
f is an irreducible element in (E, ◦, e) and | f | ≥ 3. Note that, if f ∈ E \ Ec,
then f should be replaced with the ”corresponding” groupoid power f ∈ Ec

determined by the homomorphism ψ : E → Ec such that ψ(e) = e. Put
ψ(f) = f for any f ∈ E. Thus, for f = f1f2 we obtain that f = f1 � f2. The
justification for the replacement of f ∈ E\Ec by f ∈ Ec is the commutativity of
every groupoid in Vfc. For instance, let G ∈ Vfc and let f = (e2e)e2 ∈ E \Ec.
The groupoid power f is irreducible, since | f | = 5 is a prime number ([6]).
Then, for every a ∈ G, fG(a) = a, i.e. (a2a)a2 = a. Since G is commutative,
a = (a2a)a2 = a2(a2a) = a2(aa2) = f(a), where f = e2(ee2) ∈ Ec. Since every
f ∈ E \ Ec can be replaced by f ∈ Ec, we assume that f ∈ Ec.

Define the carrier of the free groupoid Rfc in Vfc by:

Rfc = {t ∈ Tc : (∀u ∈ Tc) f(u) �∈ P (t)}.
Directly from the definition of Rfc we obtain

Proposition 4.1 a) X ⊆ Rfc ⊆ Tc; t ∈ Rfc ⇒ P (t) ⊆ Rfc.
b) t, u ∈ Rfc ⇒ [ t� u ∈ Rfc ⇔ (∀v ∈ Rfc) t� u �= f(v) ].
c) t, u ∈ Rfc ⇒ [ t� u �∈ Rfc ⇔ (∃v ∈ Rfc) t� u = f(v) ].

Proof. a) and c) are clear.
b) If t � u ∈ Rfc, then by the definition of Rfc, f(v) �∈ P (t � u) for every
v ∈ Tc, and thus f(v) �∈ {t� u}, i.e. f(v) �= t� u. Since Tc ⊇ Rfc, it follows
that v ∈ Rfc. The converse is obvious.

Define an operation ∗ on Rfc by:

t, u ∈ Rfc ⇒ t ∗ u =

{
t� u, if t� u ∈ Rfc

v, if t� u = f(v) for some v ∈ Rfc.

Clearly, t ∗ u is a uniquely determined element of Rfc when t � u ∈ Rfc.
If t � u �∈ Rfc, then by Prop.4.1 c), there is v ∈ Rfc, such that t � u = f(v).
If there is v1 ∈ Rfc such that t � u = f(v1), then f(v) = f(v1). By Prop.1.1
b), it follows that v1 = v. Thus, v = t ∗ u is a uniquely determined element of
Rfc. Hence, Rfc = (Rfc, ∗) is a groupoid.

Rfc is a commutative f -idempotent groupoid. Namely, denote by f∗ the
interpretation of f in Rfc, defined by:

e∗(t) = t and (f1 � f2)∗(t) = (f1)∗(t) ∗ (f2)∗(t), if f = f1 � f2 ∈ Ec.

We will show that t ∗ u = u ∗ t and that f∗(w) = w, for every t, u, w ∈ Rfc. If
t� u ∈ Rfc, then t ∗ u = t � u = u � t = u ∗ t. If t � u �∈ Rfc, then t ∗ u = v
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for some v ∈ Rfc, such that t � u = f(v). However, t � u = u � t in Tc and
so u � t = f(v). Thus, u ∗ t = v = t ∗ u. Let f = f1f2 and w ∈ Rfc. Since
f1, f2 are proper subterms of f it follows that (fi)∗(w) = fi(w), for i = 1, 2.
Therefore, f∗(w) = (f1 � f2)∗(w) = (f1)∗(w) ∗ (f2)∗(w) = f1(w) ∗ f2(w) = w.
Hence, Rfc ∈ Vfc.

By induction on the length of terms one can show that X is the smallest
generating set for Rfc.

The universal mapping property for Rfc in Vfc over X holds. Namely,
let G = (G, ·) ∈ Vfc and λ : X → G is a mapping. Denote by ϕ the
homomorphism from Tc into G that is an extension of λ and put ψ = ϕ|Rfc

.
It suffices to show that ϕ(t ∗ u) = ϕ(t)ϕ(u), for any t, u ∈ Rfc. If t� u ∈ Rfc,
then t ∗ u = t � u, so ϕ(t ∗ u) = ϕ(t � u) = ϕ(t)ϕ(u). If t � u �∈ Rfc, then
t∗u = v, where v ∈ Rfc and t�u = f(v). Thus ϕ(t∗u) = ϕ(v) = [G ∈ Vfc] =
f(ϕ(v)) = [ϕ is a homomorphism ] = ϕ(f(v)) = ϕ(t� u) = ϕ(t)ϕ(u). Hence,
ψ = ϕ|Rfc

is a homomorphism from Rfc into G such that ψ is an extension of
λ. Therefore, Rfc = (Rfc, ∗) is Vfc-free groupoid over X.

Note that Rfc = (Rfc, ∗) is a cancellative groupoid. Namely, let t, u, v ∈
Rfc and let t ∗ u = t ∗ v. If t� u, t� v ∈ Rfc, then t� u = t� v in Tc. Since
the groupoid Tc is injective, i.e. x1 � x2 = y1 � y2 ⇒ {x1, x2} = {y1, y2}, one
obtains that {t, u} = {t, v}, i.e. u = v. If t�u, t�v �∈ Rfc, then t�u = f(w1),
t�v = f(w2), for some w1, w2 ∈ Rfc. However, w1 = t∗u = t∗v = w2, and thus
f(w1) = f(w2). Therefore, t�u = t�v, i.e. u = v. If t�u ∈ Rfc, t�v �∈ Rfc,
then t∗u = t∗ v is not possible in Rfc. Namely, t∗u = t�u and t∗ v = w, for
some w ∈ Rfc such that t�v = f(w). Thus, t�u = t∗u = t∗v = w. Using this,
one obtains that t�v = f(t�u), i.e. t�v = (f1�f2)(t�u) = f1(t�u)�f2(t�u)
in Tc which implies that {t, v} = {f1(t� u), f2(t � u)}. Hence, t = f1(t � u)
or t = f2(t � u). None of this is possible, since | t | �= | fi | · (| t | + | u |).
Symmetrically for the case t � u �∈ Rfc, t � v ∈ Rfc. Thus, Rfc is left
cancellative, and by commutativity it is right cancellative.

Theorem 4.2 The groupoid Rfc = (Rfc, ∗) is free in Vfc over X and it is
cancellative.

Now, consider the monoid of powers for the variety Vfc. Put

Efc = {g ∈ Ec : (∀h ∈ Ec) f(h) �∈ P (g)}.
Define an operation ”◦” on Efc according to (1), as a restriction of the

operation ”◦” in (Ec, ◦, e). By a direct verification one can show that analogous
propositions like Prop.3.1–Prop.3.5 hold, putting (Efc, ◦, e) instead of (Ef , ◦, e)
and (Ec, ◦, e) instead of (E, ◦, e). Thus,

Theorem 4.3 For every irreducible element f ∈ Ec, | f | ≥ 3, the monoid
(Efc, ◦, e) is free over a countable set of irreducible elements in (Ec, ◦, e).

The answer of (A) and of (B) is positive for (Ef , ◦, e) and (Efc, ◦, e).
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