# Free Objects in the Variety of Groupoids <br> Defined by the Identity $x f(x) \approx f(f(x))$ 

Vesna Celakoska-Jordanova<br>Faculty of Natural Sciences and Mathematics,<br>"Ss. Cyril and Methodius University", Skopje, Macedonia<br>vesnacj@pmf.ukim.mk


#### Abstract

Let $\mathcal{V}_{f}$ denote the variety of groupoids defined by the identity $x f(x) \approx$ $f(f(x))$, where $f$ is a fixed nontrivial groupoid power. A description of free objects in this variety and their characterization by means of injective groupoids in $\mathcal{V}_{f}$ are obtained.


Mathematics Subject Classification: 08B20; 03C05
Keywords: groupoid, groupoid power, variety of groupoids, free groupoid, injective groupoid

## 1 Introduction

A construction of free objects in the variety of groupoids defined by the identity $x x^{2} \approx x^{2} x^{2}$ and their characterization are presented in [4]. A generalization of this problem is investigated in [2]. The variety of groupoids defined by the identity $x f(x) \approx f(f(x))$, where $f$ is a fixed nontrivial groupoid power is another generalization of [4]. We denote this variety by $\mathcal{V}_{f}$.

Throughout the paper we will use the concept of groupoid power and some of its properties stated in [5]. For the notation and basic notions of universal algebra the reader is referred to [8]. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements $x, y$ of a groupoid is denoted by $x \cdot y$ or just $x y$.

## 2 Preliminaries

Let $X$ be an arbitrary nonempty set whose elements are called variables and $T_{X}$ be the set of all groupoid terms over $X$ in signature $\cdot$. The terms are denoted
by $t, u, v, w \ldots$ The term groupoid $\boldsymbol{T}_{X}=\left(T_{X}, \cdot\right)$, where the operation is defined by $(t, u) \mapsto t u$, is an absolutely free groupoid over $X$. The groupoid $\boldsymbol{T}_{X}$ is injective, i.e. the operation $\cdot$ is an injective mapping: $t u=v w \Rightarrow t=v, u=w$. The set $X$ is the set of primes in $\boldsymbol{T}_{X}$ that generates $\boldsymbol{T}_{X}$. (An element $a$ of a groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be prime in $\boldsymbol{G}$ if $a \neq x y$, for all $x, y \in G$.) These two properties of $\boldsymbol{T}_{X}$ characterize all absolutely free groupoids.

Proposition 2.1 ([1]; Lemma 1.5)A groupoid $\boldsymbol{H}=(H, \cdot)$ is an absolutely free groupoid if and only if it satisfies the following two conditions:
(i) $\boldsymbol{H}$ is injective.
(ii) The set of primes in $\boldsymbol{H}$ is nonempty and generates $\boldsymbol{H}$.

Then the set of primes is the unique free generating set of $\boldsymbol{H}$.
We refer to this proposition as Bruck Theorem for the class of all groupoids.
For any term $t$ we define the length $|t|$ of $t$, the set of subterms $P(t)$ of $t$ and a content $\operatorname{cn}(t)$ of $t$ in the following inductive way:

$$
\begin{gathered}
t \in X \Rightarrow|t|=1, \quad t=t_{1} t_{2} \Rightarrow\left|t_{1} t_{2}\right|=\left|t_{1}\right|+\left|t_{2}\right| \\
t \in X \Rightarrow P(t)=\{t\}, \quad t=t_{1} t_{2} \Rightarrow P\left(t_{1} t_{2}\right)=\left\{t_{1} t_{2}\right\} \cup P\left(t_{1}\right) \cup P\left(t_{2}\right) \\
t \in X \Rightarrow \operatorname{cn}(t)=\{t\}, \quad t=t_{1} t_{2} \Rightarrow \operatorname{cn}(t)=\operatorname{cn}\left(t_{1}\right) \cup \operatorname{cn}\left(t_{2}\right) .
\end{gathered}
$$

By $\boldsymbol{E}=(E, \cdot)$ we denote the term groupoid with one-element generating set $\{e\}$. The elements of $E$ are called groupoid powers ([5]) and they will be denoted by $f, g, h, \ldots$. We say that $e$ is the trivial groupoid power. A few properties of groupoid powers that will be used further on are stated below.

For any groupoid $\boldsymbol{G}=(G, \cdot)$, each element $f \in E$ induces a transformation $f^{\boldsymbol{G}}: G \rightarrow G$, called an interpretation of $f$ in $\boldsymbol{G}$, defined by:

$$
e^{\boldsymbol{G}}(x)=x, \quad(g h)^{G}(x)=g^{\boldsymbol{G}}(x) h^{\boldsymbol{G}}(x)
$$

for any $g, h \in E$ and $x \in G$. We write $f(x)$ instead of $f^{\boldsymbol{G}}(x)$ when $\boldsymbol{G}$ is understood, $f(t)$ instead of $f^{\boldsymbol{T}_{X}}(t)$ and $f(g)$ instead of $f^{\boldsymbol{E}}(g)$.

The following statements are shown in [7].
Proposition 2.2 If $f, g \in E, t, u \in T_{X}$, then:
a) $|f(t)|=|f| \cdot|t|$;
b) $f(t)=g(u) \wedge(|t|=|u| \vee|f|=|g|) \Rightarrow(f=g \wedge t=u)$;
c) $f(t)=g(u) \wedge|t| \geq|u| \Leftrightarrow(\exists!h \in E)(t=h(u) \wedge g=f(h))$.

If an operation " $\circ$ " is defined on the set $E$ by $f \circ g=f(g)$, then one obtains that $(E, \circ, e)$ is a cancellative monoid ([5]). We obtain an algebra ( $E, \circ, \cdot, e$ ) with two binary operations $\circ$ and $\cdot$, and a unary operation $e$, such that $\circ$ is right-distributive with respect to $\cdot$, i.e. for any $g, f_{1}, f_{2} \in E$,

$$
e \circ g=g \circ e=g, \quad\left(f_{1} f_{2}\right) \circ g=\left(f_{1} \circ g\right)\left(f_{2} \circ g\right)
$$

Given a groupoid $\boldsymbol{G}$, an element $a \in G$ is said to be primitive in $\boldsymbol{G}$ if $a \neq f(b)$, for any $b \in G$ and any $f \in E \backslash\{e\}$. An element of $\boldsymbol{G}$ is said to be potent in $\boldsymbol{G}$ if it is not primitive. Specially, primitive elements and potent elements in $\boldsymbol{T}_{X}$ are called primitive terms and potent terms, respectively.

The following proposition is shown in ([3]).
Proposition $2.31^{\circ}$. For any term $t \in T_{X}$ there is a unique primitive term $u \in T_{X}$ and a unique $f \in E$ such that $t=f(u)$.

In that case we call $u$ the base of $t, f$ the power of $t,|f|$ the exponent of $t$, and denote by $\underline{t}=u, t^{\sim}=f$ and $\left|t^{\sim}\right|$, respectively.
$2^{\circ}$. If $s, t \in T_{X}$ and $\underline{s} \neq \underline{t}$, then $\underline{s t}=$ st and $(s t)^{\sim}=e$.
$3^{\circ}$. If $s, t \in T_{X}$ and $\underline{s}=\underline{t}=u$, then $\underline{s t}=u$ and $(s t)^{\sim}=s^{\sim} t^{\sim}$.

## 3 A construction of canonical groupoids in $\mathcal{V}_{f}$

We say that a groupoid $\boldsymbol{R}=(R, *)$ is a canonical groupoid in $\mathcal{V}_{f}$ if it satisfies the following conditions ([6]):
$\left(c_{0}\right) X \subseteq R \subseteq T_{X}$;
$\left(c_{1}\right) t u \in R \Rightarrow t, u \in R \wedge t * u=t u$;
$\left(c_{2}\right) \boldsymbol{R}$ is a free groupoid in $\mathcal{V}_{f}$ over $X$ (i.e. $\mathcal{V}_{f}$-free groupoid over $X$ ).
Define the carrier $R$ of the desired groupoid $(R, *)$ by:

$$
\begin{equation*}
R=\left\{t \in T_{X}:\left(\forall x \in T_{X}\right) \quad x f(x) \notin P(t)\right\} . \tag{1}
\end{equation*}
$$

As an obvious consequence of (1) we obtain the following
Proposition 3.1 a) $X \subseteq R \subseteq T_{X} ; t \in R \Rightarrow P(t) \subseteq R$.
b) $t, u \in R \Rightarrow[t u \notin R \Leftrightarrow u=f(t)]$.
c) $t, u \in T_{X} \Rightarrow[t u \in R \Leftrightarrow t, u \in R \wedge u \neq f(t)]$.
d) $t \in R \Rightarrow t^{n} \in R$, where $n$ is a positive integer.

By induction on the length of $g$ one can show the following proposition.
Proposition 3.2 If $t \in R$, then $g(t) \in R$ for any $g \in P(f)$.
Corollary 3.3 If $t \in R$, then $f(t) \in R$ and $f(f(t)) \in R$.
Define an operation $*$ on $R$ by:

$$
t, u \in R \Rightarrow t * u=\left\{\begin{array}{r}
t u, \text { if } t u \in R  \tag{2}\\
f(f(t)), \text { if } u=f(t) .
\end{array}\right.
$$

By (2) it is clear that $\boldsymbol{R}$ is a groupoid and that the set of primes in $\boldsymbol{R}$ coincides with $X$. By induction on length of a term one can show that $X$ is
the generating set for $\boldsymbol{R}$. To show that $\boldsymbol{R} \in \mathcal{V}_{f}$ we use the fact that $g_{*}(t)=g(t)$, for any $t \in R$ and every $g \in P(f)$. Here $f_{*}(t)$ denotes the interpretation of $f \in E$ in $\boldsymbol{R}$ and it is defined by:

$$
e_{*}(t)=t, \quad\left(f_{1} f_{2}\right)_{*}(t)=\left(f_{1}\right)_{*}(t) *\left(f_{2}\right)_{*}(t)
$$

for every $t \in R$.
Put $f=f_{1} f_{2}$. By Prop.3.2 it follows that $f_{*}(t) \in R$. Therefore: $f_{*}\left(f_{*}(t)\right)=$ $f_{*}(f(t))=f(f(t))=t * f(t)=t * f_{*}(t)$, i.e. the identity $x f(x) \approx f(f(x))$ is satisfied in $\boldsymbol{R}$. Thus, $\boldsymbol{R} \in \mathcal{V}_{f}$.

The groupoid $\boldsymbol{R}=(R, *)$ has the universal mapping property in $\mathcal{V}_{f}$ over $X$. Namely, let $G \in \mathcal{V}_{f}$ and $\lambda: X \rightarrow G$ be any mapping and $\varphi$ be the homomorphism from $\boldsymbol{T}_{X}$ into $\boldsymbol{G}$, such that $\left.\varphi\right|_{X}=\lambda$. Put $\psi=\left.\varphi\right|_{R}$. Then $\psi$ is a homomorphism from $\boldsymbol{R}$ into $\boldsymbol{G}$ that is an extension of $\lambda$. It suffices to show that $\varphi(t * u)=\varphi(t u)$, for any $t, u \in R$. If $t u \in R$, than $t * u=t u$ and $\varphi(t * u)=\varphi(t u)$. If $t u \notin R$, then by Prop.3.1 b) it follows that $u=f(t)$ and so $\varphi(t * u)=\varphi(t * f(t))=\varphi(f(f(t)))$. By induction on the length of $f$ one can show that $\varphi(f(t))=f(\varphi(t))$. Thus, $\varphi(t * u)=f(\varphi(f(t)))=f(f(\varphi(t)))=$ $\left[\boldsymbol{G} \in \mathcal{V}_{f}\right]=\varphi(t)(f(\varphi(t)))=\varphi(t) \varphi(f(t))=\varphi(t) \varphi(u)=\varphi(t u)$.

Hence, the conditions $\left(c_{0}\right),\left(c_{1}\right)$ and $\left(c_{2}\right)$ are fulfilled and thus the following theorem holds.

Theorem 3.4 The groupoid $(R, *)$ is a canonical groupoid in $\mathcal{V}_{f}$ over $X$.
Note that, by a direct verification, one can show that the groupoid $(R, *)$ is left cancellative, but it is not right cancellative.

## 4 Injective objects in $\mathcal{V}_{f}$

$\mathcal{V}_{f}$-free groupoids can be characterized by a subclass of $\mathcal{V}_{f}$, called the class of $\mathcal{V}_{f}$-injective groupoids. This subclass is larger then the class of $\mathcal{V}_{f}$-free groupoids. We define the class of $\mathcal{V}_{f}$-injective groupoids by using the properties of the obtained canonical groupoid $\boldsymbol{R}=(R, *)$ in $\mathcal{V}_{f}$ concerning the non-prime elements in $\boldsymbol{R}$. This class will be successfully defined if the following conditions are fulfilled:
$\left(i_{0}\right)$ Every $\mathcal{V}_{f}$-injective groupoid $\boldsymbol{H}$ whose set of primes is nonempty and generates $\boldsymbol{H}$ is $\mathcal{V}_{f}$-free.
$\left(i_{1}\right)$ The class of $\mathcal{V}_{f}$-free groupoids is a proper subclass of the class of $\mathcal{V}_{f^{-}}$ injective groupoids.

For that purpose it is necessary to establish the cases when two products $t * s$ and $u * v$ are equal and to solve the equation $t * s=u * v$ in the obtained groupoid $\boldsymbol{R}$, for given $u, v \in R$. Solving this equation we obtain:

Proposition 4.1 Let $z \in R \backslash X$, i.e. $z=u * v$, for some $u, v \in R$. a) If $u v \in R$, then $(u, v)$ is the unique pair of divisors of $z$.
b) If $u v \notin R$ and $f=f_{1} f_{2}$, then $z$ has two pairs of divisors:
$\left(f_{1}(f(u)), f_{2}(f(u))\right)$ and $(u, f(u))$.
Before introducing the notion of $\mathcal{V}_{f}$-injectivity we present a few necessary notions and results.

Definition 4.2 Let $\boldsymbol{G}$ be a groupoid and $f \in E \backslash\{e\}$ be a fixed groupoid power. An element $a \in G$ is said to be $f$-potent in $\boldsymbol{G}$ if there is $b \in G$, such that $a=f(b)$. If $a \neq f(b)$ for every $b \in G$, then we say that $a$ is an $f$-primitive element in $\boldsymbol{G}$.

For every $k \geq 0$ define a transformation $[k]: x \mapsto f^{[k]}(x)$ on $\boldsymbol{G}$ by:

$$
f^{[0]}(x)=x, \quad f^{[1]}(x)=f(x), \quad f^{[k+1]}(x)=f^{[k]}(f(x)) .
$$

For instance, $f^{[2]}(x)=f(f(x))$. From the definition of the operation $\circ$ in $E$ we obtain that $f^{[2]}(x)=(f \circ f)(x)$. Note that $f^{[p+q]}(x)=f^{[p]}\left(f^{[q]}(x)\right)=$ $f^{[q]}\left(f^{[p]}(x)\right)$, for any nonnegative integers $p, q$.

One can show the following proposition by induction on $p$ or $q$, the associativity of $\circ$ and by the injectivity of $\boldsymbol{T}_{X}$.

Proposition 4.3 If $t, u \in T_{X}$ and $p, q$ are non-negative integers, then:
a) $\left|f^{[p]}(t)\right|=|f|^{p} \cdot|t|$.
b) $f^{[p]}(t)=f^{[p]}(u) \Rightarrow t=u$.
c) $f^{[p]}(t)=f^{[q]}(t) \Rightarrow p=q$.
d) $f^{[p]}(t)=f^{[p+q]}(u) \Rightarrow t=f^{[q]}(u)$.
e) If $t, u$ are $f$-primitive terms, then: $f^{[p]}(t)=f^{[q]}(u) \Rightarrow t=u, p=q$.

Proposition 4.4 For every term $t \in T_{X}$ there is a unique $f$-primitive term $\alpha \in T_{X}$ and a unique $k \geq 0$, such that $t=f^{[k]}(\alpha)$.

In that case we say that $\alpha$ is an $f$-base of $t ; f^{[k]}$ is an $f$-power of $t ; k$ is an $f$-exponent of $t$ and denote them by: $\alpha=\underline{t}, f^{[k]}=t^{\sim}$ and $k=\left|t^{\sim}\right|$, respectively. If $t$ is an $f$-primitive term, then $\underline{t}=t$ and $\left|t^{\sim}\right|=0$.

Proof. Existence. Let $t \in T_{X}$. If $t$ is an $f$-primitive term, then $t=e(t)=$ $f^{[0]}(t)$. Let $t$ be an $f$-potent term. Then, there is a term $u_{1}$, such that $t=$ $f\left(u_{1}\right)$. If $u_{1}$ is $f$-primitive, then $t=f^{[1]}\left(u_{1}\right)$. If $u_{1}$ is $f$-potent, then there is a term $u_{2}$ such that $u_{1}=f\left(u_{2}\right)$. If $u_{2}$ is $f$-primitive, then the procedure ends and $t=f^{[1]}\left(f^{[1]}\left(u_{2}\right)\right)=f^{[1]}\left(f\left(u_{2}\right)\right)=f^{[2]}\left(u_{2}\right)$. Note that $|t|>\left|u_{1}\right|>\left|u_{2}\right|$. If $u_{2}$ is $f$-potent, then the procedure continues. Hence, a descending sequence $\left(\left|u_{i}\right|\right)$ of positive integers is obtained. This sequence must end since $|t|$ is a positive integer. Thus, there is a term $u_{n}$ that is $f$-primitive and $t=f^{[n]}\left(u_{n}\right)$.

Uniqueness. Let $t=f^{[k]}(\alpha)$ and $t=f^{[m]}(\beta)$ for some $f$-primitive terms $\alpha, \beta$ and $k, m \geq 0$. If $k=m$, then $f^{[k]}(\alpha)=f^{[m]}(\beta)$. By Prop.4.3 b) it follows that $\alpha=\beta$. Let $k \neq m$. Assume that $k<m$ and that $m=k+l$, for $l \geq 1$. Then $f^{[k]}(\alpha)=f^{[k+l]}(\beta)$. By Prop.4.3 d) it follows that $\alpha=f^{[l]}(\beta)$, that contradicts the assumption that $\alpha$ is an $f$-primitive term.

Considering that $f_{*}(t)=f(t)$ for every $t \in R$, then we can conclude the following

Corollary 4.5 For every $t \in R$ there is a unique $f$-primitive term $\alpha \in R$ and a unique $k \geq 0$, such that $t=f^{[k]}(\alpha)$.

Proposition 4.6 If $t, u \in T_{X}$ and $p, q$ are non-negative integers, then:

$$
f^{[p]}(t)=f^{[q]}(u) \Rightarrow \underline{t}=\underline{u} \wedge p+\left|t^{\sim}\right|=q+\left|u^{\sim}\right| .
$$

Proof. Let $f^{[p]}(t)=f^{[q]}(u)$. If $p=q$ and $t, u$ are $f$-primitive terms, then by Prop.4.3 b), $t=u$ and thus $\underline{t}=\underline{u}$. In that case, $p+\left|t^{\sim}\right|=q+\left|u^{\sim}\right|$. If $p=q$ and $t, u$ are $f$-potent terms, then by Prop.4.4 there are unique $f$ primitive terms $t_{1}, u_{1}$ and unique $n, m \geq 0$, such that $t=f^{[n]}\left(t_{1}\right), u=f^{[m]}\left(u_{1}\right)$. In that case $f^{[p]}\left(f^{[n]}\left(t_{1}\right)\right)=f^{[q]}\left(f^{[m]}\left(u_{1}\right)\right)$, and by Prop.4.3 e), $t_{1}=u_{1}$, so $\underline{t}_{1}=\underline{u}_{1}$. Hence $f^{[p+n]}\left(t_{1}\right)=f^{[q+m]}\left(t_{1}\right)$, which implies that $n=m$. Obviously, $p+\left|t^{\sim}\right|=q+\left|u^{\sim}\right|$. Let $p \neq q$. Assume that $q=p+k$, where $k \geq 1$, i.e. $f^{[p]}(t)=f^{[p+k]}(u)$. By Prop.4.3 d), $t=f^{[k]}(u)$. If $u$ is $f$-primitive, then $\underline{t}=u=\underline{u}$ and $\left|t^{\sim}\right|=k,\left|u^{\sim}\right|=0$, so $p+\left|t^{\sim}\right|=p+k=q+0=q+\left|u^{\sim}\right|$. If $u$ is $f$-potent, then there is a unique $f$-primitive term $u_{1}$ and a unique $k_{1}>0$, such that $u=f^{\left[k_{1}\right]}\left(u_{1}\right)$. Hence, $t=f^{[k]}\left(f^{\left[k_{1}\right]}\left(u_{1}\right)\right)=f^{\left[k+k_{1}\right]}\left(u_{1}\right)$. Therefore $\underline{t}=u_{1}=\underline{u}$ and $\left|t^{\sim}\right|=k+k_{1},\left|u^{\sim}\right|=k_{1}$. So, $p+\left|t^{\sim}\right|=p+k+k_{1}=q+k_{1}=$ $q+\left|u^{\sim}\right|$.

Proposition 4.7 Let $t \in R \backslash X$ and $f=f_{1} f_{2}$.
a) $t$ is an $f$-primitive term in $\boldsymbol{R}$ if and only if $t$ is an $f$-primitive term in $\boldsymbol{T}_{X}$. b) If $t$ is an $f$-primitive term in $\boldsymbol{R}$ then there is a unique pair $(u, v) \in R \times R$ such that $t=u * v$.
c) If $t$ is an $f$-potent term such that $t=f(\alpha)$, where $\alpha$ is an $f$-primitive term in $\boldsymbol{R}$, then there is a unique pair $(u, v) \in R \times R$ such that $t=u * v$ and $u=f_{1}(\alpha), v=f_{2}(\alpha)$.
d) If $t$ is an $f$-potent term such that $t=f^{[k+2]}(\alpha), k \geq 0$ and $\alpha$ is an $f$ primitive term in $\boldsymbol{R}$, then the pairs

$$
\left(f^{[k]}(\alpha), f^{[k+1]}(\alpha)\right) \text { and }\left(f_{1}\left(f^{[k+1]}(\alpha)\right), f_{2}\left(f^{[k+1]}(\alpha)\right)\right)
$$

are the pairs of divisors of $t$ in $\boldsymbol{R}$.
Proof. a) follows from $f_{*}(t)=f(t)$ for every $t \in R$.
b) Since $t$ is an $f$-primitive term in $\boldsymbol{R}, t \neq f(\alpha)$ for every $\alpha \in R$ and $t=$ $u * v=u v$ for some $u, v \in R$. So, $(u, v)$ is the unique pair of divisors of $t$ in $\boldsymbol{R}$. c) If $t=f(\alpha)$, where $\alpha$ is $f$-primitive in $\boldsymbol{R}$, then $t=\left(f_{1} f_{2}\right)(\alpha)=f_{1}(\alpha) f_{2}(\alpha)=$ $f_{1}(\alpha) * f_{2}(\alpha)$. Hence, $\left(f_{1}(\alpha), f_{2}(\alpha)\right)$ is the unique pair of divisors of $t$ in $\boldsymbol{R}$.
d) Let $t=f^{[k+2]}(\alpha)$, where $k \geq 0$ and $\alpha$ is an $f$-primitive term in $\boldsymbol{R}$. Then: $t=f^{[k+2]}(\alpha)=f\left(f\left(f^{[k]}(\alpha)\right)\right)=f^{[k]}(\alpha) * f\left(f^{[k]}(\alpha)\right)=f^{[k]}(\alpha) * f^{[k+1]}(\alpha)$, and so $\left(f^{[k]}(\alpha), f^{[k+1]}(\alpha)\right)$ is a pair of divisors of $t$ in $\boldsymbol{R}$. Also,

$$
\begin{gathered}
t=f^{[k+2]}(\alpha)=f\left(f^{[k+1]}(\alpha)\right)=\left(f_{1} f_{2}\right)\left(f^{[k+1]}(\alpha)\right)= \\
=\left(f_{1}\left(f^{[k+1]}(\alpha)\right)\right)\left(f_{2}\left(f^{[k+1]}(\alpha)\right)\right)=\left(f_{1}\left(f^{[k+1]}(\alpha)\right)\right) *\left(f_{2}\left(f^{[k+1]}(\alpha)\right)\right),
\end{gathered}
$$

and so $\left(f_{1}\left(f^{[k+1]}(\alpha)\right), f_{2}\left(f^{[k+1]}(\alpha)\right)\right)$ is another pair of divisors of $t$ in $\boldsymbol{R}$.
Definition 4.8 A groupoid $\boldsymbol{H}=(H, \cdot)$ is said to be $\mathcal{V}_{f}$-injective if it satisfies the following conditions:
(0) $\boldsymbol{H} \in \mathcal{V}_{f}$.
(1) For every $a \in H$ there is a unique $f$-primitive element $b \in H$ and a unique $k \geq 0$ such that $a=f^{[k]}(b)$.

In that case we say that $b$ is an $f$-base of $a$, denoted by $\underline{a}=b, f^{[k]}$ is a $k$-th $f$-power of $a$, and $k$ is an $f$-exponent of $a$.
(2) If $a$ is a non-prime $f$-primitive element in $\boldsymbol{H}$, then there is a unique pair $(c, d) \in H \times H$ such that $a=c d$. We denote $(c, d) \mid a$.
(3) If $a=f(b)$, where $f=f_{1} f_{2}$ and $b$ is an $f$-primitive element in $\boldsymbol{H}$, then $\left(f_{1}(b), f_{2}(b)\right)$ is the unique pair of divisors of $a$ in $\boldsymbol{H}$.
(4) If $a=f^{[k+2]}(b), k \geq 0$ and $b$ is an $f$-primitive element in $\boldsymbol{H}$, then $a$ has two pairs of divisors in $\boldsymbol{H}:\left(f^{[k]}(\alpha), f^{[k+1]}(\alpha)\right)$ and $\left(f_{1}\left(f^{[k+1]}(\alpha)\right), f_{2}\left(f^{[k+1]}(\alpha)\right)\right)$.

Since $R \in \mathcal{V}_{f}$, by Prop.4.4 and Prop.4.7, it follows that the groupoid $\boldsymbol{R}=$ $(R, *)$ satisfies the conditions (0)-(4) from the Definition 4.8. Since every $\mathcal{V}_{f}$-free groupoid over $X$ is isomorphic with $\boldsymbol{R}$ it follows that

Proposition 4.9 The class of $\mathcal{V}_{f}$-free groupoids is a subclass of the class of $\mathcal{V}_{f}$-injective groupoids.

Lemma 4.10 Let $\boldsymbol{H}=(H, \cdot)$ be a $\mathcal{V}_{f}$-injective groupoid such that the set $P$ of primes in $\boldsymbol{H}$ is nonempty and generates $\boldsymbol{H}$. If $C_{0}=P, C_{1}=P P$, $C_{k+1}=\left\{a \in H \backslash P:(c, d) \mid a \Rightarrow\{c, d\} \subset C_{0} \cup \ldots \cup C_{k} \wedge\{c, d\} \cap C_{k} \neq \emptyset\right\}$, then $H=\bigcup\left\{C_{k}: k \geq 0\right\}$, where $C_{k} \neq \emptyset$ for any $k \geq 0$, and $C_{i} \cap C_{j}=\emptyset$ for $i \neq j$.

Proof. If $k=1$ in $C_{k+1}$, then $a \in C_{2}$ if and only if $a \in H \backslash P$. This means that $a=c d$ and $c, d \in C_{0} \cup C_{1}$, where at least one of $c, d$ belongs to $C_{1}$. Three instances are possible: $c d \in C_{0} C_{1}, c d \in C_{1} C_{0}, c d \in C_{1} C_{1}$. Thus, $a \in C_{2}$ if and only if $a \in C_{0} C_{1} \cup C_{1} C_{0} \cup C_{1} C_{1}$, i.e. $C_{2}=C_{0} C_{1} \cup C_{1} C_{0} \cup C_{1} C_{1}$. By induction on $k$ one obtains that the equality $C_{k+1}=C_{0} C_{k} \cup C_{k} C_{0} \cup C_{1} C_{k} \cup$ $C_{k} C_{1} \cup \ldots \cup C_{k-1} C_{k} \cup C_{k} C_{k-1} \cup C_{k} C_{k}$ is true. Since the set $P$ of primes in $\boldsymbol{H}$ is nonempty and generates $\boldsymbol{H}$, it follows that $H=\bigcup\left\{P_{k}: k \geq 0\right\}$, where $P_{0}=P$, $P_{k+1}=P_{k} \cup P_{k} P_{k}$. By induction on $k$ one obtains that $P_{k}=C_{0} \cup C_{1} \cup \ldots \cup C_{k}$, and as a consequence one obtains that $H=\bigcup\left\{C_{k}: k \geq 0\right\}$, where the union is disjoint.

We will use this lemma in the proof of the following theorem.
Theorem 4.11 (Bruck Theorem for $\mathcal{V}_{f}$ ) A groupoid $\boldsymbol{H}=(H, \cdot)$ is $\mathcal{V}_{f}$ free if and only if it satisfies the following conditions:
(i) $\boldsymbol{H}$ if $\mathcal{V}_{f}$-injective.
(ii) The set of primes in $\boldsymbol{H}$ is nonempty and generates $\boldsymbol{H}$.

Then the set $P$ of primes in $\boldsymbol{H}$ is the unique $\mathcal{V}_{f}$-free generating set of $\boldsymbol{H}$.

Proof. If $\boldsymbol{H}$ is a $\mathcal{V}_{f}$-free groupoid over $X$, then by Prop.4.9 it follows that the groupoid $\boldsymbol{H}$ is $\mathcal{V}_{f}$-injective. Since every $\mathcal{V}_{f}$-free groupoid over $X$ is isomorphic with $\boldsymbol{R}$ and by the proof of Theorem 3.4, it follows that $X$ is the set of primes in $\boldsymbol{H}$ that is nonempty and generates $\boldsymbol{H}$.

Conversely, let (i) and (ii) hold. It suffices to show that $\boldsymbol{H}$ has the universal mapping property for $\mathcal{V}_{f}$ over the set $P$ of primes in $\boldsymbol{H}$. For that reason, define an infinite sequence of subsets $C_{0}, C_{1}, \ldots$ of $\boldsymbol{H}$ by: $C_{0}=P, C_{1}=P P$, $\ldots, C_{k+1}=\left\{a \in H \backslash P:(c, d) \mid a \Rightarrow\{c, d\} \subset C_{0} \cup \ldots \cup C_{k} \wedge\{c, d\} \cap C_{k} \neq \emptyset\right\}$, as in Lemma 4.10 Then, $C_{i} \neq \emptyset$ and $H=\bigcup\left\{C_{k}: k \geq 0\right\}$, where $C_{i} \cap C_{j}=\emptyset$, for any $i, j, i \neq j$.

Let $\boldsymbol{G} \in \mathcal{V}_{f}$ and $\lambda: P \rightarrow G$ is a mapping. For every nonnegative integer $k$ define a mapping $\varphi_{k}: C_{k} \rightarrow G$ by $\varphi_{0}=\lambda$ and let $\varphi_{i}$ be defined for every $i \leq k$. Let $a \in C_{k+1},(c, d) \mid a$ and $c \in C_{r}, d \in C_{s}$. Then $r, s \leq k$. Putting $\varphi_{k+1}(a)=\varphi_{r}(c) \varphi_{s}(d)$ we obtain that $\varphi=\bigcup\left\{\varphi_{i}: i \geq 0\right\}$ is a well defined mapping from $H$ into $G$. By induction on $k$ one can show that $\varphi\left(f^{[k]}(a)\right)=f^{[k]}(\varphi(a))$, for every $a \in H$.

Let $a$ be a non-prime $f$-primitive element in $\boldsymbol{H}$ or $a=f(b)$, where $b$ is an $f$-primitive element in $\boldsymbol{H}$ and $f=f_{1} f_{2}$. Then there is a unique pair $(c, d) \in H \times H$ such that $a=c d$. In these cases $\varphi(a)=\varphi(c d)=\varphi(c) \varphi(d)$.

If $a=f^{[k+2]}(b)$, where $b$ is an $f$-primitive element in $\boldsymbol{H}$, then consider two cases: 1) $c=f^{[k]}(b), d=f^{[k+1]}(b)$ and 2) $c=f_{1}\left(f^{[k+1]}(b)\right), d=f_{2}\left(f^{[k+1]}(b)\right)$.

In the first case we obtain:

$$
\begin{aligned}
\varphi(c d) & =\varphi\left(f^{[k+2]}(b)\right)=f^{[k+2]}(\varphi(b))=\left[\boldsymbol{G} \in \mathcal{V}_{f}\right]= \\
& =f^{[k]}(\varphi(b)) f^{[k+1]}(\varphi(b))=\varphi\left(f^{[k]}(b)\right) \varphi\left(f^{[k+1]}(b)\right)=\varphi(c) \varphi(d) .
\end{aligned}
$$

In the second case:

$$
\begin{aligned}
\varphi(c d) & =\varphi\left(f^{[k+2]}(b)\right)=f^{[k+2]}(\varphi(b))=f\left(f^{[k+1]}(\varphi(b))\right)= \\
& =\left(f_{1} f_{2}\right)\left(f^{[k+1]}(\varphi(b))\right)=f_{1}\left(f^{[k+1]}(\varphi(b))\right) f_{2}\left(f^{[k+1]}(\varphi(b))\right)= \\
& =\varphi\left(f_{1}\left(f^{[k+1]}(b)\right)\right) \varphi\left(f_{2}\left(f^{[k+1]}(b)\right)\right)=\varphi(c) \varphi(d) .
\end{aligned}
$$

Hence, $\varphi$ is a homomorphism from $\boldsymbol{H}$ into $\boldsymbol{G}$. Therefore, $\boldsymbol{H}$ is a $\mathcal{V}_{f}$-free groupoid over $X$.

There are $\mathcal{V}_{f}$-injective groupoids that are not $\mathcal{V}_{f}$-free, as the following example shows.

Example 4.12 Let $X$ be a countable set and let $\boldsymbol{R}=(R, *)$ be the canonical groupoid in $\mathcal{V}_{f}$ over $X$. Define two sets $H \subseteq R, D \subseteq H \times H$ by:
$H=\{w \in R:|c n(w)|=1\}$ and $D=\{(u, v) \in H \times H: c n(u) \neq c n(v)\}$. Note that $H=\bigcup_{x \in X}\langle x\rangle_{*}$.

The sets $D$ and $X$ have the same cardinality and therefore there is an injection $\varphi: D \rightarrow X$. Define an operation $\otimes$ in $H$ by:

$$
u, v \in H \Rightarrow u \otimes v=\left\{\begin{aligned}
u * v, & \text { if } \operatorname{cn}(u)=c n(v) \\
\varphi(u, v), & \text { if } \operatorname{cn}(u) \neq \operatorname{cn}(v)
\end{aligned}\right.
$$

The operation $\otimes$ is well defined, i.e. $\boldsymbol{H}=(H, \otimes)$ is a groupoid. Directly
from the definition of $\otimes$ it follows that $\boldsymbol{H} \in \mathcal{V}_{f}$. By Cor.4.5 it follows that (1) from Definition 4.8 holds. The groupoid $\boldsymbol{H}=(H, \otimes)$ satisfies the conditions (2) - (4) from Definition 4.8, by Prop.4.7 b), c), d). Therefore, the groupoid $\boldsymbol{H}$ is $\mathcal{V}_{f}$-injective. If $\varphi: D \rightarrow X$ is a bijection, then $X \backslash i m \varphi$ is an empty set, i.e. the set of primes in $(H, \otimes)$ is empty. By Bruck Theorem for $\mathcal{V}_{f}$ we obtain that the groupoid $(H, \otimes)$ is not $\mathcal{V}_{f}$-free.

Thus, we have proved the following
Proposition 4.13 The class of $\mathcal{V}_{f}$-free groupoids is a proper subclass of the class of $\mathcal{V}_{f}$-injective groupoids.

Hence, the characterization of $\mathcal{V}_{f}$-free objects by means of $\mathcal{V}_{f}$-injective groupoids is completed.

## References

[1] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag 1958
[2] V. Celakoska-Jordanova, Free objects in the variety of groupoids defined by the identity $x x^{(m)} \approx x^{(m+1)}$, Proc. Int. Conf. FMNS, Blagoevgrad, Bulgaria (2007), $75-81$
[3] V. Celakoska-Jordanova, Free groupoids in the class of power left and right idempotent groupoids, IJA, Vol. 2, (2008), no. 10, 451 - 461
[4] Ǵ. Čupona, V. Celakoska-Jordanova, On a Variety of Groupoids of Rank 1, Proc. of II Congress of Math. Inf. of Macedonia, Ohrid, (2000), 17 - 23
[5] Ǵ. Čupona, N. Celakoski, S. Ilić, Groupoid powers, Bull. Math. SMM, 25 (LI) (2001), $5-12$
[6] G. Čupona, N. Celakoski, B. Janeva, Injective groupoids in some varieties of groupoids, Proc. of II Congesss of SMIM 2000, (2003) 47-55
[7] G. Čupona, S. Ilić, Free groupoids with $x^{n}=x$, II, Novi Sad J.Math., Vol.29, No.1. (1999), 147 - 154
[8] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras, Lattices, Varieties, Wadsworth \& Brooks/Cole, 1987

## Received: October, 2011

