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Abstract

Let Vf denote the variety of groupoids defined by the identity xf(x) ≈
f(f(x)), where f is a fixed nontrivial groupoid power. A description of
free objects in this variety and their characterization by means of injec-
tive groupoids in Vf are obtained.
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1 Introduction

A construction of free objects in the variety of groupoids defined by the identity
xx2 ≈ x2x2 and their characterization are presented in [4]. A generalization
of this problem is investigated in [2]. The variety of groupoids defined by
the identity xf(x) ≈ f(f(x)), where f is a fixed nontrivial groupoid power is
another generalization of [4]. We denote this variety by Vf .

Throughout the paper we will use the concept of groupoid power and some
of its properties stated in [5]. For the notation and basic notions of universal
algebra the reader is referred to [8]. In most cases, without mention, the
operation is denoted multiplicatively: the product of two elements x, y of a
groupoid is denoted by x · y or just xy.

2 Preliminaries

LetX be an arbitrary nonempty set whose elements are called variables and TX

be the set of all groupoid terms over X in signature ·. The terms are denoted
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by t, u, v, w . . . The term groupoid TX = (TX , ·), where the operation is defined
by (t, u) �→ tu, is an absolutely free groupoid over X. The groupoid TX is
injective, i.e. the operation · is an injective mapping: tu = vw ⇒ t = v, u = w.
The set X is the set of primes in TX that generates TX . (An element a of
a groupoid G = (G, ·) is said to be prime in G if a �= xy, for all x, y ∈ G.)
These two properties of TX characterize all absolutely free groupoids.

Proposition 2.1 ([1]; Lemma 1.5)A groupoid H = (H, ·) is an absolutely
free groupoid if and only if it satisfies the following two conditions:

(i) H is injective.
(ii) The set of primes in H is nonempty and generates H.
Then the set of primes is the unique free generating set of H.

We refer to this proposition as Bruck Theorem for the class of all groupoids.

For any term t we define the length | t | of t, the set of subterms P (t) of t
and a content cn(t) of t in the following inductive way:

t ∈ X ⇒ | t | = 1, t = t1t2 ⇒ | t1t2 | = | t1 | + | t2 |
t ∈ X ⇒ P (t) = {t}, t = t1t2 ⇒ P (t1t2) = {t1t2} ∪ P (t1) ∪ P (t2)

t ∈ X ⇒ cn(t) = {t}, t = t1t2 ⇒ cn(t) = cn(t1) ∪ cn(t2).

By E = (E, ·) we denote the term groupoid with one-element generating
set {e}. The elements of E are called groupoid powers ([5]) and they will be
denoted by f, g, h, . . .. We say that e is the trivial groupoid power. A few
properties of groupoid powers that will be used further on are stated below.

For any groupoid G = (G, ·), each element f ∈ E induces a transformation
fG : G→ G, called an interpretation of f in G, defined by:

eG(x) = x, (gh)G(x) = gG(x)hG(x)

for any g, h ∈ E and x ∈ G. We write f(x) instead of fG(x) when G is
understood, f(t) instead of fTX (t) and f(g) instead of fE (g).

The following statements are shown in [7].

Proposition 2.2 If f, g ∈ E, t, u ∈ TX , then:
a) | f(t) | = | f | · | t | ;
b) f(t) = g(u) ∧ (| t | = | u | ∨ | f | = | g |) ⇒ (f = g ∧ t = u) ;
c) f(t) = g(u) ∧ | t | ≥ | u | ⇔ (∃ ! h ∈ E) (t = h(u) ∧ g = f(h)).

If an operation ”◦” is defined on the set E by f ◦g = f(g), then one obtains
that (E, ◦, e) is a cancellative monoid ([5]). We obtain an algebra (E, ◦, ·, e)
with two binary operations ◦ and ·, and a unary operation e, such that ◦ is
right-distributive with respect to ·, i.e. for any g, f1, f2 ∈ E,

e ◦ g = g ◦ e = g, (f1f2) ◦ g = (f1 ◦ g)(f2 ◦ g).
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Given a groupoid G, an element a ∈ G is said to be primitive in G if
a �= f(b), for any b ∈ G and any f ∈ E \ {e}. An element of G is said to
be potent in G if it is not primitive. Specially, primitive elements and potent
elements in TX are called primitive terms and potent terms, respectively.

The following proposition is shown in ([3]).

Proposition 2.3 1◦. For any term t ∈ TX there is a unique primitive term
u ∈ TX and a unique f ∈ E such that t = f(u).

In that case we call u the base of t, f the power of t, | f | the exponent of
t, and denote by t = u, t∼ = f and | t∼ |, respectively.

2◦. If s, t ∈ TX and s �= t, then st = st and (st)∼ = e.
3◦. If s, t ∈ TX and s = t = u, then st = u and (st)∼ = s∼t∼.

3 A construction of canonical groupoids in Vf
We say that a groupoid R = (R, ∗) is a canonical groupoid in Vf if it satisfies
the following conditions ([6]):
(c0) X ⊆ R ⊆ TX ;
(c1) tu ∈ R ⇒ t, u ∈ R ∧ t ∗ u = tu;
(c2) R is a free groupoid in Vf over X (i.e. Vf -free groupoid over X).

Define the carrier R of the desired groupoid (R, ∗) by:

R = {t ∈ TX : (∀x ∈ TX) xf(x) �∈ P (t)}. (1)

As an obvious consequence of (1) we obtain the following

Proposition 3.1 a) X ⊆ R ⊆ TX ; t ∈ R ⇒ P (t) ⊆ R.
b) t, u ∈ R ⇒ [ tu �∈ R ⇔ u = f(t) ] .
c) t, u ∈ TX ⇒ [ tu ∈ R ⇔ t, u ∈ R ∧ u �= f(t) ].
d) t ∈ R⇒ tn ∈ R, where n is a positive integer.

By induction on the length of g one can show the following proposition.

Proposition 3.2 If t ∈ R, then g(t) ∈ R for any g ∈ P (f).

Corollary 3.3 If t ∈ R, then f(t) ∈ R and f(f(t)) ∈ R.

Define an operation ∗ on R by:

t, u ∈ R ⇒ t ∗ u =

{
tu, if tu ∈ R

f(f(t)), if u = f(t).
(2)

By (2) it is clear that R is a groupoid and that the set of primes in R
coincides with X. By induction on length of a term one can show that X is
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the generating set for R. To show that R ∈ Vf we use the fact that g∗(t) = g(t),
for any t ∈ R and every g ∈ P (f). Here f∗(t) denotes the interpretation of
f ∈ E in R and it is defined by:

e∗(t) = t, (f1f2)∗(t) = (f1)∗(t) ∗ (f2)∗(t),
for every t ∈ R.

Put f = f1f2. By Prop.3.2 it follows that f∗(t) ∈ R. Therefore: f∗(f∗(t)) =
f∗(f(t)) = f(f(t)) = t ∗ f(t) = t ∗ f∗(t), i.e. the identity xf(x) ≈ f(f(x)) is
satisfied in R. Thus, R ∈ Vf .

The groupoid R = (R, ∗) has the universal mapping property in Vf over
X. Namely, let G ∈ Vf and λ : X → G be any mapping and ϕ be the
homomorphism from TX into G, such that ϕ|X = λ. Put ψ = ϕ|R. Then ψ
is a homomorphism from R into G that is an extension of λ. It suffices to
show that ϕ(t ∗ u) = ϕ(tu), for any t, u ∈ R. If tu ∈ R, than t ∗ u = tu and
ϕ(t ∗ u) = ϕ(tu). If tu �∈ R, then by Prop.3.1 b) it follows that u = f(t) and
so ϕ(t ∗ u) = ϕ(t ∗ f(t)) = ϕ(f(f(t))). By induction on the length of f one
can show that ϕ(f(t)) = f(ϕ(t)). Thus, ϕ(t ∗ u) = f(ϕ(f(t))) = f(f(ϕ(t))) =
[G ∈ Vf ] = ϕ(t)(f(ϕ(t))) = ϕ(t)ϕ(f(t)) = ϕ(t)ϕ(u) = ϕ(tu).

Hence, the conditions (c0), (c1) and (c2) are fulfilled and thus the following
theorem holds.

Theorem 3.4 The groupoid (R, ∗) is a canonical groupoid in Vf over X.

Note that, by a direct verification, one can show that the groupoid (R, ∗)
is left cancellative, but it is not right cancellative.

4 Injective objects in Vf
Vf -free groupoids can be characterized by a subclass of Vf , called the class
of Vf -injective groupoids. This subclass is larger then the class of Vf -free
groupoids. We define the class of Vf -injective groupoids by using the properties
of the obtained canonical groupoid R = (R, ∗) in Vf concerning the non-prime
elements in R. This class will be successfully defined if the following conditions
are fulfilled:

(i0) Every Vf -injective groupoid H whose set of primes is nonempty and
generates H is Vf -free.

(i1) The class of Vf -free groupoids is a proper subclass of the class of Vf -
injective groupoids.

For that purpose it is necessary to establish the cases when two products
t ∗ s and u ∗ v are equal and to solve the equation t ∗ s = u ∗ v in the obtained
groupoid R, for given u, v ∈ R. Solving this equation we obtain:

Proposition 4.1 Let z ∈ R \X, i.e. z = u ∗ v, for some u, v ∈ R.
a) If uv ∈ R, then (u, v) is the unique pair of divisors of z.
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b) If uv �∈ R and f = f1f2, then z has two pairs of divisors:
(f1(f(u)), f2(f(u))) and (u, f(u)).

Before introducing the notion of Vf -injectivity we present a few necessary
notions and results.

Definition 4.2 Let G be a groupoid and f ∈ E \ {e} be a fixed groupoid
power. An element a ∈ G is said to be f -potent in G if there is b ∈ G, such
that a = f(b). If a �= f(b) for every b ∈ G, then we say that a is an f -primitive
element in G.

For every k ≥ 0 define a transformation [k] : x �→ f [k ](x) on G by:

f [0](x) = x, f [1](x) = f(x), f [k+1](x) = f [k ](f(x)).

For instance, f [2](x) = f(f(x)). From the definition of the operation ◦ in
E we obtain that f [2](x) = (f ◦ f)(x). Note that f [p+q ](x) = f [p ](f [q ](x)) =
f [q ](f [p ](x)), for any nonnegative integers p, q.

One can show the following proposition by induction on p or q, the asso-
ciativity of ◦ and by the injectivity of TX .

Proposition 4.3 If t, u ∈ TX and p, q are non-negative integers, then:
a) |f [p ](t)| = | f |p · | t |. b) f [p ](t) = f [p ](u) ⇒ t = u.
c) f [p ](t) = f [q ](t) ⇒ p = q. d) f [p ](t) = f [p+q ](u) ⇒ t = f [q ](u).
e) If t, u are f -primitive terms, then: f [p ](t) = f [q ](u) ⇒ t = u, p = q.

Proposition 4.4 For every term t ∈ TX there is a unique f -primitive term
α ∈ TX and a unique k ≥ 0, such that t = f [k ](α).

In that case we say that α is an f -base of t; f [k ] is an f -power of t; k
is an f -exponent of t and denote them by: α = t, f [k ] = t∼ and k = |t∼|,
respectively. If t is an f -primitive term, then t = t and |t∼| = 0.

Proof. Existence. Let t ∈ TX . If t is an f -primitive term, then t = e(t) =
f [0](t). Let t be an f -potent term. Then, there is a term u1, such that t =
f(u1). If u1 is f -primitive, then t = f [1](u1). If u1 is f -potent, then there is
a term u2 such that u1 = f(u2). If u2 is f -primitive, then the procedure ends
and t = f [1](f [1](u2)) = f [1](f(u2)) = f [2](u2). Note that | t | > | u1 | > | u2 |.
If u2 is f -potent, then the procedure continues. Hence, a descending sequence
(| ui |) of positive integers is obtained. This sequence must end since | t | is a
positive integer. Thus, there is a term un that is f -primitive and t = f [n ](un).

Uniqueness. Let t = f [k ](α) and t = f [m ](β) for some f -primitive terms
α, β and k,m ≥ 0. If k = m, then f [k ](α) = f [m ](β). By Prop.4.3 b) it follows
that α = β. Let k �= m. Assume that k < m and that m = k + l, for l ≥ 1.
Then f [k ](α) = f [k+l](β). By Prop.4.3 d) it follows that α = f [l](β), that
contradicts the assumption that α is an f -primitive term.

Considering that f∗(t) = f(t) for every t ∈ R, then we can conclude the
following
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Corollary 4.5 For every t ∈ R there is a unique f -primitive term α ∈ R
and a unique k ≥ 0, such that t = f [k ](α).

Proposition 4.6 If t, u ∈ TX and p, q are non-negative integers, then:
f [p ](t) = f [q ](u) ⇒ t = u ∧ p+ |t∼| = q + |u∼|.

Proof. Let f [p ](t) = f [q ](u). If p = q and t, u are f -primitive terms, then
by Prop.4.3 b), t = u and thus t = u. In that case, p + |t∼| = q + |u∼|.
If p = q and t, u are f -potent terms, then by Prop.4.4 there are unique f -
primitive terms t1, u1 and unique n,m ≥ 0, such that t = f [n ](t1), u = f [m ](u1).
In that case f [p ](f [n ](t1)) = f [q ](f [m ](u1)), and by Prop.4.3 e), t1 = u1, so
t1 = u1. Hence f [p+n ](t1) = f [q+m ](t1), which implies that n = m. Obviously,
p + |t∼| = q + |u∼|. Let p �= q. Assume that q = p + k, where k ≥ 1, i.e.
f [p ](t) = f [p+k ](u). By Prop.4.3 d), t = f [k ](u). If u is f -primitive, then
t = u = u and | t∼ | = k, | u∼ | = 0, so p+ |t∼| = p+ k = q + 0 = q + |u∼|. If u
is f -potent, then there is a unique f -primitive term u1 and a unique k1 > 0,
such that u = f [k1](u1). Hence, t = f [k ](f [k1](u1)) = f [k+k1](u1). Therefore
t = u1 = u and | t∼ | = k+ k1, | u∼ | = k1. So, p+ |t∼| = p+ k + k1 = q+ k1 =
q + |u∼|.

Proposition 4.7 Let t ∈ R \X and f = f1f2.
a) t is an f -primitive term in R if and only if t is an f -primitive term in TX .
b) If t is an f -primitive term in R then there is a unique pair (u, v) ∈ R× R
such that t = u ∗ v.
c) If t is an f -potent term such that t = f(α), where α is an f -primitive term
in R, then there is a unique pair (u, v) ∈ R × R such that t = u ∗ v and
u = f1(α), v = f2(α).
d) If t is an f -potent term such that t = f [k+2](α), k ≥ 0 and α is an f -
primitive term in R, then the pairs

(f [k ](α), f [k+1](α)) and (f1(f
[k+1](α)), f2(f

[k+1](α)))
are the pairs of divisors of t in R.

Proof. a) follows from f∗(t) = f(t) for every t ∈ R.
b) Since t is an f -primitive term in R, t �= f(α) for every α ∈ R and t =
u ∗ v = uv for some u, v ∈ R. So, (u, v) is the unique pair of divisors of t in R.
c) If t = f(α), where α is f -primitive in R, then t = (f1f2)(α) = f1(α)f2(α) =
f1(α) ∗ f2(α). Hence, (f1(α), f2(α)) is the unique pair of divisors of t in R.
d) Let t = f [k+2](α), where k ≥ 0 and α is an f -primitive term in R. Then:
t = f [k+2](α) = f(f(f [k ](α))) = f [k ](α) ∗ f(f [k ](α)) = f [k ](α) ∗ f [k+1](α),

and so (f [k ](α), f [k+1](α)) is a pair of divisors of t in R. Also,

t = f [k+2](α) = f(f [k+1](α)) = (f1f2)(f
[k+1](α)) =

= (f1(f
[k+1](α)))(f2(f

[k+1](α))) = (f1(f
[k+1](α))) ∗ (f2(f

[k+1](α))),
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and so (f1(f
[k+1](α)), f2(f

[k+1](α))) is another pair of divisors of t in R.

Definition 4.8 A groupoid H = (H, ·) is said to be Vf -injective if it satis-
fies the following conditions:

(0) H ∈ Vf .
(1) For every a ∈ H there is a unique f -primitive element b ∈ H and a

unique k ≥ 0 such that a = f [k ](b).
In that case we say that b is an f -base of a, denoted by a = b, f [k ] is a k-th

f -power of a, and k is an f -exponent of a.
(2) If a is a non-prime f -primitive element in H , then there is a unique

pair (c, d) ∈ H ×H such that a = cd. We denote (c, d)|a.
(3) If a = f(b), where f = f1f2 and b is an f -primitive element in H , then

(f1(b), f2(b)) is the unique pair of divisors of a in H .
(4) If a = f [k+2](b), k ≥ 0 and b is an f -primitive element in H , then a has

two pairs of divisors in H : (f [k ](α), f [k+1](α)) and (f1(f
[k+1](α)), f2(f

[k+1](α))).

Since R ∈ Vf , by Prop.4.4 and Prop.4.7, it follows that the groupoid R =
(R, ∗) satisfies the conditions (0) – (4) from the Definition 4.8. Since every
Vf -free groupoid over X is isomorphic with R it follows that

Proposition 4.9 The class of Vf -free groupoids is a subclass of the class
of Vf -injective groupoids.

Lemma 4.10 Let H = (H, ·) be a Vf -injective groupoid such that the set
P of primes in H is nonempty and generates H. If C0 = P , C1 = PP ,
Ck+1 = {a ∈ H \P : (c, d)| a⇒ {c, d} ⊂ C0∪ . . .∪Ck ∧ {c, d}∩Ck �= ∅}, then
H =

⋃{Ck : k ≥ 0}, where Ck �= ∅ for any k ≥ 0, and Ci ∩ Cj = ∅ for i �= j.

Proof. If k = 1 in Ck+1, then a ∈ C2 if and only if a ∈ H \ P . This means
that a = cd and c, d ∈ C0 ∪C1, where at least one of c, d belongs to C1. Three
instances are possible: cd ∈ C0C1, cd ∈ C1C0, cd ∈ C1C1. Thus, a ∈ C2 if
and only if a ∈ C0C1 ∪ C1C0 ∪ C1C1, i.e. C2 = C0C1 ∪ C1C0 ∪ C1C1. By
induction on k one obtains that the equality Ck+1 = C0Ck ∪ CkC0 ∪ C1Ck ∪
CkC1∪ . . .∪Ck−1Ck∪CkCk−1∪CkCk is true. Since the set P of primes in H is
nonempty and generates H , it follows that H =

⋃{Pk : k ≥ 0}, where P0 = P ,
Pk+1 = Pk ∪PkPk. By induction on k one obtains that Pk = C0∪C1∪ . . .∪Ck,
and as a consequence one obtains that H =

⋃{Ck : k ≥ 0}, where the union
is disjoint.

We will use this lemma in the proof of the following theorem.

Theorem 4.11 (Bruck Theorem for Vf) A groupoid H = (H, ·) is Vf -
free if and only if it satisfies the following conditions:

(i) H if Vf -injective.
(ii) The set of primes in H is nonempty and generates H.

Then the set P of primes in H is the unique Vf -free generating set of H.
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Proof. If H is a Vf -free groupoid over X, then by Prop.4.9 it follows that the
groupoid H is Vf -injective. Since every Vf -free groupoid over X is isomorphic
with R and by the proof of Theorem 3.4, it follows that X is the set of primes
in H that is nonempty and generates H .

Conversely, let (i) and (ii) hold. It suffices to show that H has the univer-
sal mapping property for Vf over the set P of primes in H . For that reason,
define an infinite sequence of subsets C0, C1, . . . of H by: C0 = P , C1 = PP ,
. . . , Ck+1 = {a ∈ H \P : (c, d)| a⇒ {c, d} ⊂ C0 ∪ . . .∪Ck ∧ {c, d}∩Ck �= ∅},
as in Lemma 4.10 Then, Ci �= ∅ and H =

⋃{Ck : k ≥ 0}, where Ci ∩ Cj = ∅,
for any i, j, i �= j.

Let G ∈ Vf and λ : P → G is a mapping. For every nonnegative inte-
ger k define a mapping ϕk : Ck → G by ϕ0 = λ and let ϕi be defined for
every i ≤ k. Let a ∈ Ck+1, (c, d)|a and c ∈ Cr, d ∈ Cs. Then r, s ≤ k.
Putting ϕk+1(a) = ϕr(c)ϕs(d) we obtain that ϕ =

⋃{ϕi : i ≥ 0} is a
well defined mapping from H into G. By induction on k one can show that
ϕ(f [k](a)) = f [k](ϕ(a)), for every a ∈ H .

Let a be a non-prime f -primitive element in H or a = f(b), where b is
an f -primitive element in H and f = f1f2. Then there is a unique pair
(c, d) ∈ H ×H such that a = cd. In these cases ϕ(a) = ϕ(cd) = ϕ(c)ϕ(d).

If a = f [k+2](b), where b is an f -primitive element in H , then consider two
cases: 1) c = f [k ](b), d = f [k+1](b) and 2) c = f1(f

[k+1](b)), d = f2(f
[k+1](b)).

In the first case we obtain:
ϕ(cd) = ϕ(f [k+2](b)) = f [k+2](ϕ(b)) = [G ∈ Vf ] =

= f [k ](ϕ(b))f [k+1](ϕ(b)) = ϕ(f [k ](b))ϕ(f [k+1](b)) = ϕ(c)ϕ(d).
In the second case:
ϕ(cd) = ϕ(f [k+2](b)) = f [k+2](ϕ(b)) = f(f [k+1](ϕ(b))) =

= (f1f2)(f
[k+1](ϕ(b))) = f1(f

[k+1](ϕ(b))) f2(f
[k+1](ϕ(b))) =

= ϕ(f1(f
[k+1](b)))ϕ(f2(f

[k+1](b))) = ϕ(c)ϕ(d).
Hence, ϕ is a homomorphism from H into G. Therefore, H is a Vf -free

groupoid over X.
There are Vf -injective groupoids that are not Vf -free, as the following ex-

ample shows.

Example 4.12 Let X be a countable set and let R = (R, ∗) be the canoni-
cal groupoid in Vf over X. Define two sets H ⊆ R, D ⊆ H ×H by:
H = {w ∈ R : |cn(w)| = 1} and D = {(u, v) ∈ H ×H : cn(u) �= cn(v)}.

Note that H =
⋃

x∈X 〈 x 〉∗.
The sets D and X have the same cardinality and therefore there is an

injection ϕ : D → X. Define an operation ⊗ in H by:

u, v ∈ H ⇒ u⊗ v =

{
u ∗ v, if cn(u) = cn(v),

ϕ(u, v), if cn(u) �= cn(v).

The operation ⊗ is well defined, i.e. H = (H,⊗) is a groupoid. Directly
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from the definition of ⊗ it follows that H ∈ Vf . By Cor.4.5 it follows that (1)
from Definition 4.8 holds. The groupoid H = (H,⊗) satisfies the conditions
(2) – (4) from Definition 4.8, by Prop.4.7 b), c), d). Therefore, the groupoid
H is Vf -injective. If ϕ : D → X is a bijection, then X \ imϕ is an empty set,
i.e. the set of primes in (H,⊗) is empty. By Bruck Theorem for Vf we obtain
that the groupoid (H,⊗) is not Vf -free.

Thus, we have proved the following

Proposition 4.13 The class of Vf -free groupoids is a proper subclass of the
class of Vf -injective groupoids.

Hence, the characterization of Vf -free objects by means of Vf -injective
groupoids is completed.
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