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Abstract— Activity detection is becoming an integral part of 
many mobile applications. Therefore, the algorithms for this 
purpose should be lightweight to operate on mobile or other 
wearable device, but accurate at the same time. In this paper, we 
develop a new lightweight algorithm for activity detection based 
on Long Short Term Memory networks, which is able to learn 
features from raw accelerometer data, completely bypassing the 
process of generating hand-crafted features. We evaluate our 
algorithm on data collected in controlled setting, as well as on data 
collected under field conditions, and we show that our algorithm 
is robust and performs almost equally good for both scenarios, 
while outperforming other approaches from the literature. 

Keywords— activity recognition; LSTM, smartphone; wearable 

I.  INTRODUCTION 

Physical activity duration, intensity and frequency are major 
lifestyle factors associated with beneficial health effects across 
the life span [1]. Therefore, activity detection is becoming the 
most important part of many healthcare applications, ranging 
from epidemiological and clinical studies to smartphone based 
“stay-fit” and “weight loss” applications. 

Traditional way to measure activity is by attaching special 
hardware devices on predefined location, like hip and ankle. 
Sensor measurements from those devices are recorded on 
internal memory, to be later analyzed for different purposes [2]. 
Many of the epidemiological and clinical studies still use this 
method in their research [1]. With the technology improvement, 
body sensor networks allow more advanced approach, where 
sensor measurements can be sent directly to the users’ 
smartphone to be analyzed on the fly [3]. In the last few years, 
modern smartphones are equipped with dozens of different 
sensors, therefore, smartphone measurements can be used for 
the process of activity detection, bypassing the need for extra 
hardware devices [4]. 

There are many research in the literature that intend to 
perform activity detection and recognition from smartphone 
data [5]-[8]. In [5], different classification methods are applied 
(Multilayer Perceptron, Random Forest, etc.), achieving an 
overall accuracy rate of 91.15%. In [6], autoregressive 
coefficients, signal magnitude area and Kernel Discriminant 
Analysis are used to extract the features, while artificial neural 
nets are used for classification, achieving average accuracy of 

about 96%. Hardware-friendly approach in [7] adapts the 
standard Support Vector Machine (SVM) to reduce 
computational cost while maintaining accuracy comparable to 
other traditional SVM based classification methods. More 
recent approaches are focused on features extraction from the 
raw acceleration data. In [8], an unsupervised classification 
method is used for activity recognition.  

The challenge in designing such algorithm is not only the 
accuracy of the algorithm, but also its computation cost, since 
it should operate on smartphone in real time [9]. Although 
modern smartphones have performances comparable with those 
of the computers, the power remains a challenging problem, 
since battery technology has not kept pace with information and 
communication technologies. Other issues regarding energy 
consumption is sampling frequency, as it is an important 
parameter for the accuracy of the algorithm.  

The man goal of this paper was to develop a new lightweight 
algorithm for activity recognition, with the following 
characteristics: (i) to be easily implementable on mobile 
applications; (ii) to outperform other approaches from the 
literature by means of accuracy; and (iii) to be robust enough to 
perform almost equally good on data collected under field 
conditions as on data collected in a controlled environment. Our 
algorithm is based on neural network, i.e. Long Short Term 
Memory networks, which is able to learn features from raw 
accelerometer data, completely bypassing the process of 
generating hand-crafted features. Although this algorithm has 
been previously used for activity recognition [10], to the best of 
our knowledge, this is the first research that evaluates the 
algorithm on data collected from smartphone sensors. 

The rest of this paper is organized as follows. In the next 
section, we explain the algorithm used for activity recognition, 
as well as tools used for its implementation as part of a mobile 
application.  In the third section, we elaborate the data used for 
evaluation of our algorithm. Section four discusses the results. 
This paper is concluded in section five. 

II. SYSTEM IMPLEMENTATION 

Although there are many techniques in the literature for 
activity recognition, in this paper we investigated a neural 
network approach based on Long Short Term Memory (LSTM) 
networks.  



LSTM network as a deep learning system is appropriate for 
temporal modeling and has shown improvements over Deep 
Neural Networks for speech recognition problem [11]. It was 
initially proposed by Hochreiter [12] and later improved in 
2000 by Gers [13]. Since 2016, LSTM became integral part of 
many applications and services delivered by Google, Microsoft 
and Apple, including personalized speech recognition on 
smartphones [14] and gesture typing decoding [15]. In [10], 
LSTM is used for offline activity recognition, using different 
sensors from wearables. The authors identify that LSTM is 
suitable for multimodal wearables and does not require expert 
knowledge in designing features. Still, they do not implement 
LSTM on wearable devices. 

In this section, a brief mathematical introduction of LSTM 
is given, followed by the computational procedure and software 
tools used for its implementation. Additionally, an Android 
mobile application was developed, explained in the last 
subsection. 

A. Mathematical background  

Long Short Term Memory (LSTM) networks are a special 
type of neural networks that remember information from further 
back in the past. Given a sequence of inputs X = {x1, x2, ..., xn}, 
LSTM associates each time step with an input gate, memory 
gate and output gate, denoted respectively as it, ft and ot. The 
information from the past is remembered using the state vector 
ct-1. The forget gate decides how much of the previous 
information is going to be forgotten. The input gate decides how 
to update the state vector using the information from the current 
input. The lt vector consists of the information from the current 
input added to the state. Finally, the output gate decides what 
information to output at the current time step. This process is 
formalized as in (1), 

𝑖 = 𝜎(𝑊 ∙ [ℎ , 𝑥 ]) 

𝑓 = 𝜎 𝑊 ∙ [ℎ , 𝑥 ]  

𝑜 = 𝜎(𝑊 ∙ [ℎ , 𝑥 ]) 

𝑙 = tanh(𝑊 ∙ [ℎ , 𝑥 ]) 

𝑐 =  𝑓 ∙ 𝑐 +  𝑖  ∙ 𝑙  

ℎ = 𝑜 ∙ tanh(𝑐 )                        (1) 

where Wi, Wf, Wo and Wl have dimensions D×2N, D is the 
number of memory cells and N is the dimension of the input 
vector. These matrices represent the parameters of the network. 
LSTM is local in space and time since its computational 
complexity per time step and weight is O(1) [12].  

B. Computational procedure 

The computation pipeline used in this study follows 
standard procedure.  A schematic flowchart in Fig. 1 shows an 
outline of this process. It begins with raw data, collected in 
controlled laboratory setting, which is processed into sequences 
of length 200. Afterwards, the generated inputs are divided into 
a training (80%) and testing (20%) datasets. The training set is 
used to train the LSTM network and to generate the model. The 
model alongside the testing set is used to calculate the accuracy 
of the algorithm. Additionally, the model is transferred to an 
Android device as part of a mobile application which performs 
accelerometer measurements, real time prediction and 
calculation of the LSTM accuracy.  

C. Implementation tools 

For the implementation of the LSTM network, the Python 
library TensorFlow was used [16]. The data was divided into 
10-second segments (sequences of 200 samples) and each 
segment was used as an input in the network. We use three 
LSTM layers with 64 neurons each. Additionally, we use a L2 
regularization with loss of 0.0015. Recently, the Adam 
Optimizer has gained a lot of popularity, so we decided to use 
this optimizer with a learning rate of 0.0025. The neural 
network was trained for 100 epochs, as we observed that longer 
training than 100 epochs doesn't improve the performance. 

D. Real time Android application 

In order to test the real-time performance of our model, we 
developed an Android application. The application collects 
measurement from the device's accelerometer every 50ms and 
outputs the probability of each of the six activities occurring 
during the previous 10-second window. For the implementation 
of this application we exported our TensorFlow model and 
imported it in Android using TensorFlowInferenceInterface. 
Additionally, we use the text-to-speech Android API which 
tells the user the predicted activity during the previous 10-
second window. A view of this application is given in Fig. 2. 

Fig. 1 Computation pipeline 



   
Fig.2 Interface of the Android mobile application 

When algorithms are needed to be tested under field 
conditions, the standard procedure is by using diary, where 
users record their activities. This is labor-intensive task prone 
to errors. Therefore, our mobile application can operate in a 
testing mode for users that want to participate in the process of 
accuracy identification. As can be seen in Fig. 2, in this mode, 
the user can manually enter the perfromed activity, so the 
application is able to calculate the accuracy for each user 
separately. 

III. DATA COLLECTION AND COMPUTATION 

In this section, the datasets used in our research are 
explained in detail. 

A. Lab Data 

Our LSTM based algorithm was trained and evaluated on 
data collected in controlled laboratory setting as described in 
[17]. Hereafter, we refer to this data as “Lab Data”. The data 
was collected from 29 volunteers carrying a smartphone in their 
front leg pocket. The subjects were asked to do six specific 
activities: sitting, standing, walking, jogging, ascend stairs and 
descend stairs. The accelerometer data was collected using an 
Android application. A sample was collected every 50ms. 
Every sample contains a timestamp, user ID, as well as the x, y 
and z accelerometer values. 

B. Field data 

To test the generalization power of our algorithm, we 
collected our own dataset under field conditions, doing the 
same six activities outdoors in a less controlled environment. 
Hereafter, we refer to this data as “Field Data”. The 
accelerometer data was collected from two subjects, one male 
and one female, carrying a smartphone in front leg pocket. Our 
Android application contains the same fields and records the 
data with the same frequency as in [17]. We plot 10-second 
windows of the accelerometer data for all activities in Figures 
3-8. We observe that “Sitting” and “Standing” do not have 
periodic behavior but can be distinguished based on the relative 
magnitudes of the x, y and z values. For all other activities we 
observe periodic behavior. As expected, the “Jogging” activity 
shows greatest acceleration, followed by “Walking”, while 
“Upstairs” and “Downstairs” having smaller acceleration. 

 
Fig. 3 Time series for activity “Sitting” 

  

Fig. 4 Time series for activity “Standing” 

 
Fig. 5 Time series for activity “Walking” 

 
Fig 6. Time series for activity “Jogging” 

 
Fig 7. Time series for activity “Upstairs” 



 
Fig 8. Time series for activity “Downstairs” 

IV. RESULTS AND DISCUSSION 

The results of our LSTM based algorithm were compared 
with the results from other methods reported in [17], as given 
in Table I. From the results, we can conclude that LSTM gives 
almost as good overall performance as the best method used in 
[17]. The advantage of LSTM is that it works directly with the 
raw accelerometer data, and completely bypasses the process of 
generating hand-crafted features. This allows the network to 
better learn the underlying data distribution. Furthermore, for 
the “Walking”, “Upstairs”, “Sitting” and “Standing” classes, 
LSTM gives better performance than other methods 
investigated in [17], i.e. decision trees J48, logistic regression, 
multilayer perceptron and straw man. The straw man strategy 
in [17] always predicts the most frequently occurring activity. 
LSTM achieves perfect performance on the “Standing” class. 
Additionally, for the classes of “Jogging” and “Downstairs”, 
the LSTM approach is only slightly worse than the best 
achieved performance in [17]. Therefore, LSTM works almost 
as good or better than the approaches that use hand-crafted 
features which means that we can confidently skip the process 
of features selection and work directly with the raw 
accelerometer data. 

TABLE I. % OF CORRECTLY PREDICTED ACTIVITIES  

  J48 LOGISTIC  
REGRESSION 

MULTILAYER 
PERCEPTRON 

STRAW 
MAN 

LSTM 

WALKING 89.90 93.60 91.70 37.20 95.30 
JOGGING 96.50 98.00 98.30 29.20 96.50 
UPSTAIRS 59.30 27.50 61.50 12.20 67.00 

DOWNSTAIRS 55.50 12.30 44.30 10.00 50.30 
SITTING 95.70 92.20 95.00 6.40 96.90 

STANDING 93.30 87.00 91.90 5.00 100.00 
OVERALL 85.10 78.10 91.70 37.20 88.60 

In Table II we present the confusion matrix for the LSTM 
model. The most important activities to analyze are the 
“Upstairs” and “Downstairs” activities which are most difficult 
to recognize. From the confusion matrix we can see that these 
two activities are mostly confused with each other, and less 
commonly with the “Jogging” activity. Looking at Fig. 7 and 
Fig. 8, it can be seen that these two activities are very similar 
and thus all the algorithms are facing difficulties to distinguish 
them. 

The comparison between the performance on the “Lab 
Data” [17] and the “Field Data” is presented in Table III. From 
the results it can be seen that LSTM algorithm performs few 
percentage points worse on the “Field Data” for the classes of 
“Walking”, “Jogging” and “Standing”. We manage to achieve 
slightly better performance for the classes of “Upstairs” and 

“Sitting”. On the other hand, we observe much worse 
performance for the “Downstairs” activity. We can conclude 
that the “Downstairs” activity is much harder to be predicted 
compared to other activities. This conclusion is further 
supported by the fact that even on the “Lab Data” no algorithm 
can achieve accuracy greater than 55% for the “Downstairs” 
activity. Finally, we can conclude that our algorithm is able to 
generalize well on data from different subjects and sources and 
still achieve comparable performance. 

TABLE II. CONFUSION MATRIX FOR LSTM 

Predicted  Downstairs Jogging Sitting Standing Upstairs Walking 
Actual 
Downstairs 75 9 0 0 55 10 
Jogging 8 498 0 0 5 5 
Sitting 0 0 95 2 1 0 
Standing 0 0 0 70 0 0 
Upstairs 33 18 1 0 128 11 
Walking 8 7 2 0 12 595 

TABLE III. COMPARISON OF CORRECTLY PREDICTED ACTIVITIES FOR LAB 
DATA AND FIELD DATA (IN %) 

  LAB DATA FIELD DATA 
WALKING 95.30 90.49 
JOGGING 96.50 96.11 
UPSTAIRS 67.00 75.69 

DOWNSTAIRS 50.30 21.02 
SITTING 96.90 97.84 

STANDING 100.00 97.20 
OVERALL 88.60 82.20 

Each of the Figures 9-14 correspond to one activity. Each 
plot shows the predicted activity from “Field Data”. From the 
results, we can conclude that “Sitting” and “Standing” (Fig. 9 
and Fig. 10) are correctly predicted except for several samples 
which can be considered as random noise. “Walking” is mainly 
confused with “Jogging” (Fig. 11). During our testing we 
observed that faster walking is generally classified as 
“Walking”, which is probably caused by the collection strategy 
of the original dataset (“Lab Data”) on which our algorithm is 
trained. The “Jogging” is much less frequently confused with 
“Walking” which can be explained with a user slowing down to 
rest during the testing stage (Fig. 12). The “Upstairs” activity is 
mostly confused with “Walking”, which might be caused by the 
difference in the type of stairs or the speed of climbing between 
the “Lab Data” and “Field Data” datasets (Fig. 13). 
“Downstairs” is most often confused with “Upstairs”, a trend 
that is observed even in the original “Lab Data” dataset (Fig. 
14). 

 
Fig. 9 Activity prediction for “Sitting” activity 



 
Fig. 10 Activity prediction for “Standing” activity 

  
Fig. 11 Activity prediction for “Walking” activity 

 
Fig. 12 Activity prediction for “Jogging” activity 

 
Fig. 13 Activity prediction for “Upstairs” activity 

  
Fig. 14 Activity prediction for “Downstairs” activity 

V. CONCLUSION 

In this paper we developed and implemented a lightweight 
algorithm for human activity recognition from smartphone 
accelerometer data. It is based on long short term memory 
(LSTM) network, a relatively new approach suitable for 
multimodal wearables. LSTM does not require expert 
knowledge in designing features and learns features from raw 
accelerometer data, completely bypassing the process of 
generating hand-crafted features. Therefore, LSTM is 
lightweight with computational complexity of O(1), 
appropriate to operate in real-time on wearables and 
smartphones.  

LSTM was compared with other approaches from the 
literature [17], i.e. decision trees J48, logistic regression and 
multilayer perceptron, and it was shown that LSTM works 
almost as good or better than the approaches that use hand-
crafted features. 

To evaluate the usability of LSTM for real smartphone 
applications, we trained and tested our algorithm on data 
collected in controlled setting, but we also tested on data 
collected under field conditions. Our initial results show that 
LSTM algorithm performs almost equally good on smartphone 
data collected under field conditions, which makes it (and its 
future improvements) suitable candidate to be improved and 
implemented for commercial mobile applications. 
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