Free Objects in the Variety of Groupoids Defined by the Identity $xf(x) \approx f(f(x))$

Vesna Celakoska-Jordanova

Faculty of Natural Sciences and Mathematics, "Ss. Cyril and Methodius University", Skopje, Macedonia vesnacj@pmf.ukim.mk

Abstract

Let \mathcal{V}_f denote the variety of groupoids defined by the identity $xf(x) \approx f(f(x))$, where f is a fixed nontrivial groupoid power. A description of free objects in this variety and their characterization by means of injective groupoids in \mathcal{V}_f are obtained.

Mathematics Subject Classification: 08B20; 03C05

Keywords: groupoid, groupoid power, variety of groupoids, free groupoid, injective groupoid

1 Introduction

A construction of free objects in the variety of groupoids defined by the identity $xx^2 \approx x^2x^2$ and their characterization are presented in [4]. A generalization of this problem is investigated in [2]. The variety of groupoids defined by the identity $xf(x) \approx f(f(x))$, where f is a fixed nontrivial groupoid power is another generalization of [4]. We denote this variety by \mathcal{V}_f .

Throughout the paper we will use the concept of groupoid power and some of its properties stated in [5]. For the notation and basic notions of universal algebra the reader is referred to [8]. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements x, y of a groupoid is denoted by $x \cdot y$ or just xy.

2 Preliminaries

Let X be an arbitrary nonempty set whose elements are called variables and T_X be the set of all groupoid terms over X in signature \cdot . The terms are denoted

by $t, u, v, w \dots$ The term groupoid $\mathbf{T}_X = (T_X, \cdot)$, where the operation is defined by $(t, u) \mapsto tu$, is an absolutely free groupoid over X. The groupoid \mathbf{T}_X is *injective*, i.e. the operation \cdot is an injective mapping: $tu = vw \Rightarrow t = v, u = w$. The set X is the set of primes in \mathbf{T}_X that generates \mathbf{T}_X . (An element a of a groupoid $\mathbf{G} = (G, \cdot)$ is said to be *prime* in \mathbf{G} if $a \neq xy$, for all $x, y \in G$.) These two properties of \mathbf{T}_X characterize all absolutely free groupoids.

Proposition 2.1 ([1]; Lemma 1.5)A groupoid $\mathbf{H} = (H, \cdot)$ is an absolutely free groupoid if and only if it satisfies the following two conditions:

(i) \boldsymbol{H} is injective.

(ii) The set of primes in H is nonempty and generates H.

Then the set of primes is the unique free generating set of H.

We refer to this proposition as *Bruck Theorem* for the class of all groupoids.

For any term t we define the length |t| of t, the set of subterms P(t) of t and a content cn(t) of t in the following inductive way:

$$t \in X \Rightarrow |t| = 1, \quad t = t_1 t_2 \Rightarrow |t_1 t_2| = |t_1| + |t_2|$$

$$t \in X \Rightarrow P(t) = \{t\}, \quad t = t_1 t_2 \Rightarrow P(t_1 t_2) = \{t_1 t_2\} \cup P(t_1) \cup P(t_2)$$

$$t \in X \Rightarrow cn(t) = \{t\}, \quad t = t_1 t_2 \Rightarrow cn(t) = cn(t_1) \cup cn(t_2).$$

By $\boldsymbol{E} = (E, \cdot)$ we denote the term groupoid with one-element generating set $\{e\}$. The elements of E are called *groupoid powers* ([5]) and they will be denoted by f, g, h, \ldots We say that e is the *trivial* groupoid power. A few properties of groupoid powers that will be used further on are stated below.

For any groupoid $\mathbf{G} = (G, \cdot)$, each element $f \in E$ induces a transformation $f^{\mathbf{G}}: G \to G$, called an *interpretation* of f in \mathbf{G} , defined by:

$$e^{G}(x) = x, \ (gh)^{G}(x) = g^{G}(x)h^{G}(x)$$

for any $g, h \in E$ and $x \in G$. We write f(x) instead of $f^{G}(x)$ when G is understood, f(t) instead of $f^{T_{X}}(t)$ and f(g) instead of $f^{E}(g)$.

The following statements are shown in [7].

Proposition 2.2 If $f, g \in E, t, u \in T_X$, then: a) $|f(t)| = |f| \cdot |t|$; b) $f(t) = g(u) \land (|t| = |u| \lor |f| = |g|) \Rightarrow (f = g \land t = u)$; c) $f(t) = g(u) \land |t| \ge |u| \Leftrightarrow (\exists ! h \in E) (t = h(u) \land g = f(h))$.

If an operation " \circ " is defined on the set E by $f \circ g = f(g)$, then one obtains that (E, \circ, e) is a cancellative monoid ([5]). We obtain an algebra (E, \circ, \cdot, e) with two binary operations \circ and \cdot , and a unary operation e, such that \circ is right-distributive with respect to \cdot , i.e. for any $g, f_1, f_2 \in E$,

$$e \circ g = g \circ e = g, \quad (f_1 f_2) \circ g = (f_1 \circ g)(f_2 \circ g).$$

Given a groupoid G, an element $a \in G$ is said to be *primitive* in G if $a \neq f(b)$, for any $b \in G$ and any $f \in E \setminus \{e\}$. An element of G is said to be *potent* in G if it is not primitive. Specially, primitive elements and potent elements in T_X are called *primitive terms* and *potent terms*, respectively.

The following proposition is shown in ([3]).

Proposition 2.3 1°. For any term $t \in T_X$ there is a unique primitive term $u \in T_X$ and a unique $f \in E$ such that t = f(u).

In that case we call u the base of t, f the power of t, |f| the exponent of t, and denote by $\underline{t} = u$, $t^{\sim} = f$ and $|t^{\sim}|$, respectively.

2°. If $s, t \in T_X$ and $\underline{s} \neq \underline{t}$, then $\underline{st} = st$ and $(st)^{\sim} = e$. 3°. If $s, t \in T_X$ and $\underline{s} = \underline{t} = u$, then $\underline{st} = u$ and $(st)^{\sim} = s^{\sim}t^{\sim}$.

3 A construction of canonical groupoids in \mathcal{V}_f

We say that a groupoid $\mathbf{R} = (R, *)$ is a *canonical groupoid* in \mathcal{V}_f if it satisfies the following conditions ([6]):

 $(c_0) X \subseteq R \subseteq T_X;$

 $(c_1) tu \in R \Rightarrow t, u \in R \land t * u = tu;$

(c₂) \boldsymbol{R} is a free groupoid in \mathcal{V}_f over X (i.e. \mathcal{V}_f -free groupoid over X).

Define the carrier R of the desired groupoid (R, *) by:

$$R = \{ t \in T_X : (\forall x \in T_X) \ x f(x) \notin P(t) \}.$$
(1)

As an obvious consequence of (1) we obtain the following

Proposition 3.1 a) $X \subseteq R \subseteq T_X$; $t \in R \Rightarrow P(t) \subseteq R$. b) $t, u \in R \Rightarrow [tu \notin R \Leftrightarrow u = f(t)]$. c) $t, u \in T_X \Rightarrow [tu \in R \Leftrightarrow t, u \in R \land u \neq f(t)]$. d) $t \in R \Rightarrow t^n \in R$, where n is a positive integer.

By induction on the length of g one can show the following proposition.

Proposition 3.2 If $t \in R$, then $g(t) \in R$ for any $g \in P(f)$.

Corollary 3.3 If $t \in R$, then $f(t) \in R$ and $f(f(t)) \in R$.

Define an operation * on R by:

$$t, u \in R \implies t * u = \begin{cases} tu, \text{ if } tu \in R\\ f(f(t)), \text{ if } u = f(t). \end{cases}$$
(2)

By (2) it is clear that \mathbf{R} is a groupoid and that the set of primes in \mathbf{R} coincides with X. By induction on length of a term one can show that X is

the generating set for \mathbf{R} . To show that $\mathbf{R} \in \mathcal{V}_f$ we use the fact that $g_*(t) = g(t)$, for any $t \in R$ and every $g \in P(f)$. Here $f_*(t)$ denotes the *interpretation of* $f \in E$ in \mathbf{R} and it is defined by:

$$e_*(t) = t, \ (f_1 f_2)_*(t) = (f_1)_*(t) * (f_2)_*(t)$$

for every $t \in R$.

Put $f = f_1 f_2$. By Prop.3.2 it follows that $f_*(t) \in R$. Therefore: $f_*(f_*(t)) = f_*(f(t)) = f(f(t)) = t * f(t) = t * f_*(t)$, i.e. the identity $xf(x) \approx f(f(x))$ is satisfied in \mathbf{R} . Thus, $\mathbf{R} \in \mathcal{V}_f$.

The groupoid $\mathbf{R} = (R, *)$ has the universal mapping property in \mathcal{V}_f over X. Namely, let $\mathbf{G} \in \mathcal{V}_f$ and $\lambda : X \to G$ be any mapping and φ be the homomorphism from \mathbf{T}_X into \mathbf{G} , such that $\varphi|_X = \lambda$. Put $\psi = \varphi|_R$. Then ψ is a homomorphism from \mathbf{R} into \mathbf{G} that is an extension of λ . It suffices to show that $\varphi(t * u) = \varphi(tu)$, for any $t, u \in R$. If $tu \in R$, than t * u = tu and $\varphi(t * u) = \varphi(tu)$. If $tu \notin R$, then by Prop.3.1 b) it follows that u = f(t) and so $\varphi(t * u) = \varphi(t * f(t)) = \varphi(f(f(t)))$. By induction on the length of f one can show that $\varphi(f(t)) = f(\varphi(t))$. Thus, $\varphi(t * u) = f(\varphi(f(t))) = f(f(\varphi(t))) = [\mathbf{G} \in \mathcal{V}_f] = \varphi(t)(f(\varphi(t))) = \varphi(t)\varphi(f(t)) = \varphi(t)\varphi(u) = \varphi(tu)$.

Hence, the conditions (c_0) , (c_1) and (c_2) are fulfilled and thus the following theorem holds.

Theorem 3.4 The groupoid (R, *) is a canonical groupoid in \mathcal{V}_f over X.

Note that, by a direct verification, one can show that the groupoid (R, *) is left cancellative, but it is not right cancellative.

4 Injective objects in \mathcal{V}_f

 \mathcal{V}_f -free groupoids can be characterized by a subclass of \mathcal{V}_f , called the class of \mathcal{V}_f -injective groupoids. This subclass is larger than the class of \mathcal{V}_f -free groupoids. We define the class of \mathcal{V}_f -injective groupoids by using the properties of the obtained canonical groupoid $\mathbf{R} = (R, *)$ in \mathcal{V}_f concerning the non-prime elements in \mathbf{R} . This class will be successfully defined if the following conditions are fulfilled:

 (i_0) Every \mathcal{V}_f -injective groupoid \boldsymbol{H} whose set of primes is nonempty and generates \boldsymbol{H} is \mathcal{V}_f -free.

 (i_1) The class of \mathcal{V}_f -free groupoids is a proper subclass of the class of \mathcal{V}_f -injective groupoids.

For that purpose it is necessary to establish the cases when two products t * s and u * v are equal and to solve the equation t * s = u * v in the obtained groupoid \mathbf{R} , for given $u, v \in R$. Solving this equation we obtain:

Proposition 4.1 Let $z \in R \setminus X$, i.e. z = u * v, for some $u, v \in R$. a) If $uv \in R$, then (u, v) is the unique pair of divisors of z. Free groupoids with $xf(x) \approx f(f(x))$

b) If $uv \notin R$ and $f = f_1 f_2$, then z has two pairs of divisors: $(f_1(f(u)), f_2(f(u)))$ and (u, f(u)).

Before introducing the notion of \mathcal{V}_f -injectivity we present a few necessary notions and results.

Definition 4.2 Let G be a groupoid and $f \in E \setminus \{e\}$ be a fixed groupoid power. An element $a \in G$ is said to be *f*-potent in G if there is $b \in G$, such that a = f(b). If $a \neq f(b)$ for every $b \in G$, then we say that a is an *f*-primitive element in G.

For every $k \ge 0$ define a transformation $[k] : x \mapsto f^{[k]}(x)$ on **G** by:

$$f^{[0]}(x) = x, \ f^{[1]}(x) = f(x), \ f^{[k+1]}(x) = f^{[k]}(f(x)).$$

For instance, $f^{[2]}(x) = f(f(x))$. From the definition of the operation \circ in E we obtain that $f^{[2]}(x) = (f \circ f)(x)$. Note that $f^{[p+q]}(x) = f^{[p]}(f^{[q]}(x)) = f^{[q]}(f^{[p]}(x))$, for any nonnegative integers p, q.

One can show the following proposition by induction on p or q, the associativity of \circ and by the injectivity of T_X .

Proposition 4.3 If $t, u \in T_X$ and p, q are non-negative integers, then: a) $|f^{[p]}(t)| = |f|^p \cdot |t|$. b) $f^{[p]}(t) = f^{[p]}(u) \Rightarrow t = u$. c) $f^{[p]}(t) = f^{[q]}(t) \Rightarrow p = q$. d) $f^{[p]}(t) = f^{[p+q]}(u) \Rightarrow t = f^{[q]}(u)$. e) If t, u are f-primitive terms, then: $f^{[p]}(t) = f^{[q]}(u) \Rightarrow t = u$, p = q.

Proposition 4.4 For every term $t \in T_X$ there is a unique f-primitive term $\alpha \in T_X$ and a unique $k \ge 0$, such that $t = f^{[k]}(\alpha)$.

In that case we say that α is an *f*-base of *t*; $f^{[k]}$ is an *f*-power of *t*; *k* is an *f*-exponent of *t* and denote them by: $\alpha = \underline{t}, f^{[k]} = t^{\sim}$ and $k = |t^{\sim}|,$ respectively. If *t* is an *f*-primitive term, then $\underline{t} = t$ and $|t^{\sim}| = 0$.

Proof. Existence. Let $t \in T_X$. If t is an f-primitive term, then $t = e(t) = f^{[0]}(t)$. Let t be an f-potent term. Then, there is a term u_1 , such that $t = f(u_1)$. If u_1 is f-primitive, then $t = f^{[1]}(u_1)$. If u_1 is f-potent, then there is a term u_2 such that $u_1 = f(u_2)$. If u_2 is f-primitive, then the procedure ends and $t = f^{[1]}(f^{[1]}(u_2)) = f^{[1]}(f(u_2)) = f^{[2]}(u_2)$. Note that $|t| > |u_1| > |u_2|$. If u_2 is f-potent, then the procedure continues. Hence, a descending sequence $(|u_i|)$ of positive integers is obtained. This sequence must end since |t| is a positive integer. Thus, there is a term u_n that is f-primitive and $t = f^{[n]}(u_n)$.

Uniqueness. Let $t = f^{[k]}(\alpha)$ and $t = f^{[m]}(\beta)$ for some *f*-primitive terms α, β and $k, m \ge 0$. If k = m, then $f^{[k]}(\alpha) = f^{[m]}(\beta)$. By Prop.4.3 b) it follows that $\alpha = \beta$. Let $k \ne m$. Assume that k < m and that m = k + l, for $l \ge 1$. Then $f^{[k]}(\alpha) = f^{[k+l]}(\beta)$. By Prop.4.3 d) it follows that $\alpha = f^{[l]}(\beta)$, that contradicts the assumption that α is an *f*-primitive term.

Considering that $f_*(t) = f(t)$ for every $t \in R$, then we can conclude the following

Corollary 4.5 For every $t \in R$ there is a unique f-primitive term $\alpha \in R$ and a unique $k \geq 0$, such that $t = f^{[k]}(\alpha)$.

Proposition 4.6 If
$$t, u \in T_X$$
 and p, q are non-negative integers, then:
 $f^{[p]}(t) = f^{[q]}(u) \Rightarrow \underline{t} = \underline{u} \land p + |t^{\sim}| = q + |u^{\sim}|.$

Proof. Let $f^{[p]}(t) = f^{[q]}(u)$. If p = q and t, u are f-primitive terms, then by Prop.4.3 b), t = u and thus $\underline{t} = \underline{u}$. In that case, $p + |t^{\sim}| = q + |u^{\sim}|$. If p = q and t, u are f-potent terms, then by Prop.4.4 there are unique fprimitive terms t_1, u_1 and unique $n, m \ge 0$, such that $t = f^{[n]}(t_1), u = f^{[m]}(u_1)$. In that case $f^{[p]}(f^{[n]}(t_1)) = f^{[q]}(f^{[m]}(u_1))$, and by Prop.4.3 e), $t_1 = u_1$, so $\underline{t}_1 = \underline{u}_1$. Hence $f^{[p+n]}(t_1) = f^{[q+m]}(t_1)$, which implies that n = m. Obviously, $p + |t^{\sim}| = q + |u^{\sim}|$. Let $p \ne q$. Assume that q = p + k, where $k \ge 1$, i.e. $f^{[p]}(t) = f^{[p+k]}(u)$. By Prop.4.3 d), $t = f^{[k]}(u)$. If u is f-primitive, then $\underline{t} = u = \underline{u}$ and $|t^{\sim}| = k, |u^{\sim}| = 0$, so $p + |t^{\sim}| = p + k = q + 0 = q + |u^{\sim}|$. If uis f-potent, then there is a unique f-primitive term u_1 and a unique $k_1 > 0$, such that $u = f^{[k_1]}(u_1)$. Hence, $t = f^{[k]}(f^{[k_1]}(u_1)) = f^{[k+k_1]}(u_1)$. Therefore $\underline{t} = u_1 = \underline{u}$ and $|t^{\sim}| = k + k_1, |u^{\sim}| = k_1$. So, $p + |t^{\sim}| = p + k + k_1 = q + k_1 = q + |u^{\sim}|$.

Proposition 4.7 Let $t \in R \setminus X$ and $f = f_1 f_2$.

a) t is an f-primitive term in **R** if and only if t is an f-primitive term in T_X . b) If t is an f-primitive term in **R** then there is a unique pair $(u, v) \in R \times R$ such that t = u * v.

c) If t is an f-potent term such that $t = f(\alpha)$, where α is an f-primitive term in **R**, then there is a unique pair $(u, v) \in R \times R$ such that t = u * v and $u = f_1(\alpha), v = f_2(\alpha)$.

d) If t is an f-potent term such that $t = f^{[k+2]}(\alpha)$, $k \ge 0$ and α is an f-primitive term in **R**, then the pairs

 $(f^{[k]}(\alpha), f^{[k+1]}(\alpha))$ and $(f_1(f^{[k+1]}(\alpha)), f_2(f^{[k+1]}(\alpha)))$ are the pairs of divisors of t in **R**.

Proof. a) follows from $f_*(t) = f(t)$ for every $t \in R$.

b) Since t is an f-primitive term in \mathbf{R} , $t \neq f(\alpha)$ for every $\alpha \in R$ and t = u * v = uv for some $u, v \in R$. So, (u, v) is the unique pair of divisors of t in \mathbf{R} . c) If $t = f(\alpha)$, where α is f-primitive in \mathbf{R} , then $t = (f_1 f_2)(\alpha) = f_1(\alpha) f_2(\alpha) = f_1(\alpha) * f_2(\alpha)$. Hence, $(f_1(\alpha), f_2(\alpha))$ is the unique pair of divisors of t in \mathbf{R} . d) Let $t = f^{[k+2]}(\alpha)$, where $k \geq 0$ and α is an f-primitive term in \mathbf{R} . Then:

 $t = f^{[k+2]}(\alpha) = f(f(f^{[k]}(\alpha))) = f^{[k]}(\alpha) * f(f^{[k]}(\alpha)) = f^{[k]}(\alpha) * f^{[k+1]}(\alpha),$ and so $(f^{[k]}(\alpha), f^{[k+1]}(\alpha))$ is a pair of divisors of t in **R**. Also,

$$t = f^{[k+2]}(\alpha) = f(f^{[k+1]}(\alpha)) = (f_1 f_2)(f^{[k+1]}(\alpha)) = (f_1(f^{[k+1]}(\alpha)))(f_2(f^{[k+1]}(\alpha))) = (f_1(f^{[k+1]}(\alpha))) * (f_2(f^{[k+1]}(\alpha))),$$

Free groupoids with $xf(x) \approx f(f(x))$

and so $(f_1(f^{[k+1]}(\alpha)), f_2(f^{[k+1]}(\alpha)))$ is another pair of divisors of t in **R**.

Definition 4.8 A groupoid $H = (H, \cdot)$ is said to be \mathcal{V}_{f} -injective if it satisfies the following conditions:

(0) $\boldsymbol{H} \in \mathcal{V}_f$.

(1) For every $a \in H$ there is a unique *f*-primitive element $b \in H$ and a unique $k \ge 0$ such that $a = f^{[k]}(b)$.

In that case we say that b is an f-base of a, denoted by $\underline{a} = b$, $f^{[k]}$ is a k-th f-power of a, and k is an f-exponent of a.

(2) If a is a non-prime f-primitive element in H, then there is a unique pair $(c, d) \in H \times H$ such that a = cd. We denote (c, d)|a.

(3) If a = f(b), where $f = f_1 f_2$ and b is an f-primitive element in H, then $(f_1(b), f_2(b))$ is the unique pair of divisors of a in H.

(4) If $a = f^{[k+2]}(b)$, $k \ge 0$ and b is an f-primitive element in \boldsymbol{H} , then a has two pairs of divisors in \boldsymbol{H} : $(f^{[k]}(\alpha), f^{[k+1]}(\alpha))$ and $(f_1(f^{[k+1]}(\alpha)), f_2(f^{[k+1]}(\alpha)))$.

Since $R \in \mathcal{V}_f$, by Prop.4.4 and Prop.4.7, it follows that the groupoid $\mathbf{R} = (R, *)$ satisfies the conditions (0) - (4) from the Definition 4.8. Since every \mathcal{V}_f -free groupoid over X is isomorphic with \mathbf{R} it follows that

Proposition 4.9 The class of \mathcal{V}_f -free groupoids is a subclass of the class of \mathcal{V}_f -injective groupoids.

Lemma 4.10 Let $H = (H, \cdot)$ be a \mathcal{V}_f -injective groupoid such that the set P of primes in H is nonempty and generates H. If $C_0 = P$, $C_1 = PP$, $C_{k+1} = \{a \in H \setminus P : (c,d) | a \Rightarrow \{c,d\} \subset C_0 \cup \ldots \cup C_k \land \{c,d\} \cap C_k \neq \emptyset\}$, then $H = \bigcup \{C_k : k \ge 0\}$, where $C_k \neq \emptyset$ for any $k \ge 0$, and $C_i \cap C_j = \emptyset$ for $i \neq j$.

Proof. If k = 1 in C_{k+1} , then $a \in C_2$ if and only if $a \in H \setminus P$. This means that a = cd and $c, d \in C_0 \cup C_1$, where at least one of c, d belongs to C_1 . Three instances are possible: $cd \in C_0C_1$, $cd \in C_1C_0$, $cd \in C_1C_1$. Thus, $a \in C_2$ if and only if $a \in C_0C_1 \cup C_1C_0 \cup C_1C_1$, i.e. $C_2 = C_0C_1 \cup C_1C_0 \cup C_1C_1$. By induction on k one obtains that the equality $C_{k+1} = C_0C_k \cup C_kC_0 \cup C_1C_k \cup C_kC_1 \cup \ldots \cup C_{k-1}C_k \cup C_kC_{k-1} \cup C_kC_k$ is true. Since the set P of primes in H is nonempty and generates H, it follows that $H = \bigcup \{P_k : k \ge 0\}$, where $P_0 = P$, $P_{k+1} = P_k \cup P_kP_k$. By induction on k one obtains that $P_k = C_0 \cup C_1 \cup \ldots \cup C_k$, and as a consequence one obtains that $H = \bigcup \{C_k : k \ge 0\}$, where the union is disjoint.

We will use this lemma in the proof of the following theorem.

Theorem 4.11 (Bruck Theorem for \mathcal{V}_f) A groupoid $\mathbf{H} = (H, \cdot)$ is \mathcal{V}_f -free if and only if it satisfies the following conditions:

(i) \boldsymbol{H} if \mathcal{V}_f -injective.

(ii) The set of primes in H is nonempty and generates H.

Then the set P of primes in **H** is the unique \mathcal{V}_{f} -free generating set of **H**.

Proof. If \boldsymbol{H} is a \mathcal{V}_f -free groupoid over X, then by Prop.4.9 it follows that the groupoid \boldsymbol{H} is \mathcal{V}_f -injective. Since every \mathcal{V}_f -free groupoid over X is isomorphic with \boldsymbol{R} and by the proof of Theorem 3.4, it follows that X is the set of primes in \boldsymbol{H} that is nonempty and generates \boldsymbol{H} .

Conversely, let (i) and (ii) hold. It suffices to show that \boldsymbol{H} has the universal mapping property for \mathcal{V}_f over the set P of primes in \boldsymbol{H} . For that reason, define an infinite sequence of subsets C_0, C_1, \ldots of \boldsymbol{H} by: $C_0 = P, C_1 = PP, \ldots, C_{k+1} = \{a \in H \setminus P : (c,d) | a \Rightarrow \{c,d\} \subset C_0 \cup \ldots \cup C_k \land \{c,d\} \cap C_k \neq \emptyset\}$, as in Lemma 4.10 Then, $C_i \neq \emptyset$ and $H = \bigcup \{C_k : k \ge 0\}$, where $C_i \cap C_j = \emptyset$, for any $i, j, i \neq j$.

Let $G \in \mathcal{V}_f$ and $\lambda : P \to G$ is a mapping. For every nonnegative integer k define a mapping $\varphi_k : C_k \to G$ by $\varphi_0 = \lambda$ and let φ_i be defined for every $i \leq k$. Let $a \in C_{k+1}$, (c,d)|a and $c \in C_r$, $d \in C_s$. Then $r, s \leq k$. Putting $\varphi_{k+1}(a) = \varphi_r(c)\varphi_s(d)$ we obtain that $\varphi = \bigcup \{\varphi_i : i \geq 0\}$ is a well defined mapping from H into G. By induction on k one can show that $\varphi(f^{[k]}(a)) = f^{[k]}(\varphi(a))$, for every $a \in H$.

Let a be a non-prime f-primitive element in H or a = f(b), where b is an f-primitive element in H and $f = f_1 f_2$. Then there is a unique pair $(c, d) \in H \times H$ such that a = cd. In these cases $\varphi(a) = \varphi(cd) = \varphi(c)\varphi(d)$.

If $a = f^{[k+2]}(b)$, where b is an f-primitive element in **H**, then consider two cases: 1) $c = f^{[k]}(b)$, $d = f^{[k+1]}(b)$ and 2) $c = f_1(f^{[k+1]}(b))$, $d = f_2(f^{[k+1]}(b))$.

In the first case we obtain:

$$\varphi(cd) = \varphi(f^{[k+2]}(b)) = f^{[k+2]}(\varphi(b)) = [\mathbf{G} \in \mathcal{V}_f] = f^{[k]}(\varphi(b))f^{[k+1]}(\varphi(b)) = \varphi(f^{[k]}(b))\varphi(f^{[k+1]}(b)) = \varphi(c)\varphi(d).$$

In the second case:

$$\begin{aligned} \varphi(cd) &= \varphi(f^{[k+2]}(b)) = f^{[k+2]}(\varphi(b)) = f(f^{[k+1]}(\varphi(b))) = \\ &= (f_1 f_2)(f^{[k+1]}(\varphi(b))) = f_1(f^{[k+1]}(\varphi(b))) f_2(f^{[k+1]}(\varphi(b))) = \\ &= \varphi(f_1(f^{[k+1]}(b)))\varphi(f_2(f^{[k+1]}(b))) = \varphi(c)\varphi(d). \end{aligned}$$

Hence, φ is a homomorphism from H into G. Therefore, H is a \mathcal{V}_f -free groupoid over X.

There are \mathcal{V}_f -injective groupoids that are not \mathcal{V}_f -free, as the following example shows.

Example 4.12 Let X be a countable set and let $\mathbf{R} = (R, *)$ be the canonical groupoid in \mathcal{V}_f over X. Define two sets $H \subseteq R$, $D \subseteq H \times H$ by:

 $H = \{ w \in R : |cn(w)| = 1 \} \text{ and } D = \{ (u, v) \in H \times H : cn(u) \neq cn(v) \}.$ Note that $H = \bigcup_{x \in X} \langle x \rangle_*$.

The sets D and X have the same cardinality and therefore there is an injection $\varphi: D \to X$. Define an operation \otimes in H by:

$$u, v \in H \implies u \otimes v = \begin{cases} u * v, & \text{if } cn(u) = cn(v), \\ \varphi(u, v), & \text{if } cn(u) \neq cn(v). \end{cases}$$

The operation \otimes is well defined, i.e. $H = (H, \otimes)$ is a groupoid. Directly

from the definition of \otimes it follows that $\boldsymbol{H} \in \mathcal{V}_f$. By Cor.4.5 it follows that (1) from Definition 4.8 holds. The groupoid $\boldsymbol{H} = (H, \otimes)$ satisfies the conditions (2) – (4) from Definition 4.8, by Prop.4.7 b), c), d). Therefore, the groupoid \boldsymbol{H} is \mathcal{V}_f -injective. If $\varphi : D \to X$ is a bijection, then $X \setminus im\varphi$ is an empty set, i.e. the set of primes in (H, \otimes) is empty. By Bruck Theorem for \mathcal{V}_f we obtain that the groupoid (H, \otimes) is not \mathcal{V}_f -free.

Thus, we have proved the following

Proposition 4.13 The class of \mathcal{V}_f -free groupoids is a proper subclass of the class of \mathcal{V}_f -injective groupoids.

Hence, the characterization of \mathcal{V}_f -free objects by means of \mathcal{V}_f -injective groupoids is completed.

References

- [1] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag 1958
- [2] V. Celakoska-Jordanova, Free objects in the variety of groupoids defined by the identity $xx^{(m)} \approx x^{(m+1)}$, Proc. Int. Conf. FMNS, Blagoevgrad, Bulgaria (2007), 75 – 81
- [3] V. Celakoska-Jordanova, Free groupoids in the class of power left and right idempotent groupoids, IJA, Vol. 2, (2008), no. 10, 451 – 461
- [4] G. Cupona, V. Celakoska-Jordanova, On a Variety of Groupoids of Rank 1, Proc. of II Congress of Math. Inf. of Macedonia, Ohrid, (2000), 17 – 23
- [5] G. Cupona, N. Celakoski, S. Ilić, Groupoid powers, Bull. Math. SMM, 25 (LI) (2001), 5 – 12
- [6] G. Cupona, N. Celakoski, B. Janeva, Injective groupoids in some varieties of groupoids, Proc. of II Congesss of SMIM 2000, (2003) 47 – 55
- [7] G. Cupona, S. Ilić, Free groupoids with $x^n = x$, II, Novi Sad J.Math., Vol.29, No.1. (1999), 147 154
- [8] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras, Lattices, Varieties, Wadsworth & Brooks/Cole, 1987

Received: October, 2011