Monoids of Powers in Varieties of f-Idempotent Groupoids #### Vesna Celakoska-Jordanova Faculty of Natural Sciences and Mathematics "Ss. Cyril and Methodius University", Skopje, R. Macedonia vesnacj@pmf.ukim.mk Copyright © 2013 V. Celakoska-Jordanova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. #### Abstract The monoids of powers in varieties of f-idempotent groupoids and commutative f-idempotent groupoids, where f is an irreducible groupoid power with a length at least 3, are constructed. It is shown that these monoids are free over a countable set of irreducible groupoid powers. Mathematics Subject Classification: 08B20; 03C05 **Keywords:** Variety of groupoids, free groupoid, groupoid power, monoid ## 1 Introduction and preliminary notes A groupoid $G = (G, \cdot)$ is an algebra with one binary operation. We denote by $\mathbf{T}_X = (T_X, \cdot)$ the groupoid of terms over a nonempty set X. The terms are denoted by t, u, v, w, \ldots For any term v of T_X , the length |v| of v and the set of subterms P(v) of v are defined as: $$|x| = 1, |tu| = |t| + |u|; P(x) = \{x\}, P(tu) = \{tu\} \cup P(t) \cup P(u),$$ for any $x \in X$ and any $t, u \in T_X$. We denote by $\mathbf{E} = (E, \cdot)$ the groupoid of terms over one-element set $\{e\}$. The elements of E are called *groupoid powers* and are denoted by f, g, h, \ldots They are introduced in [6] and are used in several papers: [1], [2], [7]. Further on we use the shortlex ordering of terms (denoted by \leq), i.e. terms are ordered so that a term of a particular length comes before any longer term, and amongst terms of equal length lexicographical ordering is used, with terms earlier in the lexicographical ordering coming first. Then T_X is a linearly ordered set. A term t is said to be order-regular if $t \in X$ or $(t = t_1t_2 \text{ and } t_1 \leq t_2)$. Specially, a groupoid power f is said to be order-regular if f = e or $(f = f_1f_2 \text{ and } f_1 \leq f_2)$. We denote by $\mathbf{T}_c = (T_c, \odot)$ the free commutative groupoid over X defined in [2] by: $T_c = \{t \in T_X : \text{ every subterm of } t \text{ is order-regular}\}$ and the operation \odot by $t, u \in T_c \Rightarrow (t \odot u = tu \text{ if } t \leq u; t \odot u = ut \text{ if } u < t)$. We denote by $\mathbf{E}_c = (E_c, \odot)$ the free commutative groupoid over $\{e\}$. For any groupoid $G = (G, \cdot)$, each groupoid power f induces a transformation $f^G : G \to G$, called the *interpretation* of f in G, defined by: $f^G(a) = \varphi_a(f)$ for every $a \in G$, where $\varphi_a : E \to G$ is the homomorphism from E into G such that $\varphi_a(e) = a$. In other words, for any $f_1, f_2 \in E$ and $a \in G$, $$e^{\mathbf{G}}(a) = a, \ (f_1 f_2)^{\mathbf{G}}(a) = f_1^{\mathbf{G}}(a) f_2^{\mathbf{G}}(a).$$ We write f(a) instead of $f^{G}(a)$ when G is understood, and specially when $G = \mathbf{T}_{X}$ or $G = \mathbf{E}$. Define an other operation " \circ " on E by $f \circ g = f(g)$. Clearly, the interpretation of f in \mathbf{E} is presented as: $$e \circ g = g \circ e = g, \ (f_1 f_2) \circ g = (f_1 \circ g)(f_2 \circ g),$$ (1) for any $g, f_1, f_2 \in E$. Note that, for any groupoid G, the triple (E^G, \circ', e^G) , where $E^G = \{f^G : f \in E\}$ and \circ' is an operation in E^G defined by $f^G \circ' h^G = (f \circ h)^G$, is a monoid. The following statements are shown in [6]. **Proposition 1.1** If $f, g \in E$ and $t, u \in T_X$, then: - a) $|f(t)| = |f| \cdot |t|$; $t \in P(f(t))$; - b) $f(t) = f(u) \Rightarrow t = u$; - c) $f(t) = g(u) \land (|t| = |u| \lor |f| = |g|) \Leftrightarrow (f = g \land t = u);$ - d) $f(t) = g(u) \land |t| > |u| \iff (\exists ! h \in E) (t = h(u) \land g = f(h)).$ The corresponding translation of Prop.1.1 when T_X is substituted by E is obvious. A groupoid power f is said to be *irreducible* in (E, \circ, e) if $f \neq e$ and $f = g \circ h \Rightarrow g = e \lor h = e$. It is *reducible* in (E, \circ, e) if $f = g \circ h$ for some $g, h \in E \setminus \{e\}$. If $f = g \circ h$, then g and h are *left* and *right divisors* of f, respectively. It is shown in [6] that (E, \circ, e) is a free cancelative monoid over the set of irreducible groupoid powers and that the monoids (E, \circ, e) and (E_c, \circ, e) are isomorphic. # 2 Examples Let \mathcal{V} be a variety of groupoids and let $\mathbf{E}_{\mathcal{V}} = (E_{\mathcal{V}}, \cdot)$ be the free groupoid in \mathcal{V} over $\{e\}$. The elements of $E_{\mathcal{V}}$ can be considered as powers in groupoids of \mathcal{V} . Namely, for every $\mathbf{G} \in \mathcal{V}$ and $f \in E_{\mathcal{V}}$, we define a transformation $f^{\mathbf{G}}$ as an interpretation of f in \mathbf{G} . We say that $f^{\mathbf{G}}$ is a \mathcal{V} -power in \mathbf{G} ([6]). We denote by \mathcal{V}_c the variety of commutative groupoids in \mathcal{V} and by $(E_{\mathcal{V}_c}, \circ, e)$ and $(E_{\mathcal{V}_c}, \circ, e)$ the monoids of powers in \mathcal{V} and \mathcal{V}_c , respectively. For any variety \mathcal{V} of groupoids the following two questions arise: (A) Is the monoid $(E_{\mathcal{V}}, \circ, e)$ free? (B) Are the monoids $(E_{\mathcal{V}}, \circ, e)$ and $(E_{\mathcal{V}_c}, \circ, e)$ isomorphic? The following examples show that, in general, both questions may have negative answers. We use the free groupoids constructed in [5], [4] and [3]. **Example 2.1** Let $\mathcal{V} = \text{Var}(x^2 \approx x)$. The groupoid $\mathbf{R}_{\mathcal{V}} = (R_{\mathcal{V}}, *)$ defined by $R_{\mathcal{V}} = \{t \in T_X : (\forall u \in T_X) \ u^2 \notin P(t)\}$ and $t, u \in R_{\mathcal{V}} \Rightarrow [t * u = tu, \text{if } u \neq t; \ t * u = t, \text{if } u = t],$ is \mathcal{V} -free over X. The carrier of the free groupoid $\mathbf{E}_{\mathcal{V}} = \{E_{\mathcal{V}}, *\}$ over $\{e\}$ is $E_{\mathcal{V}} = \{e\}$, i.e. the \mathcal{V} -powers are trivial. The monoid $(E_{\mathcal{V}}, \circ, e)$ is not free. The monoid $(E_{\mathcal{V}_c}, \circ, e)$ coincides with $(E_{\mathcal{V}}, \circ, e)$ and thus these two monoids are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for this variety. **Example 2.2** Let $\mathcal{U} = \text{Var}(x^2y^2 \approx xy)$. The conjunction of the identities $xy^2 \approx xy$ and $x^2y \approx xy$ is an axiom system of \mathcal{U} as well ([4]). The carrier of the free groupoid $\mathbf{E}_{\mathcal{U}} = (E_{\mathcal{U}}, *)$ over $\{e\}$ is $E_{\mathcal{U}} = \{e, e^2\}$ where $e * e = e^2 = e * e^2 = e^2 * e = e^2 * e^2$. The monoid $(E_{\mathcal{U}}, \circ, e)$ is not free. The monoid $(E_{\mathcal{U}_c}, \circ, e)$ coincides with $(E_{\mathcal{U}}, \circ, e)$ and thus these two monoids are isomorphic. Hence, the answer of (A) is negative and of (B) is positive for the variety \mathcal{U} . **Example 2.3** Let $W = \text{Var}(xy^2 \approx xy)$. Then the following identities hold in W for any $m, n \in \mathbb{N}$: $xy^n \approx xy$ and, specially, $x^nx^m \approx x^{n+1}$, where x^k is defined by $x^1 = x$, $x^{k+1} = x^kx$. As a special case of the main result of [4], we obtain that the groupoid $(E_W, *)$, defined by $E_W = \{e^n : n \in \mathbb{N}\}$ and $e^n * e^m = e^{n+1}$ is free in W over $\{e\}$. It remains to define a monoid (E_W, \circ, e) that satisfies the conditions (1). Assume that $(E_{\mathcal{W}}, \oplus, e)$ and $(E_{\mathcal{W}}, \otimes, e)$ are two monoids that satisfy (1). By induction on length |f| one can show that for all $f, g \in E_{\mathcal{W}}, f \oplus g = f \otimes g$, i.e. there is at most one groupoid with the desired properties. The conditions (1) suggest the following definition of \circ : $e^m \circ e^n = e^{m+n-1}$. One can show that $(E_{\mathcal{W}}, \circ, e)$ is a free monoid over $\{e^2\}$ (e^2 is the only irreducible power), i.e. $(E_{\mathcal{W}}, \circ, e)$ is isomorphic with the additive monoid of nonnegative integers $(\mathbf{N}_0, +, 0)$. By Example 2.2 we obtain that $\mathcal{W}_c = \mathcal{U}$ and, moreover, $E_{\mathcal{U}} = E_{\mathcal{U}_c} = E_{\mathcal{W}_c} = \{e, e^2\}$ and $(E_{\mathcal{U}}, \circ, e) = (E_{\mathcal{U}_c}, \circ, e) = (E_{\mathcal{W}_c}, \circ, e)$, where " \circ " is defined by: $e \circ e = e, e \circ e^2 = e^2 \circ e = e^2 \circ e^2 = e^2$. Thus, the monoids $(E_{\mathcal{W}_c}, \circ, e)$ and $(E_{\mathcal{W}_c}, \circ, e)$ are not isomorphic. Therefore, the answer of (A) is positive and of (B) is negative in this case. # 3 Powers in f-idempotent groupoids Let f be a fixed element of $E \setminus \{e\}$ and denote by \mathcal{V}^f the variety of groupoids satisfying the identity $f(x) \approx x$. The elements of \mathcal{V}^f are called f-idempotent groupoids. For $f = e^n$, the identity $f(x) \approx x$ becomes $x^n \approx x$, where x^k is defined as in Example 2.3, and the groupoids are said to be n-idempotent. This variety is denoted by $\mathcal{V}^{(n)}$. It is shown in [6] that the monoid of groupoid powers in the variety $\mathcal{V}^{(n)}$, $n \geq 3$, is free over the set of irreducible powers that belong to the set $E_{\mathcal{V}^{(n)}} = \{g \in E : (\forall h \in E) \ h^n \notin P(g)\}$. Is an analogous result true for the variety \mathcal{V}^f , if f is any groupoid power? We will ask for an answer to this question when f is any irreducible element (not necessarily $f = e^n$). Free groupoids in the variety \mathcal{V}^f when f is an irreducible element in (E, \circ, e) are described in [5] (Th.1, Th.2). Namely, R_f ($\subseteq T_X$) is defined by $$R_f = \{ u \in T_X : (\forall t \in T_X) \ f(t) \notin P(u) \}$$ and an operation * on R_f is defined by: $$u, v \in R_f \Rightarrow u * v = \begin{cases} uv, & \text{if } uv \in R_f \\ t, & \text{if } uv = f(t). \end{cases}$$ Then $\mathbf{R}_f = (R_f, *)$ is a free groupoid in \mathcal{V}^f over X. Put $$E_f = \{g \in E : (\forall h \in E) \mid f(h) \not\in P(g)\}.$$ Here E_f stands for $E_{\mathcal{V}^f}$. Clearly, $f \neq e$, since f is irreducible in (E, \circ, e) . We will show that for any irreducible $f \in E$, $|f| \geq 3$, (E_f, \circ, e) is a free monoid over a countable generating set. **Proposition 3.1** (E_f, \circ, e) is a submonoid of (E, \circ, e) . **Proof.** It suffices to show that $g \circ h \in E_f$, for any $g, h \in E_f$. Suppose that there are $g, h \in E_f$ such that $g \circ h \not\in E_f$. Clearly, $g \neq e$. Let $g \in E_f$ be an element with the smallest length, such that $g \circ h \not\in E_f$. Then, for $g = g_1g_2$, by induction on |g|, we have $g_1 \circ h$, $g_2 \circ h \in E_f$. Since $g \circ h \not\in E_f$, it follows that there is $p \in E$ such that $g \circ h = f \circ p$. The following three cases are possible: |h| = |p|, |h| > |p| and |h| < |p|. We obtain a contradiction in all the cases using Prop.1.1, namely b) for the first case and c) for the last two cases. Hence, $g \circ h \in E_f$. **Proposition 3.2** If $g \circ h \in E_f$, then $g, h \in E_f$. **Proof.** If g = e or h = e, then the claim is obvious. Assume that $g \neq e \neq h$. Since $g \circ h \in E_f$, it follows that for every $p \in E$, $f \circ p \notin P(g \circ h)$. By induction on |g| one can show that $h \in P(g \circ h)$ and thus $P(h) \subseteq P(g \circ h)$. Therefore, $f \circ p \notin P(h)$ which implies that $h \in E_f$. Suppose that there are $g, h \in E$ such that $g \circ h, h \in E_f$ and $g \notin E_f$. Since $g \notin E_f$, it follows that $g = f \circ p$, for some $p \in E$, and thus we would have $g \circ h = (f \circ p) \circ h = f \circ (p \circ h)$. This is a contradiction, since $g \circ h \in E_f$ and $f \circ (p \circ h) \notin E_f$. **Proposition 3.3** An element $g \in E_f$ is irreducible in (E_f, \circ, e) if and only if g is irreducible in (E, \circ, e) . **Proof.** Suppose that g is reducible in (E, \circ, e) . Then $g = p \circ q$ for some $p, q \in E \setminus \{e\}$. By Prop.3.2, $p \circ q \in E_f$ implies that $p, q \in E_f$ and thus g is reducible in (E_f, \circ, e) , that contradicts the assumption. The converse is clear. It is shown in [6] that for every $p \in E \setminus \{e\}$ there is a unique sequence p_1, \ldots, p_n of irreducible elements in (E, \circ, e) such that $p = p_1 \circ p_2 \circ \ldots \circ p_n$. As a consequence of this and Prop.3.3 we obtain: Corollary 3.4 For every $h \in E_f \setminus \{e\}$, there is a uniquely determined sequence q_1, q_2, \ldots, q_n of irreducible elements in E_f such that $h = q_1 \circ q_2 \circ \ldots \circ q_n$. **Proposition 3.5** There are countably many irreducible elements in the monoid (E_f, \circ, e) , when $|f| \ge 3$. **Proof.** If |f| = 3, then $f = e^2 e$ or $f = ee^2$. They are both irreducible in (E, \circ, e) . Take $f = e^2 e$. Put $q_1 = e^2, q_{k+1} = eq_k$. For every positive integer k there is an irreducible element $q_k \in E_f$. Thus, there are infinitely many irreducible elements in E_f . Symmetrically for $f = ee^2$. Let $f = e^n$, for a fixed $n \ge 3$. (Note that e^n is an irreducible element in (E, \circ, e) , for every positive integer $n \ge 2$.) Then $q_1 = \underbrace{e(\dots(e(ee))}_{}, q_{k+1} = eq_k$ defines an infinite sequence of irreducible elements in (E_f, \circ, e) . In general, let $f, |f| = n \ge 3$, be irreducible in (E, \circ, e) . Then $e^2e \in P(f)$ or $ee^2 \in P(f)$. If $e^2e \in P(f)$, then we define q_1 to have the same "form" as f, putting e^2e instead of ee^2 . Then: $q_1 \in E_f$ is irreducible in (E_f, \circ, e) and the sequence defined by: $q_1, q_{k+1} = eq_k$ consists of irreducible elements in (E_f, \circ, e) . Similarly for the case $ee^2 \in P(f)$. By Prop. 3.1, 3.5 and Cor.3.4 it follows: **Theorem 3.6** For every irreducible element $f \in E$, $|f| \ge 3$, the monoid (E_f, \circ, e) is a free monoid over a countable set of irreducible elements in (E, \circ, e) . #### 4 The commutative case Let \mathcal{V}^{fc} be the variety of commutative f-idempotent groupoids. First, we present the construction of free commutative f-idempotent groupoids, where f is an irreducible element in (E, \circ, e) and $|f| \geq 3$. Note that, if $f \in E \setminus E_c$, then f should be replaced with the "corresponding" groupoid power $\overline{f} \in E_c$ determined by the homomorphism $\psi : \mathbf{E} \to \mathbf{E}_c$ such that $\psi(e) = e$. Put $\psi(f) = \overline{f}$ for any $f \in E$. Thus, for $f = f_1 f_2$ we obtain that $\overline{f} = \overline{f_1} \odot \overline{f_2}$. The justification for the replacement of $f \in E \setminus E_c$ by $\overline{f} \in E_c$ is the commutativity of every groupoid in \mathcal{V}^{fc} . For instance, let $\mathbf{G} \in \mathcal{V}^{fc}$ and let $f = (e^2 e)e^2 \in E \setminus E_c$. The groupoid power f is irreducible, since |f| = 5 is a prime number ([6]). Then, for every $a \in G$, $f^G(a) = a$, i.e. $(a^2 a)a^2 = a$. Since \mathbf{G} is commutative, $a = (a^2 a)a^2 = a^2(a^2 a) = a^2(aa^2) = \overline{f}(a)$, where $\overline{f} = e^2(ee^2) \in E_c$. Since every $f \in E \setminus E_c$ can be replaced by $\overline{f} \in E_c$, we assume that $f \in E_c$. Define the carrier of the free groupoid R_{fc} in \mathcal{V}^{fc} by: $$R_{fc} = \{ t \in T_c : (\forall u \in T_c) \ f(u) \notin P(t) \}.$$ Directly from the definition of R_{fc} we obtain **Proposition 4.1** a) $X \subseteq R_{fc} \subseteq T_c$; $t \in R_{fc} \Rightarrow P(t) \subseteq R_{fc}$. - b) $t, u \in R_{fc} \Rightarrow [t \odot u \in R_{fc} \Leftrightarrow (\forall v \in R_{fc}) \ t \odot u \neq f(v)].$ - c) $t, u \in R_{fc} \implies [t \odot u \notin R_{fc} \iff (\exists v \in R_{fc}) \ t \odot u = f(v)].$ **Proof.** a) and c) are clear. b) If $t \odot u \in R_{fc}$, then by the definition of R_{fc} , $f(v) \not\in P(t \odot u)$ for every $v \in T_c$, and thus $f(v) \not\in \{t \odot u\}$, i.e. $f(v) \neq t \odot u$. Since $T_c \supseteq R_{fc}$, it follows that $v \in R_{fc}$. The converse is obvious. Define an operation * on R_{fc} by: $$t, u \in R_{fc} \Rightarrow t * u = \begin{cases} t \odot u, & \text{if } t \odot u \in R_{fc} \\ v, & \text{if } t \odot u = f(v) \text{ for some } v \in R_{fc}. \end{cases}$$ Clearly, t * u is a uniquely determined element of R_{fc} when $t \odot u \in R_{fc}$. If $t \odot u \notin R_{fc}$, then by Prop.4.1 c), there is $v \in R_{fc}$, such that $t \odot u = f(v)$. If there is $v_1 \in R_{fc}$ such that $t \odot u = f(v_1)$, then $f(v) = f(v_1)$. By Prop.1.1 b), it follows that $v_1 = v$. Thus, v = t * u is a uniquely determined element of R_{fc} . Hence, $\mathbf{R}_{fc} = (R_{fc}, *)$ is a groupoid. \mathbf{R}_{fc} is a commutative f-idempotent groupoid. Namely, denote by f_* the interpretation of f in \mathbf{R}_{fc} , defined by: $$e_*(t) = t$$ and $(f_1 \odot f_2)_*(t) = (f_1)_*(t) * (f_2)_*(t)$, if $f = f_1 \odot f_2 \in E_c$. We will show that t * u = u * t and that $f_*(w) = w$, for every $t, u, w \in R_{fc}$. If $t \odot u \in R_{fc}$, then $t * u = t \odot u = u \odot t = u * t$. If $t \odot u \notin R_{fc}$, then t * u = v for some $v \in R_{fc}$, such that $t \odot u = f(v)$. However, $t \odot u = u \odot t$ in T_c and so $u \odot t = f(v)$. Thus, u * t = v = t * u. Let $f = f_1 f_2$ and $w \in R_{fc}$. Since f_1, f_2 are proper subterms of f it follows that $(f_i)_*(w) = f_i(w)$, for i = 1, 2. Therefore, $f_*(w) = (f_1 \odot f_2)_*(w) = (f_1)_*(w) * (f_2)_*(w) = f_1(w) * f_2(w) = w$. Hence, $\mathbf{R}_{fc} \in \mathcal{V}^{fc}$. By induction on the length of terms one can show that X is the smallest generating set for \mathbf{R}_{fc} . The universal mapping property for \mathbf{R}_{fc} in \mathcal{V}^{fc} over X holds. Namely, let $\mathbf{G} = (G, \cdot) \in \mathcal{V}^{fc}$ and $\lambda : X \to G$ is a mapping. Denote by φ the homomorphism from \mathbf{T}_c into \mathbf{G} that is an extension of λ and put $\psi = \varphi|_{R_{fc}}$. It suffices to show that $\varphi(t*u) = \varphi(t)\varphi(u)$, for any $t, u \in R_{fc}$. If $t \odot u \in R_{fc}$, then $t*u = t \odot u$, so $\varphi(t*u) = \varphi(t)\varphi(u)$. If $t \odot u \notin R_{fc}$, then t*u = v, where $v \in R_{fc}$ and $t \odot u = f(v)$. Thus $\varphi(t*u) = \varphi(v) = [\mathbf{G} \in \mathcal{V}^{fc}] = f(\varphi(v)) = [\varphi \text{ is a homomorphism }] = \varphi(f(v)) = \varphi(t \odot u) = \varphi(t)\varphi(u)$. Hence, $\psi = \varphi|_{R_{fc}}$ is a homomorphism from \mathbf{R}_{fc} into \mathbf{G} such that ψ is an extension of λ . Therefore, $\mathbf{R}_{fc} = (R_{fc}, *)$ is \mathcal{V}^{fc} -free groupoid over X. Note that $\mathbf{R}_{fc} = (R_{fc}, *)$ is a cancellative groupoid. Namely, let $t, u, v \in R_{fc}$ and let t * u = t * v. If $t \odot u, t \odot v \in R_{fc}$, then $t \odot u = t \odot v$ in \mathbf{T}_c . Since the groupoid \mathbf{T}_c is injective, i.e. $x_1 \odot x_2 = y_1 \odot y_2 \Rightarrow \{x_1, x_2\} = \{y_1, y_2\}$, one obtains that $\{t, u\} = \{t, v\}$, i.e. u = v. If $t \odot u, t \odot v \notin R_{fc}$, then $t \odot u = f(w_1)$, $t \odot v = f(w_2)$, for some $w_1, w_2 \in R_{fc}$. However, $w_1 = t * u = t * v = w_2$, and thus $f(w_1) = f(w_2)$. Therefore, $t \odot u = t \odot v$, i.e. u = v. If $t \odot u \in R_{fc}, t \odot v \notin R_{fc}$, then t * u = t * v is not possible in \mathbf{R}_{fc} . Namely, $t * u = t \odot u$ and t * v = w, for some $u \in R_{fc}$ such that $t \odot v = f(u)$. Thus, $t \odot u = t * u = t * v = w$. Using this, one obtains that $t \odot v = f(t \odot u)$, i.e. $t \odot v = (f_1 \odot f_2)(t \odot u) = f_1(t \odot u) \odot f_2(t \odot u)$ in \mathbf{T}_c which implies that $\{t, v\} = \{f_1(t \odot u), f_2(t \odot u)\}$. Hence, $t = f_1(t \odot u)$ or $t = f_2(t \odot u)$. None of this is possible, since $|t| \neq |f_i| \cdot (|t| + |u|)$. Symmetrically for the case $t \odot u \notin R_{fc}$, $t \odot v \in R_{fc}$. Thus, \mathbf{R}_{fc} is left cancellative, and by commutativity it is right cancellative. **Theorem 4.2** The groupoid $\mathbf{R}_{fc} = (R_{fc}, *)$ is free in \mathcal{V}^{fc} over X and it is cancellative. Now, consider the monoid of powers for the variety \mathcal{V}^{fc} . Put $$E_{fc} = \{ g \in E_c : (\forall h \in E_c) \ f(h) \notin P(g) \}.$$ Define an operation " \circ " on E_{fc} according to (1), as a restriction of the operation " \circ " in (E_c, \circ, e) . By a direct verification one can show that analogous propositions like Prop.3.1–Prop.3.5 hold, putting (E_{fc}, \circ, e) instead of (E_f, \circ, e) and (E_c, \circ, e) instead of (E_f, \circ, e) . Thus, **Theorem 4.3** For every irreducible element $f \in E_c$, $|f| \ge 3$, the monoid (E_{fc}, \circ, e) is free over a countable set of irreducible elements in (E_c, \circ, e) . The answer of (A) and of (B) is positive for (E_f, \circ, e) and (E_{fc}, \circ, e) . ### References - [1] V. Celakoska-Jordanova, Free groupoids in the class of power left and right idempotent groupoids, International Journal of Algebra, Vol.2, (2008), no. 10, 451 461 - [2] V. Celakoska-Jordanova, Free power-commutative groupoids, Math. Slovaca (accepted). - [3] G. Čupona, N. Celakoski, On groupoids with the identity $xy^2 = xy$, Contributions Sec. Math. Tech. Sci., MANU, **XVIII**, **1–2** (1997), 5 16. - [4] \acute{G} . Čupona, N. Celakoski, On groupoids with the identity $x^2y^2 = xy$, Contributions Sec. Math. Tech. Sci., MANU, **XVIII**, **1–2** (1997), 5 15. - [5] G. Čupona, S. Ilić, Free groupoids with $x^n = x$, II, Novi Sad J.Math., Vol.29, No.1. (1999), 147 154. - [6] G. Čupona, N. Celakoski, S. Ilić, *Groupoid powers*, Bulletin Mathématique, **25 (LI)** Skopje, R. Macedonia, (2001), 5 12. - [7] G. Čupona, N. Celakoski, S. Ilić, On monoassociative groupoids, Bulletin Mathématique, **26** (LII) (2002), 5-16. Received: March 12, 2013